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2

and Philippe Marchal
3
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Concentration of measure is studied, and obtained, for stable and
related random vectors.

Let X be a standard normal vector in R
d and let f : R

d → R be Lipschitz (with
constant one) with respect to the Euclidean distance. A seminal result of Borell [B]
and of Sudakov and Tsirel’son [ST] asserts that for all x > 0,

P (f(X)−m(f(X)) ≥ x) ≤ 1− Φ(x) ≤ e−x
2/2

2
, (1)

where m(f(X)) is a median of f(X) and where Φ is the (one–dimensional) standard
normal distribution function. The inequality (1) has seen many extensions and
to date, most of the conditions under which these developments hold require the
existence of finite exponential moments for the underlying vector X . It is thus
natural to explore the robustness of this “concentration phenomenon” and to study
the corresponding results for stable vectors. It is the purpose of these notes to
initiate this study and to present a few concentration results for stable and related
vectors, freeing us from the exponential moment requirement. Our main result will
imply that if X is an α–stable random vector in R

d, then for all x > 0,

P (f(X)−m(f(X)) ≥ x) ≤ 1 ∧ C(α, d)
xα

, (2)

where the constant C(α, d) will be explicit.
Let X ∼ ID(b, 0, ν), i.e., let X be d-dimensional infinitely divisible vector with-

out Gaussian component. For all u ∈ R
d, its characteristic function ϕX is given, by

ϕX(u) = eψ(u), with

ψ(u) = i〈u, b〉+
∫

Rd

(
ei〈u,y〉 − 1− i〈u, y〉1‖y‖≤1

)
ν(dy), (3)

where b ∈ R
d and where ν 6≡ 0 (the Lévy measure) is a positive Borel measure

without atom at the origin and such that
∫

Rd(‖y‖2 ∧ 1)ν(dy) < +∞ (throughout,
〈·, ·〉 and ‖ · ‖ are respectively the Euclidean inner product and norm in R

d).
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It is well known that there is a one-to-one relationship between Lévy processes
and infinitely divisible laws. More precisely, if {X(t) : t ≥ 0} is a Lévy process
(without Gaussian component) on R

d, then for all t ≥ 0, u ∈ R
d,

ϕX(t)(u) = Eei〈u,X(t)〉 = etψ(u), (4)

where ψ is as in (3). Hence, an infinitely divisible vector X can be viewed as X(1),
the Lévy process {X(t) : t ≥ 0} at time 1.

Recall also that X is α-stable, 0 < α < 2, if the measure ν is given, for any Borel
set B ∈ B(Rd), by

ν(B) =
∫
Sd−1

λ(dξ)
∫ +∞

0

1B(rξ)
dr

r1+α
, (5)

where λ is a finite positive measure on Sd−1 the unit sphere of R
d called the spherical

component of the Lévy measure. X is symmetric α-stable (SαS) if and only if λ is
symmetric in which case,

ϕX(u) = e−cα

∫
Sd−1 |〈u,ξ〉|αλ(dξ),

where cα =
√
πΓ ((2− α)/2)

α2αΓ ((1 + α)/2)
. Moreover, X is rotationally invariant if and only if

λ is uniform on Sd−1 and then

ϕX(u) = e−cα,d‖u‖α

,

where cα,d = cα

∫
Sd−1

|〈u/‖u‖, ξ〉|αλ(dξ) does not depend on u ∈ R
d. In particular,

if λ is the uniform probability measure on Sd−1, cα,d =
Γ(d/2)Γ ((2− α)/2)
α2αΓ ((d+ α)/2)

.

(We refer the reader to Sato’s book [S] for a good introduction to Lévy processes
and infinitely divisible laws.)

In order to prove our first theorem, we need the lemma below. For the mean
rather than a median (and x rather than x/2) the result is obtained in [H]. However,
it is standard that applying this result to the function g(y) = min(d(y,A), x),
y ∈ R

d, where A = {f ≤ m} and m is a median of f , leads to deviation from a
median. Indeed, Eg ≤ x/2, and therefore g − Eg ≥ x/2 whenever f −m ≥ x.

Lemma 1 Let X ∼ ID(b, 0, ν) with ν boundedly supported, let V 2 =
∫

Rd ‖x‖2ν(dx),
and let R = inf {ρ > 0 : ν({x : ‖x‖ > ρ}) = 0}. Then for any Lipschitz function
(with constant 1) f : R

d → R,

P (f(X)−m(f(X)) ≥ x) ≤ e
x
2R−

(
x
2R + V 2

R2

)
log(1+ Rx

2V 2 ), (6)

for all x > 0, and where m(f(X)) is a median of f(X).

Above (and below), the Lipschitz property is usually taken with respect to the

Euclidean norm, i.e., f is Lipschitz if ‖f‖Lip = sup
x 6=y

|f(x)− f(y)|
‖x− y‖ < +∞; however

other norms could be considered, e.g., see Remark 2 (ii).
We can now state:
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Theorem 1 Let X be an α-stable vector with Lévy measure ν given by (5). Let
f : R

d → R be such that ‖f‖Lip ≤ 1. Then

P (f(X)−m(f(X)) ≥ x) ≤ K1λ(Sd−1)
α(2 − α)xα

, (7)

whenever

x ≥
(
K2λ(Sd−1)
α(2− α)

)1/α

,

and where m(f(X)) is a median of f(X) while K1, K2 are two absolute constants.

Proof For any R > 0, we have the identity in distributionX d= Y (R)+Z(R), where
Y (R) and Z(R) are mutually independent infinitely divisible vectors with respective
characteristic function ϕY (R) = eψ

(R)
Y and ϕZ(R) = eψ

(R)
Z . For u ∈ R

d, the exponents
are given by

ψ
(R)
Z (u) =

∫
‖y‖>R

(
ei〈u,y〉 − 1

)
νX(dy),

ψ
(R)
Y (u) = i〈u, b̃〉+

∫
‖y‖≤R

(
ei〈u,y〉 − 1− i〈u, y〉1‖y‖≤1

)
νX(dy),

with

b̃ = b−
∫
‖y‖>R

y1‖y‖≤1νX(dy),

where the last integral is understood coordinatewise (and so is the above difference)
and where νX is the Lévy measure of X .
Next,

P (f(X)−m(f(X)) ≥ x) ≤ P (f(Y (R))−m(f(X)) ≥ x) + P (Z(R) 6= 0). (8)

Let us first estimate the second probability in (8) involving the compound Poisson
random vector Z(R).

P (Z(R) 6= 0) = 1− P (Z(R) = 0)

≤ 1− exp

(
−
∫
‖x‖>R

νX(dx)

)

= 1− exp

(
−
∫
Sd−1

λ(dξ)
∫
‖rξ‖>R

dr

r1+α

)

= 1− exp
(
−λ(S

d−1)
α

R−α
)

= 1− exp
(−C2(α, λ)R−α)

≤ C2

Rα
, (9)



4 C. HOUDRÉ and P. MARCHAL

where C2 := C2(α, λ) =
λ(Sd−1)

α
.

Turning our attention to Y (R), we first compute the quantities involved in Lemma 1:

P (f(Y (R))−m(f(Y (R))) ≥ x) ≤ e
x
2R−

(
x
2R + V 2

R2

)
log(1+ Rx

2V 2 ), (10)

where

V 2 =
∫
‖x‖≤R

‖x‖2νX(dx)

=
∫
Sd−1

λ(dξ)
∫
‖rξ‖≤R

‖rξ‖2 dr

r1+α

=
∫
Sd−1

λ(dξ)
∫ R

0

r2
dr

r1+α

= C1(α, λ)R2−α, (11)

with C1(α, λ) =
λ(Sd−1)
2− α

. Hence (10) becomes

P (f(Y (R))−m(f(Y (R))) ≥ x) ≤ e
x
2R−( x

2R +
C1
Rα ) log

(
1+ Rαx

2RC1

)
:= H(R)(x) (12)

≤ e
x
2R(

1 + Rαx
2RC1

) x
2R
, (13)

where C1 := C1(α, λ) =
λ(Sd−1)
2− α

.

Now rewrite the first probability in (8) as

P (f(Y (R))−m(f(X)) ≥ x) = P (f(Y (R))−m(f(Y (R)))

≥ x+m(f(X))−m(f(Y (R)))). (14)

We want to bound |m(f(X)) − m(f(Y (R)))| and, as it will become clear from
the proof, only the case m(f(X)) < m(f(Y (R))) (which we assume) presents some
interest and needs some work. To this end, remark that for any x ≥ 0 and any
function f , we have

|P (f(X) ≤ x) − P (f(Y (R)) ≤ x)| ≤ P (X 6= Y (R)) = P (Z(R) 6= 0).

Set Pm = P (f(X) ≤ m(f(X))) ≥ 1/2. Then,

Pm − P (f(Y (R)) ≤ m(f(X))) = P (f(X) ≤ m(f(X)))− P (f(Y (R)) ≤ m(f(X)))

≤ P (Z(R) 6= 0).

Moreover, if f is Lipschitz with ‖f‖Lip ≤ 1,

Pm − P (Z(R) 6= 0) ≤ P (f(Y (R)) ≤ m(f(X)))

= P (f(Y (R))−m(f(Y (R))) ≤ m(f(X))−m(f(Y (R))))

≤ H(R)(m(f(Y (R)))−m(f(X))),
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where the second inequality follows from Lemma 1 applied to −f , and with H(R)

given in (12). Since H(R) is decreasing, set I(R)(y) = sup{z ≥ 0, H(R)(z) ≥ y}.
Thus, provided Pm > P (Z(R) 6= 0),

m(f(Y (R)))−m(f(X)) ≤ I(R)(Pm − P (Z(R) 6= 0)).

Choose δ ∈ (0, 1/2). Then for every R such that

R ≥ (C2/δ)1/α (15)

we have, using the same estimates as in (9), Pm−P (Z(R) 6= 0) ≥ 1/2−δ. Moreover,
for every positive A, (13) entails

P (f(Y (R))−m(f(Y (R))) ≥ AR) ≤ H(R)(AR) ≤ eA/2
(

2C1

ARα

)A/2
.

Thus if

R ≥
((

2C1

A

)A/2
eA/2

1/2− δ

)2/αA

, (16)

then

H(R)(AR) ≤ 1/2− δ,

or, equivalently, I(R)(1/2−δ) ≤ AR. As a consequence, if R satisfies both conditions
(15) and (16), we have

|m(f(Y (R)))−m(f(X))| ≤ I(R)(Pm − P (Z(R) 6= 0)) ≤ I(R)(1/2− δ) ≤ AR.

Using this together with (12) and (14) yields

P (f(Y (R))−m(f(X)) ≥ (2 +A)R) ≤ P (f(Y (R))−m(f(Y (R))) ≥ 2R) ≤ eC1

Rα
.

Setting x = (2 +A)R, we obtain

P (f(Y (R))−m(f(X)) ≥ x) ≤ eC1(2 +A)α

xα
(17)

Finally, combining (17) and (9), we conclude that for any A > 0,

P (f(X)−m(f(X)) ≥ x) ≤ (eC1 + C2)(2 +A)α

xα
(18)

whenever x is large enough so that there exists δ ∈ (0, 1/2) satisfying

x

2 +A
≥
(
C2

δ

)1/α

(19)

and

x

2 +A
≥
(

2C1

A

)1/α(
eA/2

1/2− δ

)2/αA

. (20)
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For a given A, the domain of validity of (18) can be found by optimizing δ in (19)
and (20). Taking for instance A = 2 leads (by equating the right hand sides of (19)
and (20)) to δ = C2/2(eC1 + C2) = (2− α)/2(2− α+ eα), and so

P (f(X)−m(f(X)) ≥ x) ≤ 4α(eC1 + C2)
xα

=
4α(2− α+ eα)λ(Sd−1)

α(2 − α)xα
,

whenever

x ≥ 4
(

2(2− α+ eα)λ(Sd−1)
α(2 − α)

)1/α

.

Remark 1 (i) The estimate in (7) is sharp in x as can be seen by taking X ∼
SαS a one dimensional symmetric α-stable random variable with parameter
σ > 0 and characteristic function ϕX(u) = e−σ

α|u|α . In that case (e.g., see
Proposition 1.2.15 in [ST1])

lim
x→+∞xαP (X ≥ x) = σαAα ,

where

Aα =

{
1−α

2Γ(2−α) cos(πα/2) , α 6= 1
1
π α = 1

and σα = 2λ(1)cα =
√
πΓ((2−α)/2)

2ααΓ((1+α)/2)2λ(1). For d = 1, and X symmetric, our

constants are C1 = λ(1)+λ(−1)
2−α = 2λ(1)

2−α and C2 = 2λ(1)
α . Thus, the dependency

in α in the constants of (7) is sharp as α → 0, but explodes as α → 2 (in
contrast to σαAα). This problem will be addressed in the sequel. We also
note that the dependency on the dimension d is sharp. Indeed, if X is a stable
vector in R

d, then (see Theorem 4.4.8 in [ST1])

lim
x→+∞xαP (‖X‖ ≥ x) = cαλ(Sd−1)Aα. (21)

(ii) As usual left tails inequalities also follow from (7) by applying the result to
−f , and as is also classical, the estimates can equivalently be given in terms
of enlargements of sets. For α > 1, a median can be replaced by the mean
(changing the range of x too) by properly modifying the above proof or by
using

E|f(X)−m(f(X))| ≤ 2
(
K2λ(Sd−1)
α(2 − α)

)1/α

+
2

α− 1
K1λ(Sd−1)
α(2− α)

(
K2λ(Sd−1)
α(2− α)

)(1−α)/α

,

which follows from integrating the tail inequality (7).

(iii) The methodology of proof presented above works as well for any infinitely
divisible vector X . However, it requires estimates on

∫
‖x‖>R νX(dx) and on
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∫
‖x‖≤R ‖x‖2νX(dx) which, in general, are unavailable in the absence of further

knowledge of the Lévy measure. If the Lévy measure of X has the form

ν′(B) =
∫
Sd−1

λ(dξ)
∫ +∞

0

1B(rξ)
L(r)dr
r1+α

, (22)

for some slowly varying function L on [0,∞), in which caseX is in the domain
of attraction of a stable random vector with Lévy measure given by (5), the
proof of Theorem 1 and standard estimates on regularly varying functions
(see for instance [BGT], Theorem 1.5.11) give the following bound:

P (f(X)−m(f(X)) ≥ x) ≤ K1λ(Sd−1)L(x)
α(2 − α)xα

, (23)

for every x such that L is locally bounded on [x,∞) and such that

xα

L(x)
≥ Kα

2 ,

where the constants K1, K2 are the same as in Theorem 1. A similar result
can also be obtained when X in the domain of attraction of a stable vector
with Lévy measure ν. In that case, L(r) in (22) should be replaced by L(r, ξ),
thus if L1(r) ≤ L(r, ξ) ≤ L2(r), in (23), L(x) should be replaced by L2(x).

When α is close to 2, the upper bound in Theorem 1 has the formKλ(Sd−1)/(2−
α)xα as soon as xα > K ′λ(Sd−1)/(2−α). We would like to obtain a better bound,
namely of the form K ′′λ(Sd−1)/xα, at the price of strengthening the condition on
x. To do so, we begin by a result improving Lemma 1. The setting and the notation
below are as in Lemma 1, in addition, let W 3 =

∫
Rd ‖x‖3ν(dx).

Lemma 2 If V 2/W 3 > 2/R, let s0 be the unique positive solution of

esR − 1
sR

=
RV 2

W 3
− 1, s > 0,

and let

x0 = 2
(
V 2 − W 3

R

)
s0.

Let f : R
d → R be such that ‖f‖Lip ≤ 1. Then, if x ≤ x0,

P (f(X)− Ef(X) ≥ x) ≤ exp

(
−x2

4
(
V 2 − W 3

R

)
)
,

while for x ≥ x0,

P (f(X)− Ef(X) ≥ x) ≤ K exp
(
x

R
−
(
x

R
+

2W 3

R3

)
log
(

1 +
R2x

2W 3

))
,

with

K = exp

(
−x2

0

4
(
V 2 − W 3

R

)
)

exp
(
−x0

R
+
(
x0

R
+

2W 3

R3

)
log
(

1 +
R2x0

2W 3

))
. (24)
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Proof Recall that Theorem 1 in [H] asserts that

P (f(X)− Ef(X) ≥ x) ≤ e−
∫

x
0 h−1(s)ds, (25)

for all 0 < x < h (N−), where N = sup
{
t ≥ 0 : Eet‖X‖ < +∞} and where h−1 is

the inverse of h(s) =
∫

Rd ‖u‖(es‖u‖ − 1)ν(du), 0 < s < N .
When the Lévy measure has its support in the Euclidean ball of center 0 and

radius R (in which case, N = +∞) Lemma 1 follows by bounding the function
gs(x) = esx−1, between 0 and R by a linear interpolation, using also the convexity
of the exponential. It is easily seen that for every x ∈ [0, R], the following improved
inequality holds:

gs(x) ≤ sx+
esR − 1− sR

R2
x2,

for all s ≥ 0. Therefore,

h(s) ≤
(
V 2 − W 3

R

)
s+

W 3

R2
(esR − 1) ≤ 2 max

((
V 2 − W 3

R

)
s,
W 3

R2
(esR − 1)

)
.

So if V 2/W 3 > 2/R, there exists a unique positive s0 such that

es0R − 1
s0R

=
RV 2

W 3
− 1,

and for s ≤ s0,

h(s) ≤ 2
(
V 2 − W 3

R

)
s,

while for s ≥ s0,

h(s) ≤ 2
W 3

R2
(esR − 1).

Let x0 = 2
(
V 2 − W 3

R

)
s0, we have for t ≤ x0,

h−1(t) ≥ t

2
(
V 2 − W 3

R

) ,
while for t ≥ x0,

h−1(t) ≥ 1
R

log
(

1 +
R2t

2W 3

)
.

The lemma follows.
We are now ready to state our second theorem. We will express the deviation

from the expectation here (since it exists). As already mentioned, a result in terms
of the median can be easily derived.

Theorem 2 Using the notation of Theorem 1, assume α > 3/2 and let M = 1/(2−
α). Then there exists an absolute constant K3 such that

P (f(X)− Ef(X) ≥ x) ≤ K3λ(Sd−1)
xα

, (26)
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for every x satisfying

xα ≥ 4λ(Sd−1)M logM log(1 + 2M logM).

Proof We use the notation of the proof of Theorem 1. The second and third
moment of the Lévy measure ν(R)

Y of Y (R) are given by

V 2 =
λ(Sd−1)
2− α

R2−α,

and

W 3 =
λ(Sd−1)
3− α

R3−α,

which entails

RV 2

W 3
− 1 = M.

As α ≥ 3/2, M ≥ 2 and

logM
R

≤ s0 ≤ 2
logM
R

,

and

2λ(Sd−1)M logM
(3 − α)Rα−1

≤ x0 ≤ 4λ(Sd−1)M logM
(3 − α)Rα−1

. (27)

So for x ≥ x0, Lemma 2 gives

P (f(Y (R))− Ef(Y (R)) ≥ x) ≤ K exp
(
x

R
−
(
x

R
+

2W 3

R3

)
log
(

1 +
R2x

2W 3

))
.

From (24), (27) and since
2W 3

R3
log
(

1 +
R2x0

2W 3

)
≤ x0

R
, it follows that

K ≤ exp
(

4λ(Sd−1)M logM
(3− α)Rα

log(1 + 2M logM)
)
. (28)

Suppose next that

xα ≥ 4λ(Sd−1)M logM log(1 + 2M logM). (29)

Then setting R = x, it first follows (since α < 2) that K < e, and second by (27)
and since M > 2, that x > x0. Therefore since W 3 = λ(Sd−1)R3−α/(3− α),

P (f(Y (R))− Ef(Y (R)) ≥ x) ≤ e exp
(

1−
(

1 +
2λ(Sd−1)
(3 − α)xα

)
log
(

1 +
(3− α)xα

2λ(Sd−1)

))

≤ e2 exp
(
− log

(
1 +

(3− α)xα

2λ(Sd−1)

))

≤ 2e2λ(Sd−1)
xα

, (30)
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for all x satisfying (29). Let us now estimate the difference between Ef(X) and
Ef(Y (R)).

|Ef(X)− Ef(Y (R))| = |E
(
f(Y (R) + Z(R))− f(Y (R))

)
1{Z(R) 6=0}|

≤ E‖Z(R)‖

≤
∫
‖x‖>R

‖x‖νX(dx)

=
λ(Sd−1)
α− 1

R1−α

≤ x

4 log 2 log(1 + 4 log 2)
, (31)

where we used the compound Poisson structure of Z(R) to get the next to last
inequality. and our choice of R = x, M > 2, α− 1 > 1/2, and the range of x given
by (29), to get the last one.

The estimate (31) as well as (30) and (9), finally give the result by proceeding
as in the proof of Theorem 1 (K3 = 1 + 8e2 will do).

Remark 2 (i) Unless λ(Sd−1) is bounded above independently of d, Theorem 1
and 2 are not dimension free, even for X with independent components. This
is to be expected in view of (21), and is in sharp contrast to the Gaussian
case.

(ii) X has independent components if and only if λ is discrete and concentrated
on the intersections of the axes of R

d with Sd−1. In that case, the natu-
ral Lipschitz property is with respect to the `1–norm. Thus taking, in the
Lévy–Khintchine representation (3) Sd−1

‖·‖1 (the `1–unit ball of R
d) instead of

Sd−1, and correspondingly changing ν to ν‖·‖1 , (7) continues to hold replacing
λ(Sd−1) by λ‖·‖1(S

d−1
‖·‖1 ), where λ‖·‖1 is the “spherical component” of ν‖·‖1 . In

fact, for any norm of R
d, a result similar to (7) continues to hold with the

type of changes just described.

As already mentioned, the above theorems are not dimension free, in particular,
when the components of X are independent and (for simplicity of notation) identi-
cally distributed. However using Corollary 3 in [H] improved versions of Theorem 1
and 2 can be obtained with mixture of “Lipschitz norms”. More precisely, while we
are not able to improve the constant in the upper bound of (26), the additional
conditions we assume on the function f enable us to extend (for c below is small)
the range on which our inequality holds. Again, for X with iid components the
measure ν is concentrated on the axes of R

d (see [S] p. 67), i.e.,

ν(dx1, . . . , dxd) =
d∑
k=1

δ0(dx1) · · · δ0(dxk−1)ν̃(dxk)δ0(dxk+1) · · · δ0(dxd). (32)

Denoting by e1, . . . , ed the canonical basis of R
d, Theorem 2 now becomes:
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Theorem 3 Let X be a stable vector with index α > 3/2 and Lévy measure ν given
by (32). Let f : R

d → R be such that

sup
x∈Rd

d∑
k=1

∫
R

|f(x+ uek)− f(x)|2ν̃(du) ≤ a2, (33)

and

sup
x∈Rd

|f(x+ uek)− f(x)| ≤ c|u|, (34)

for all k = 1, . . . , d, u ∈ R. Then,

P (f(X)− E(f(X)) ≥ x) ≤ K4λ(Sd−1)cα +K5a
α

xα
, (35)

whenever

xα ≥ 4(4α)α−1cα−1λ(Sd−1),

where K4 and K5 are absolute constants.

Proof We only briefly describe the changes to the previous proofs to get the
result. First, and as previously done, decompose X as X d= Y (R) +Z(R). Next, use
Corollary 3 in [H]: under the assumptions on f stated above,

P (f(Y (R))− E(f(Y (R))) ≥ x) ≤ exp
(
− x

4cR
log
(

1 +
cRx

2a2

))
.

Then, proceed as in the proof of Theorem 1, using also the comparison between
Ef(X) and Ef(Y (R)) given in the proof of Theorem 2: |Ef(X) − Ef(Y (R))| ≤
λ(Sd−1)R1−α/(α−1). Hence, taking R = Kx/(2αc), for some constant 0 < K < 1,
chosen below, leads to:

P (f(X)− E(f(X)) ≥ x) ≤ (2α)αλ(Sd−1)cα + α(4α)α/2aα

αKαxα
,

whenever

xα ≥ (2α)α−1

α− 1
K1−α

1−K
cα−1λ(Sd−1),

with α > 1. The choices K = 1/2, α > 3/2 yield the result. (A slightly improved
result holds if in the integral in (33), R is replaced by |u| ≤ R where R is chosen as
above.)
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