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Abstract

We obtain dimension-free concentration inequalities for Lp norms, p ≥ 2, of in-
finitely divisible random vectors with independent coordinates. The methods and
results extend to some other classes of Lipschitz functions.

1 Introduction

Talagrand [T] proved in 1991 an isoperimetric inequality for the product measure µd where

µ is the symmetric exponential measure (i.e. (e−|x|/2)dx on the real line). This inequality

was the first one to mix two different norms (L1 and L2) improving some aspects of Gaussian

isoperimetry. Rewriting this inequality for Lipschitz functions we get that:

Theorem 1 (Talagrand) Let X be a random vector of Rd with i.i.d. symmetric exponential

components. Let f be a real valued function on Rd with median 0, such that

∃α, β > 0,∀x, y ∈ Rd, |f(x)− f(y)| ≤ min(α‖x− y‖2, β‖x− y‖1).

Then there exists a universal constant K such that

P
(
f(X) ≥ α

√
u + βu

)
≤ 1

2
e−

u
K .
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What is remarkable here, is that this concentration formula is dimension free. For instance,

if we apply this result to the euclidean norm, we remark that α = β = 1 and that the only

dependence in the dimension d is through the median itself. This result of Talagrand, which

clearly continues to hold for Lipschitz images of the exponential measure, actually holds for

any law µ satisfying a Poincaré inequality (see [BL1]).

We would like here to extend this result to infinitely divisible variables for which expo-

nential variables are a particular example. Let X ∼ ID(γ, 0, ν) be an infinitely divisible (ID)

vector (without Gaussian component) in Rd, and with characteristic function ϕ(t) = Eei〈t,X〉,

t ∈ Rd (throughout, 〈·, ·〉 denotes the Euclidean inner product in Rd, while ‖ · ‖ is the corre-

sponding Euclidean norm). As well known,

ϕ(t) = exp

{
i〈t, γ〉+

∫
Rd

(ei〈t,u〉 − 1− i〈t, u〉1‖u‖≤1)ν(du)

}
, (1.1)

where γ ∈ Rd and where ν 6≡ 0 (the Lévy measure) is a positive Borel measure on Rd,

without atom at the origin and such that
∫

Rd(1 ∧ ‖u‖2)ν(du) < +∞.

As also well known, X has independent components if and only if ν is supported on the

axes of Rd, i.e.,

ν(dx1, . . . , dxd) =
d∑

k=1

δ0(dx1) · · · δ0(dxk−1)ν̃k(dxk)δ0(dxk+1) · · · δ0(dxd). (1.2)

Moreover, the independent components of X have the same law if and only if the one

dimensional Lévy measures ν̃k are the same measure denoted by ν̃.

Some work (see [H]) has already been done for general Lipschitz functions and general

ID vectors but some of these results are not dimension free for vectors with iid components.

One may even think, in analogy with the results of ....... (ref a mettre cf truc envoye

par christian), that such dimension free results do not exist for every Lipschitz functions.

Here we focus first on the particular example of the euclidean norm. Even if we do get

dimension free results, the next three results are not as general as we could hope for, even

in the case of the euclidean norm of ID vector with i.i.d. components.

Theorem 2 Let X ∼ ID(γ, 0, ν) have i.i.d. components and be such that Eet‖X‖ < +∞, for
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some t > 0. Let M = sup{t > 0 : Eet|X1| < +∞}. Let ε > 0. Then, for all 0 < x < h(M−)

P(‖X‖ ≥ (1 + ε)E‖X‖+ x) ≤ e−
R x
0 h−1(s)ds, (1.3)

where the (dimension free) function h is given by

h(t) = 8

∫
R
|u|(et|u| − 1)ν̃(du) +

2d

(εE‖X‖)2

∫
R
|u|3(et|u| − 1)ν̃(du).

This leads to q first corollary which is a dimension free extension of the results of [H, R].

Corollary 1 Let ν̃ have bounded support with R = inf{ρ : ν̃(|x| > ρ) = 0}, then

E
[
e
‖X‖

R
log(λ‖X‖

R )
]

< +∞,

for all λ such that λV 2/R2 < 1/e, where V 2 = 8
∫

R |u|
2ν̃(du).

Theorem 2 has still some weak dimension dependency, through the term εE‖X‖ (the expec-

tation and the median playing the same role up to some constant). In particular, it does not

precisely recover Talagrand’s result even for the euclidean norm. Here is another possible

result.

Theorem 3 With the notation of Theorem 2, let also l = − log E[e−X2
1 ]. Let for all 0 < t <

M ,

h(t) =
12

l

∫
R
|u|(et|u| − 1)ν̃(du) and

g(t) =

(
8 +

12 log(2)

l

)∫
R
|u|(et|u| − 1)ν̃(du) +

8

l

∫
R
|u|3(et|u| − 1)ν̃(du).

Let T be such that for all t ≤ T , tg(t) ≤ 1/2. Then for all positive x,

P(‖X‖ ≥ E‖X‖+ x) ≤ e− sup0≤t≤T [tx−
R t
0 2g(s)ds]. (1.4)

This result does recover Talagrand’s inequality for the Euclidean norm (up to the value of

the constants). Indeed, it is sufficient to take t = x for x ≤ T and t = T otherwise. However,

the improvement in x log x obtained in the proof of Corollary 1 for Poisson random variables

(and, more generally, ID variables with boundedly supported Lévy measure) disappears.
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Our last result recovers Talagrand’s inequality and Corollary 1 for Poisson random vari-

ables, but requires some technical assumptions on the random variables themselves.

Recall that X can be viewed as X1, the value at time 1 of a Lévy process (Xt, t ≥ 0).

For every t ∈ [0, 1], write

X = Yt + Zt (1.5)

where Yt = Xt, Zt = X1 − Xt, so that Yt, Zt are independent. If 1 ≤ k ≤ d, we write

(Yk)t, (Zk)t for the k-th coordinate of Yt, Zt.

Theorem 4 Let X be as in Theorem 2. Then for all positive x,

P(‖X‖ − E‖X‖ ≥ x) ≤ exp

(
−
∫ x

0

h−1(s)ds

)
, (1.6)

where the (dimension free) function h is given by

h(t) = 64

∫
R

(1 +

√
2|u|

√
m2

)2

+ 4
m4

m2
2

 |u|(et|u| − 1)ν̃(du),

and the moments m4, m2 are defined as follows:

• if X has almost surely positive coordinates, we can take mq = mq = E[(X1)
q
1] for

q = 2, 4.

• otherwise, we take

m2 = inf
t∈[0,1]

[
inf{E[|(Y1)t + (Z1)t|21(Z1)t≥0,(Y1)t≥0], E[|(Y1)t + (Z1)t|21(Z1)t≤0,(Y1)t≤0]}

]
m4 = sup

t∈[0,1]

[
sup{E[|(Y1)t + (Z1)t|41(Z1)t≥0,(Y1)t≥0], E[|(Y1)t + (Z1)t|41(Z1)t≤0,(Y1)t≤0]}

]
The drawback of this result is that it gives a trivial bound if m2 = 0. For instance, if

the coordinates of X are not positive almost surely, but if Xt has positive coordinates with

probability tending to 1 as t → 0, then mp = 0. However, in most “natural” situations where

ID random variables occur (this is the case, for instance, when X is symmetric), m2 > 0,

and Theorem 4 gives a nontrivial dimension-free bound.

In fact, we obtain a generalization of Theorem 4 to general Lp norms for 2 ≤ p < ∞, see

Theorem 5 in the last section.

blabla sur le plan on mettra apres
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2 The covariance formula and its first applications

The result at the root of every proof in this paper is the following one.

Proposition 1 Let X = (X1, . . . , Xd) ∼ ID(γ, 0, ν) have independent components and be

such that Eet‖X‖ < +∞, for some t > 0. Let f : Rd → R be such that Ef(X) = 0, and let

there exist bk ∈ R, k = 1, . . . , d, such that |f(x + uek)− f(x)| ≤ bk|u|, for all u ∈ R, x ∈ Rd.

Let M = sup
{
t > 0 : ∀ k = 1, . . . , d, Eetbk|Xk| < +∞

}
. Then for all 0 ≤ t < M ,

Efetf ≤
∫ 1

0

Ez

[
d∑

k=1

∫
R

|f(U + uek)− f(U)|2+|f(V + uek)− f(V )|2

2
etf(V )

(
etbk|u| − 1

bk|u|

)
ν̃k(du)

]
dz,

where the expectation Ez is with respect to the ID vector, (U, V ) in R2d of parameter (γ, γ)

and with Lévy measure zν1 + (1− z)ν0, 0 ≤ z ≤ 1. The measure ν0 is given by

ν0(du, dv) = ν(du)δ0(dv) + δ0(du)ν(dv), u, v ∈ Rd,

while ν1 is the measure ν supported on the main diagonal of R2d.

An important feature of this proposition is the fact that the first marginal of (U, V ) is

X and so is its second marginal.

So in fact a main problem in estimating the right-hand side of the inequality in Propo-

sition 1 will be to uncouple U and V , i.e. to split the product |f(U + uek) − f(U)|2etf(V )

without changing the term etf(V ). To do so, a first attempt could be to use a supremum.

Corollary 2 Let X = (X1, . . . , Xd) ∼ ID(γ, 0, ν) have independent components and be such

that Eet‖X‖ < +∞, for some t > 0. Let f : Rd → R, and let there exist bk ∈ R, k = 1, . . . , d,

such that |f(x + uek)− f(x)| ≤ bk|u|, for all u ∈ R, x ∈ Rd. Let

hf (t) = sup
x∈Rd

d∑
k=1

∫
R
|f(x + uek)− f(x)|2 etbk|u| − 1

bk|u|
ν̃k(du), 0 ≤ t < M,

where M = sup
{
t > 0 : ∀ k = 1, . . . , d, Eetbk|Xk| < +∞

}
. Then

P(f(X)− Ef(X) ≥ x) ≤ e−
R x
0 h−1

f (s)ds, (2.1)

for all 0 < x < h−1
f (M−).
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Proof.[Proposition 1 and Corollary 2]verifier qu’on abien toutes les hypothese dans

ces deux resultats Below, and throughout, by f Lipschitz with constant a we mean that

|f(x) − f(y)| ≤ a‖x − y‖, for all x, y ∈ Rd (the Lipschitz convention stated in [H] also

applies). Let us start by recalling the following simple lemma which will be crucial to our

approach [HPAS].

Lemma 1 Let X ∼ ID(γ, 0, ν) be such that E‖X‖2 < +∞. Let f, g : Rd → R be Lipschitz

functions. Then,

Ef(X)g(X)− Ef(X)Eg(X)

=

∫ 1

0

Ez

[∫
Rd

(f(U + u)− f(U))(g(V + u)− g(V ))ν(du)

]
dz, (2.2)

where Ez is as in Proposition 1

Then we follow [H]. First, by independence,

C =
{
t > 0 : ∀ k = 1, . . . , d, Eetbk|Xk| < +∞

}
=

{
t > 0 : ∀ k = 1, . . . , d,

∫
|u|>1

etbk|u|ν̃k(du) < +∞
}

.

Next, we apply the covariance representation (2.2) to f satisfying the above hypotheses and

moreover assumed to be bounded and such that Ef = 0. Thus,

Efetf =

∫ 1

0

Ez

[
etf(V )

d∑
k=1

∫
R
(f(U + uek)− f(U))(et(f(V +uek)−f(V )) − 1)ν̃k(du)

]
dz

≤
∫ 1

0

Ez

[
etf(V )

d∑
k=1

∫
R
|f(U + uek)− f(U)||f(V + uek)− f(V )| e

tbk|u| − 1

bk|u|
ν̃k(du)

]
dz

≤
∫ 1

0

Ez

[
etf(V )

d∑
k=1

∫
R

|f(U + uek)− f(U)|2+|f(V + uek)− f(V )|2

2

(
etbk|u| − 1

bk|u|

)
ν̃k(du)

]
dz,

which gives Proposition 1. For Corollary 2, we continue:

Efetf ≤ hf (t)E
[
etf
]
,

where we have used the “marginal property” mentioned above and since hf (t) is well defined

for 0 ≤ t < M . Integrating this last inequality, applied to f − Ef , leads to

Eet(f−Ef) ≤ e
R t
0 hf (s)ds, 0 ≤ t < M, (2.3)
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for all f bounded satisfying the hypotheses of the theorem. Fatou’s lemma allows to remove

the boundedness assumption in (2.3).

To obtain the tail inequality (2.1), the Bienaymé-Chebyshev inequality gives

P(f(X)− Ef(X) ≥ x) ≤ exp

(
− sup

0<t<M

(
tx−

∫ t

0

hf (s)ds

))
= e−

R x
0 h−1

f (s)ds,

by standard arguments, e.g., see [H]. �

In general, this corollary does not provide dimension free results, even if it can improve

a bit the results in [H] (we refer the reader to [HR], superseeded by the present paper, on

applications of Theorem 1). For particular functions, the above formula can in fact be quite

efficient. As a consequence of the previous corollary, we present some almost dimension free

results. These results recover, in the case of the euclidean norm, Theorem 2 for a vector

with i.i.d. components.

Corollary 3 Let X ∼ ID(γ, 0, ν) have independent components and be such that Eet‖X‖ <

+∞, for some t > 0. Let M = sup{t > 0 : ∀ k = 1, . . . , d, Eet|Xk| < +∞}. Let S

be a subspace of Rd and ΠS the orthogonal projection on S. Let E > 0. Then, for all

0 < x < h(M−)

P(‖ΠS(X)‖ ≥ E‖ΠS(X)‖+ E + x) ≤ e−
R x
0 h−1(s)ds, (2.4)

and

P(‖ΠSX‖ ≤ E‖ΠS(X)‖ − E − x) ≤ e−
R x
0 h−1(s)ds, (2.5)

where the function h is given by

h(t) = 8 max
1≤k≤d

∫
R
|u|(et|u| − 1)ν̃k(du) +

2

E2

d∑
k=1

‖ΠS(ek)‖4

∫
R
|u|3(et|u| − 1)ν̃k(du).

Proof. We apply Corollary 2 to f(x) = (‖ΠS(x)‖ − E)+. First, it is easily verified that for

each k, |f(x+uek)−f(x)| ≤ |‖ΠS(x + uek)‖ − ‖ΠS(x)‖|1Ak
, where Ak = {‖ΠS(x+uek)‖ ≥

E or ‖ΠS(x)‖ ≥ E}. We then have

|f(x + uek)− f(x)| ≤ |2〈uΠS(ek)|ΠS(x)〉+ u2‖ΠS(ek)‖2|1Ak

‖ΠS(x + uek)‖+ ‖ΠS(x)‖

≤ 2|u||〈ΠS(ek)|ΠS(x)〉|
‖ΠS(x)‖

+
u2‖ΠS(ek)‖2

E
. (2.6)
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Moreover, since |f(x + uek)− f(x)| ≤ |u|, we have

d∑
k=1

∫
R
|f(x + uek)− f(x)|2 etbk|u| − 1

bk|u|
ν̃k(du)

≤
d∑

k=1

∫
R

(
8u2 |〈ΠS(ek)|ΠS(x)〉|2

‖ΠS(x)‖2
+

2u4‖ΠS(ek)‖4

E2

)(
et|u| − 1

|u|

)
ν̃k(du)

≤
d∑

k=1

∫
R

(
8u2 |〈ek|ΠS(x)〉|2

‖ΠS(x)‖2
+

2u4‖ΠS(ek)‖4

E2

)(
et|u| − 1

|u|

)
ν̃k(du),

Hence hf ≤ h. To finish the proof of (2.4) note that ‖ΠS(X)‖ − E ≤ (‖ΠS(X)‖ − E)+ and

that E(‖ΠS(X)‖ − E)+ ≤ E‖ΠS(X)‖. To get the lower bound (2.5), just proceed as above

but with the function f(x) = −(‖ΠS(x)‖ −E)+ and note that (‖ΠS(X)| −E)+ ≤ ‖ΠS(X)‖
and that E‖ΠS(X)‖ − E ≤ E(‖ΠS(X)‖ − E)+. �

Proof.[Theorem 2] For S = Rd, one can take E = εE‖X‖. This is dimension free in the

i.i.d. case since

d(E|X1|)2 ≤ (E‖X‖)2 ≤ dE(X2
1 ).

�

The case of projections is of interest since it can be applied to model selection, in regres-

sion, when the error is a centered ID random variable which is no longer normal.

The following version may be easier to use.

Corollary 4 Let X ∼ ID(γ, 0, ν) have i.i.d. centered components and be such that Eet‖X‖ <

+∞, for some t > 0. Let M = sup{t > 0 : Eet|X1| < +∞}. Let S be a subspace of Rd and

let ΠS be the orthogonal projection on S. Let ε > 0. Then, for all 0 < x < h(M−)

P(‖ΠS(X)‖ ≥ (1 + ε)
√

E[‖ΠS(X)‖2] + x) ≤ e−
R x
0 h−1(s)ds, (2.7)

and

P(‖ΠS‖ ≤ E‖ΠS(X)‖ − ε
√

E[‖ΠS(X)‖2]− x) ≤ e−
R x
0 h−1(s)ds, (2.8)
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where the (dimension free) function h is given by

h(t) = 8

∫
R
|u|(et|u| − 1)ν̃(du) +

2

ε2EX2
1

∫
R
|u|3(et|u| − 1)ν̃(du).

Proof. First let us take E = ε
√

E[‖ΠS(X)‖2]. Then remark that in the centered i.i.d case,

E[‖ΠS(X)‖2] = E

 d∑
l=1

(
d∑

k=1

Xk〈ΠS(ek)|el〉

)2


=
d∑

l=1

d∑
k=1

E[X2
k ]〈ΠS(ek)|el〉2

= E(X1)
2

d∑
k=1

‖ΠS(ek)‖2

≥ E(X1)
2

d∑
k=1

‖ΠS(ek)‖4,

since ‖ΠS(ek)‖ ≤ ‖ek‖ = 1. �

Another possible application of Corollary 2 is to the Lp-norms. For simplicity, we only state

the result for i.i.d. components.

Corollary 5 Let X ∼ ID(γ, 0, ν) have i.i.d components and be such that Eet‖X‖ < +∞,

for some t > 0. Let M = sup{t > 0 : Eet|X1| < +∞}. Let p ≥ 2 and ε > 0. Then, for all

0 < x < h(M−)

P(‖X‖p ≥ (1 + ε)E(‖X‖p) + x) ≤ e−
R x
0 h−1(s)ds, (2.9)

and

P(‖X‖p ≥ (1− ε)E(‖X‖p) + x) ≤ e−
R x
0 h−1(s)ds, (2.10)

where the function h is given by

h(t) = p2

∫
R

(
1 +

|u|d1/(2p−2)

εE(‖X‖p)

)2p−2

|u|
(
et|u| − 1

)
ν̃(du).

Proof. We apply Corollary 2 to f(x) = (‖x‖p − εE(‖X‖p))
+. First, it is easily verified

that for each k, |f(x + uek)− f(x)| ≤ |‖x + uek‖p −Np(x)|1Ak
, where Ak = {‖x + uek‖p ≥

εE(‖X‖p) or ‖x‖p ≥ εE(‖X‖p)}. Since

∀a, b ≥ 0, |a− b| ≤ |ap − bp|
sup(a, b)p−1

,
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we have

|f(x + uek)− f(x)| ≤ ||Xk + u|p − |Xk|p|
sup(‖X‖p, ‖X + uek‖p)p−1

1Ak
. (2.11)

But since x 7→ xp is convex, one has:

||Xk + u|p − |Xk|p| ≤ |(|Xk|+ |u|)p − |Xk|p| .

Combining this with the fact that

∀x ≥ 0, (1 + x)p − 1 ≤ px(1 + x)p−1,

implies that

|f(x + uek)− f(x)| ≤ p|u|(|Xk|+ |u|)p−1

sup(‖X‖p, ‖X + uek‖p)p−1
1Ak

≤ p|u|(|Xk|+ |u|)p−1

sup(‖X‖p, εE(‖X‖p))p−1
.

Moreover, since |f(x + uek)− f(x)| ≤ |u|, we have

d∑
k=1

∫
R
|f(x + uek)− f(x)|2 etbk|u| − 1

bk|u|
ν̃k(du)

≤ p2

∫
R

‖|X|+ |u|I‖2p−2
2p−2

sup(‖X‖p, εE(‖X‖p))2p−2
|u|(et|u| − 1)ν̃(du)

≤ p2

∫
R

(
‖X‖2p−2 + |u|‖I‖2p−2

sup(‖X‖p, εE(‖X‖p))

)2p−2

|u|(et|u| − 1)ν̃(du),

where I = (1, ..., 1) ∈ Rd. Since p ≥ 2, 2p− 2 ≥ p and ‖X‖2p−2 ≤ ‖X‖p, which implies that

d∑
k=1

∫
R
|f(x + uek)− f(x)|2 etbk|u| − 1

bk|u|
ν̃k(du)

≤ p2

∫
R

(
1 + |u| d1/(2p−2)

εE(‖X‖p)

)2p−2

|u|(et|u| − 1)ν̃(du).

The proof is complete. �

Again, the result just obtained is dimension free since E(‖X‖p) ≥ E(|X1|)d1/p.

10



3 Using Young’s inequality

Another method to uncouple U and V in Proposition 1 is to use the following inequality,

which is a particular instance of the Young inequality.

Lemma 2 Let λ > 0, and let X and Y be random variables such that the expectations,

below, exist. Then,

E[XeλY ] ≤ E[Y eλY ] +
log E[eλX ]

λ
E[eλY ]− log E[eλY ]

λ
E[eλY ]. (3.1)

Proof. Indeed, if

dQ =
eλY

E[eλY ]
dP,

then by Jensen’s inequality

λEQ(X − Y ) ≤ log EQ(eλ(X−Y )).

�

This leads to the following result.

Corollary 6 Let X = (X1, . . . , Xd) ∼ ID(γ, 0, ν) have i.i.d. components and be such that

Eet‖X‖ < +∞, for some t > 0. Let f : Rd → R such that Ef(X) = 0 and let there exist

b ∈ R, such that for all k |f(x+uek)−f(x)| ≤ b|u|, for all u ∈ R, x ∈ Rd. Assume moreover

that for all u ∈ R, there exists a function Cu verifying

d∑
k=1

∫
R
|f(X + uek)− f(X)|2 ≤ u2Cu(X),

where Cu is such that there exists λ(u, t) > 0 satisfying E[eλ(u,t)Cu(X)] < ∞. Then for all t

such that every quantity is well defined, one has

(1− h(t))E[fetf ] ≤ g(t)E[etf ],

where

h(t) =

∫
R

t

λ(u, t)
|u|e

tb|u| − 1

b
ν̃(du),
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and

g(t) =

∫
R

ln(φ(u, t))

λ(u, t)
|u|e

tb|u| − 1

b
ν̃(du),

and where φ(t, u) = E[eλ(u,t)Cu(X)].

Proof. Applying Proposition 1 to f , the above assumptions entail that

Efetf ≤
∫ 1

0

Ez

[∫
R

Cu(U)+Cu(V )

2
etf(V )

(
|u|e

tb|u| − 1

b

)
ν̃(du)

]
dz.

Next, apply Lemma 2 to λ(u, t)Y = tf(V ) and to X = Cu(U) or X = Cu(V ). Since Y has

zero mean, one can ignore the last term in (3.1). This leads to

Efetf ≤
∫

R

[
E
(

t

λ(u, t)
fetf

)
+

ln(φ(u, t))

λ(u, t)
E(etf )

]
|u|e

tb|u| − 1

b
ν̃(du),

which concludes the proof. �

This inequality is non trivial only when h(t) < 1, one of its applications is to the euclidean

norm.

Lemma 3 For α > 0 let `α = − ln E[e−αX2
1 ]. Then, for all λ, v, α > 0, such that `α ≥ λ/v,

E
(

exp

(
λd

‖X‖2 + v

))
≤ 1 + exp

(
αλ

`α − λ
v

)
.

Proof. Let ε > 0 which we will choose later. Let a = exp
(

λd
εdE(X2

1 )+v

)
and b = exp

(
λd
v

)
.

Then

E
(

exp

(
λd

‖X‖2 + v

))
=

∫ b

0

P
(

exp

(
λd

‖X‖2 + v

)
≥ t

)
dt

≤ a +

∫ b

a

P
(
−‖X‖2 ≥ v − λd

ln t

)
dt

≤ a +

∫ b

a

E
[
e−αX2

1

]d
e−αv+α λd

ln t dt

≤ a + e−d`α+αεdE(X2
1 )(b− a)

≤ a + ed(εαE(X1)2+(λ/v)−`α).

Taking ε such that εαE(X1)
2 + (λ/v)− `α = 0, leads to

E
(

exp

(
λd

‖X‖2 + v

))
≤ a + 1 ≤ 1 + exp

(
αλ

`α − λ
v

)
.
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�

Rmq : avant on avait pris α = 1, je ne sais pas trop quoi en faire pour l’instant.

Lemma 4 There exists c1, c2, c3 positive constants such that for all x ∈ Rd and u ∈ R
d∑

k=1

|‖x + uek| − ‖x‖|2 ≤ u2

(
c1 +

c2du2

‖x‖+ c3u2

)
.

Proof. The proof is similar to an argument used in the proof of Corollary 3.

d∑
k=1

|‖x + uek| − ‖x‖|2 ≤
d∑

k=1

(
2uxk + u2

‖x + uek‖+ ‖x‖

)2

.

But for all positive ε

‖x + uek‖ =
∑
j 6=k

x2
j + (xk + u)2 = ‖x‖2 + 2uxk + u2 ≥ ‖x‖2 − εx2

k + (1− ε−1)u2.

Consequently

‖x + uek‖+ ‖x‖2 ≥ (2− ε)‖x‖2 + (1− ε−1)u2.

Taking ε = 3/2 leads to the result. �

With the help of the previous lemma, we now get: Proof. [Theorem 3]

Again we want to apply Corollary 6 to f(X) = ‖X‖−E‖X‖. With the notations of Lemma 4,

Cu(X) = c1 + +
c2du2

‖x‖+ c3u2
,

works. Then, one has to compute ln(φ(u, t)). But,

ln(φ(u, t)) = c1λ(u, t) + ln

(
E
[
exp

(
λ(u, t)c2u

2d

‖X‖2 + c3u2

)])
,

and so by Lemma 3, it follows that

ln(φ(u, t)) = c1λ(u, t) + ln

(
1 + exp

(
αλ(u, t)c2u

2

`α − λ(u, t)c2/c3

))
,

for all α such that `α > λ(u, t)c2/c3. Ici je ne sais pas comment me servir de `α vraiment

jusqu’au bout.

13



Let us fix α = 1 and λ(u, t) = c3l/(2c2). Then

ln(φ(u, t)) ≤ c1λ(u, t) + ln(2) + c3u
2.

which leads to the result by classical arguments. �

reprendre a ce stade les constantes propres .... remarque si X2
1 suit une poisson(θ) `α =

θ(1− e−α) donc ca tend vers 1 et c’est pas ca qui va aider la convergence ....

4 A result for Lp-norms

We state and prove in this section the following generalization of Theorem 4:

Theorem 5 Let X be as in Theorem 2 and let 2 ≤ p < ∞. Then for all positive x,

P(‖X‖p − E‖X‖p ≥ x) ≤ exp

(
−
∫ x

0

h−1
p (s)ds

)
, (4.1)

where the (dimension free) function hp is given by

hp(t) = 24p−4p2

∫
R

(1 +
21/p|u|
mp

1/p

)2p−2

+ 22p−2 m2p

mp
2

 |u|(et|u| − 1)ν̃(du),

and the moments m2p, mp are defined as follows:

• if X has almost surely positive coordinates, we can take mq = mq = E[(X1)
q
1] for

q = p, 2p.

• otherwise, we take

mp = inf
t∈[0,1]

[
inf{E[|(Y1)t + (Z1)t|p1(Z1)t≥0,(Y1)t≥0], E[|(Y1)t + (Z1)t|p1(Z1)t≤0,(Y1)t≤0]}

]
m2p = sup

t∈[0,1]

[
sup{E[|(Y1)t + (Z1)t|2p1(Z1)t≥0,(Y1)t≥0], E[|(Y1)t + (Z1)t|2p1(Z1)t≤0,(Y1)t≤0]}

]
When 1 ≤ p < 2, an inequality similar to (4.1) holds, where hp is now replaced by the

following function hp,d, which is not dimension-free:

hp,d(t) = 24p−4p2

∫
R

(d
1

2p−2
− 1

p +
21/p|u|
mp

1/p

)2p−2

+ 22p−2 m2p

mp
2

 |u|(et|u| − 1)ν̃(du).
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Again, we need the condition mp > 0 in order to get a non-trivial bound. However, this

condition is satisfied in most natural cases. Let us now proceed to the proof of Theorem 5.

Proof.

First, using the notation of (1.5), Lemma 1 can be rewritten as

Ef(X)g(X)− Ef(X)Eg(X)

=

∫ 1

0

E

[∑
k

∫
R
(f(Yt + Zt + uek)− f(Yt + Zt))(g(Ỹt + Zt + uek)− g(Ỹt + Zt))ν̃(du)

]
dt

(4.2)

where Ỹt is an independent copy of Yt and f, g are Lipschitz. Indeed, recall the definition

of ν0 and ν1 in Proposition 1 and remark that for every t ∈ [0, 1], (Zt, Zt) is the ID random

variable with Lévy measure tν1 while (Yt, Ỹt) is the ID random variable with Lévy measure

tν0. Of course, by approximation, (4.2) remains true if f, g are locally Lipschitz and∫ 1

0

E

[∑
k

∫
R
|f(Yt + Zt + uek)− f(Yt + Zt)|

∣∣∣g(Ỹt + Zt + uek)− g(Ỹt + Zt)
∣∣∣ ν̃(du)

]
dt < ∞.

Let 2 ≤ p < ∞, λ > 0. We want to apply (4.2) to the functions f(X) = ‖X‖p and

g(X) = eλ‖X‖p .

Using the same inequalities as in the beginning of the proof of Corollary 5, together with

the fact that for x, u ∈ R, sup(|x + u|, |x|) ≥ (|x|+ |u|)/4, we obtain, for X ∈ Rd, u ∈ R and

1 ≤ k ≤ d,

|‖X + uek‖p − ‖X‖p| ≤ 22p−2p|u|
(

|Xk|+ |u|
(‖X‖p

p + |u|p)1/p

)p−1

.

Similarly, if λ > 0, using the fact that (ex − 1)/x is an increasing function and that

|‖X + uek‖p − ‖X‖p| ≤ |u|, we get

| exp(λ‖X + uek‖p)− exp(λ‖X‖p)| ≤ 22p−2p(eλ|u| − 1)

(
|Xk|+ |u|

(‖X‖p
p + |u|p)1/p

)p−1

exp(λ‖X‖p).
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Now fix t ∈ [0, 1] and consider that Xi = (Yi)t + zi where the (Yi)t are iid random variables

as in (1.5) and the zi are deterministic. Then∑
k

EYt |‖X + uek‖p − ‖X‖p|EYt| exp(λ|‖X + uek‖p)− exp(λ‖X‖p)|

≤ 24p−4p2|u|(eλ|u| − 1)EYt, eYt

∑
i

∣∣∣∣∣ |(Ỹk)t + zk|+ |u|
(‖Ỹt + z‖p

p + |u|p)1/p

∣∣∣∣∣
p−1 ∣∣∣∣ |(Yk)t + zk|+ |u|

(‖Yt + z‖p
p + |u|p)1/p

∣∣∣∣p−1

exp(λ‖Yt + z‖p)

where the (Ỹi)t are i.i.d. copies of the (Yi)t. (We write EYt , EYt, eYt
to make precise which are

the random variables and which are the parameters). Cauchy-Schwarz and the independence

of the (Ỹi)t, (Yi)t lead to,

∑
k

EYt |‖X + uek‖p − ‖X‖p|EYt| exp(λ|‖X + uek‖p)− exp(λ‖X‖p)|

≤ 24p−4p2|u|(eλ|u| − 1)EeYt

∑
k

∣∣∣∣∣ |(Ỹk)t + zk|+ |u|
(‖Ỹt + z‖p

p + |u|p)1/p

∣∣∣∣∣
2p−2

1/2

×EYt

(∑
k

∣∣∣∣ |(Yk)t + zk|+ |u|
(‖Yt + z‖p

p + |u|p)1/p

∣∣∣∣2p−2
)1/2

exp(λ‖Yt + z‖p)

 .

Denote I = (1, 1, . . . , 1) ∈ Rd and remark that

d∑
k=1

(|(Yk)t + zk|+ |u|)2p−2 = ‖Yt + z + uI‖2p−2
2p−2

≤ (‖Yt + z‖2p−2 + ‖uI‖2p−2)
2p−2

≤ (‖Yt + z‖2p−2 + |u|d1/(2p−2))2p−2,

whence ∑
k

∣∣∣∣ |(Yk)t + zk|+ |u|
(‖Yt + z‖p

p + |u|p)1/p

∣∣∣∣2p−2

≤
(

1 +
|u|d1/(2p−2)

(‖Yt + z‖p
p + |u|p)1/p

)2p−2

, (4.3)

where ‖X‖2p−2 ≤ ‖X‖p since p ≥ 2. If we now write

Np,t := (‖Yt + z‖p
p + |u|p)1/p ≥ ‖X‖p,
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then ∑
k

∣∣∣∣ |(Yk)t + zk|+ |u|
(‖Yt + z‖p

p + |u|p)1/p

∣∣∣∣2p−2

≤
(

1 +
|u|d1/(2p−2)

Np,t

)2p−2

,

and thus∑
k

EYt |‖Yt + z + uek‖p − ‖Yt + z‖p|EYt| exp(λ|‖Yt + z + uek‖p)− exp(λ‖Yt + z‖p)|

≤ 24p−4p2|u|(eλ|u| − 1)EYt

[√
Qp(Np,t/|u|d1/(2p−2))

]
EYt

[√
Qp(Np,t/|u|d1/(2p−2)) exp(λ‖Yt + z‖p)

]
,

where Qp(x) = (1 + 1/x)2p−2. Recall that if T is a positive random variable, A is a positive

increasing function and B is a positive decreasing function, then

E[A(T )B(T )] ≤ E[A(T )]E[B(T )]. (4.4)

(A proof of this inequality is provided below). Applying it to T = ‖X‖p, A(x) = exp(λx)

and B(x) =
√

Qp((|u|p + xp)1/p/|u|d1/(2p−2)) gives:∑
i

EYt |‖X + uek‖p − ‖X‖p|EYt| exp(λ|‖X + uek‖p)− exp(λ‖X‖p)|

≤ 24p−4p2|u|(eλ|u| − 1)

(
EYt

[√
Qp(Np,t/|u|d1/(2p−2))

])2

EYt [[exp(λ‖Yt + z‖p)] .

Now consider that z is no longer a parameter but a random variable of the form Zt as in

(1.5). Then we have:∫
Rd

P(Zt ∈ dz)
∑

i

EYt |‖X + uek‖p − ‖X‖p|EYt| exp(λ|‖X + uek‖p)− exp(λ‖X‖p)|

≤ 24p−4p2|u|(eλ|u| − 1)

∫
Rd

P(Zt ∈ dz)

(
EYt

[√
Qp(Np,t/|u|d1/(2p−2))

])2

EYt [exp(λ‖Yt + z‖p)]

≤ 24p−4p2|u|(eλ|u| − 1)

∫
Rd

P(Zt ∈ dz)EYt [Qp(Np,t/|u|d1/(2p−2))]EYt [exp(λ‖Yt + z‖p)].

For y, y′, z ∈ Rd put

Mp(|u|, y, y′, z) = [|u|p +
∑

i

1sgn(yi)=sgn(y′i)=sgn(zi)|zi + y′i|p]1/p.
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Then since Mp < Np,t and Qp is decreasing,∫
Rd

P(Zt ∈ dz)EYt [Qp(Np,t/|u|d1/(2p−2))]EYt [exp(λ‖Yt + z‖p)]

≤
∫

Rd

P(Yt ∈ dy)

∫
Rd

P(Ỹt ∈ dy′)

∫
Rd

P(Zt ∈ dz)

Qp(Mp(|u|, y, y′, z)/|u|d1/(2p−2)) exp(λ‖y + z‖p).

We now use the following generalization of (4.4). Let T be a random variable in Rd
+ with

i.i.d. components and let A, B : Rd
+ → R+ be two functions. For every i ≤ d and every

x ∈ Rd−1
+ , define the functions Ax,i, Bx,i : R+ → R+ by

Ax,i(t) = A(x1, . . . , xi−1, t, xi+1, . . . , xd)

Bx,i(t) = (x1, . . . , xi−1, t, xi+1, . . . , xd)

Assume that for every i ≤ d and every x ∈ Rd−1
+ , one of the two functions Ax,i, Bx,i is

decreasing and the other one is increasing. Then

E[A(T )B(T )] ≤ E[A(T )]E[B(T )]. (4.5)

The proof of (4.5) is obtained by induction on d, applying (4.4) repeatedly.

Applying (4.5) to the functions A(z) = Qp(Mp(|u|, y, y′, z)/|u|d1/(2p−2)) and B(z) =

exp(λ‖y + z‖p) we get:∫
Rd

P(Zt ∈ dz)Qp(Mp(|u|, y, y′, z)/|u|d1/(2p−2)) exp(λ‖y + z‖p)

≤
∫

Rd

P(Zt ∈ dz)Qp(Mp(|u|, y, y′, z)/|u|d1/(2p−2))

×
∫

Rd

P(Zt ∈ dz) exp(λ‖y + z‖p),

and so integrating in y, y′ further gives∫
Rd

P(Zt ∈ dz)EYt [Qp(Np,t/|u|d1/(2p−2))]EYt [exp(λ‖Yt + z‖p)]

≤

(
sup
y∈Rd

EeYt,Zt
[Qp(Mp(|u|, y, Ỹt, Zt)/|u|d1/(2p−2))]

)
E[exp(λ‖X‖p)].
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Next, we want to lower bound

sup
y∈Rd

EeYt,Zt
[Qp(Mp(|u|, y, Ỹt, Zt)/|u|d1/(2p−2))].

Let Vp denote the inverse of Qp:

Vp(x) = inf{s > 0, Qp(s) < x}.

Then,

P(Qp(Mp(|u|, y, Ỹt)/|u|d1/(2p−2)) ≥ s) = P(Mp(|u|, y, Ỹt)/|u|d1/(2p−2) ≤ Vp(s)).

This last probability is zero if s ≥ Qp(1/d
1/(2p−2)).

Suppose now that y has k positive coordinates and d − k negative coordinates. Let I+

be the set of i such that yi > 0 and I− be the set of i such that yi < 0. Denote

m+
q (t) = E(1(Y1)t≥0,(Z1)t≥0|(Y1)t + (Z1)t|q),

m−
q (t) = E(1(Y1)t≤0,(Z1)t≤0|(Y1)t + (Z1)t|q)

and

mq(t) = sup(m+
q (t), m−

q (t)),

mq(t) = inf(m+
q (R), m−

q (t)).

Then we have

P(Mp(|u|, y, Ỹt)/|u|d1/(2p−2) ≤ Vp(s))

= P

∑
i∈I+

1(Yi)t≥0,(Zi)t≥0|(Yi)t + (Zi)t|p +
∑
i∈I−

1(Yi)t≤0,(Zi)t≤0|(Yi)t + (Zi)t|p ≤ dp/(2p−2)|u|pVp(s)
p − |u|p


≤

km+
2p(t) + (d− k)m−

2p(t)

(dp/(2p−2)|u|pVp(s)p − ‖u|p − km+
p (t)− (d− k)m−

p (t))2
.

In particular, if s ≥ Qp(d
(p−2)/p(2p−2)mp(t))

1/p/21/p|u|), then

P(Qp(Mp(|u|, y, Ỹt)/|u|d1/(2p−2)) ≥ s) ≤ 4m2p(t)

d(mp(t))2
.
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It thus follows that

EYt(Qp(Mp(|u|, y, Ỹt)/|u|d1/(2p−2)))

=

∫ Qp(1/d1/(2p−2))

0

P(Qp(/Mp(|u|, y, Ỹt)/|u|d1/(2p−2)) ≥ s)ds

≤
∫ Qp(d(p−2)/p(2p−2)mp(t))1/p/21/p|u|)

0

P(Qp(Mp(|u|, y, Ỹt)/|u|d1/(2p−2)) ≥ s)ds

+

∫ Qp(1/d1/(2p−2))

Qp(d(p−2)/p(2p−2)mp(t))1/p/21/p|u|)
P(Qp(Mp(|u|, y, Ỹt)/|u|d1/(2p−2)) ≥ s)ds

≤ Qp(d
(p−2)/p(2p−2)mp(t))

1/p/21/p|u|) + Qp(1/d
1/(2p−2))

4m2p(t)

d(mp(t))2

≤ Qp(mp(t))
1/p/21/p|u|) + Qp(1/d

1/(2p−2))
4m2p(t)

d(mp(t))2
.

Observe too that
Qp(1/d

1/(2p−2))

d
=

1

d

(
1 + d1/(2p−2)

)2p−2 ≤ 22p−2,

and therefore,∫
Rd

P(Zt ∈ dz)
∑

i

EYt |‖X + uek‖p − ‖X‖p|EYt| exp(λ|‖X + ueky‖p)− exp(λ‖X‖p)|

≤ 24p−4p2|u|(eλ|u| − 1)

[
Qp(mp(t))

1/p/21/p|u|) + 22p−2 m2p(t)

(mp(t))2

]
E[exp(λ‖X‖p)].

Note that when X has almost surely positive coordinates, we can apply (4.5) directly, without

replacing Np,t with Mp. In that case we obtain the same inequality with

mp(t) = E[Xp]

and

m2p(t) = E[X2p].

So defining mp, m2p as in Theorem 4 and putting

Cp(λ, |u|) = 24p−4p2|u|(eλ|u| − 1)

[
Qp((mp)

1/p/21/p|u|) + 22p−2 m2p

(mp)2

]
,
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we obtain, using the covariance formula

|E(‖X‖p exp(λ‖X‖p)− E‖X‖pE(exp(λ‖X‖p))|

≤
∫ ∞

−∞
Cp(λ, |u|)E [exp(λ‖X‖p] ν̃(du).

In other words,∣∣∣∣E[‖X‖p exp(λ‖X‖p)]

E(exp(λ‖X‖p))
− E‖X‖p

∣∣∣∣ ≤ ∫ ∞

−∞
Cp(λ, |u|)ν̃(du) := Fp(λ). (4.6)

Integrating both sides of (4.6) yields

|log[E(exp(λ‖X‖p))]− λE‖X‖p| ≤
∫ λ

0

Fp(µ)dµ,

from which Theorem 4 follows.

If 1 ≤ p ≤ 2, (4.3) can be replaced by

∑
k

∣∣∣∣ |(Yk)t + zk|+ |u|
(‖Yt + z‖p

p + |u|p)1/p

∣∣∣∣2p−2

≤
(

d
1

2p−2
− 1

p +
|u|d1/(2p−2)

(‖Yt + z‖p
p + |u|p)1/p

)2p−2

,

and the rest of the proof goes likewise.

A correlation inequality

For the sake of completeness, we prove (4.4), although this result should be easy to find

elsewhere. Suppose first that T is absolutely continuous. Let S be the size-biased version of

A(T ) : S is defined by the fact that for every bounded, measurable function f ,

Ef(S) =
E[f(T )A(T )]

EA(T )
.

It is easy to check that S is a well-defined random variable. Moreover, we claim that S is

stochastically greater than T : for every x > 0,

P(S > x) ≥ P(T > x).

To prove this, write

P(S > x) =
E[A(T )1T>x]

EA(T )
,
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so that our claim is equivalent to:

E[A(T )1T>x]

P(T > x)
≥ EA(T ).

Let τx : R+ → R+ be the increasing function such that for every y > x,

P(τx(T ) > y) =
P(T > y)

P(T > x)
.

τx is simply the transport of mass from the law of T to the conditional law of T given

T > x, and τx exists since T is absolutely continuous. In particular, since for every y > 0,

P(τx(T ) > y) ≥ P(T > y), we have, for every t > 0, τx(t) ≥ t and consequently, since A is

increasing, A(τx(t)) ≥ A(t). Therefore,

E[A(T )1T>x]

P(T > x)
= E[A(τx(T ))] ≥ E[A(T )],

which proves our claim.

It follows that if B is decreasing, then B(S) is stochastically smaller than B(T ), whence

EB(S) ≤ EB(T ),

which proves (4.4) in the absolutely continuous case. The general case follows by passage to

the limit.
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