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Abstract

Pólya urns are urns where at each unit of time a ball is drawn and is replaced with some
other balls according to its colour. We introduce a more general model: the replacement
rule depends on the colour of the drawn ball and the value of the time (mod p). We exhibit
a closed form for the corresponding generating functions (giving the exact composition
of the urns at time n). We discuss some intriguing properties of the differential operators
associated to the generating functions encoding the evolution of these urns: The initial
non-linear partial differential equation indeed leads to linear differential equations and
we prove that the moment generating functions are D-finite. When the time goes to
infinity, we show that these periodic Pólya urns follow a rich variety of behaviours: their
asymptotics fluctuations are described by a family of distributions, the generalized Gamma
distributions, which can also be seen as powers of Gamma distributions. En passant,
we establish some enumerative links with other combinatorial objects, and we give an
application for a new result on the asympotics of Young tableaux: This approach allows
us to prove that the law of the lower right corner in a triangular Young tableau follows
asymptotically a product of generalized Gamma distributions.
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1 Periodic Pólya urns
Pólya urns were introduced in a simplified version by George Pólya and his PhD student Florian
Eggenberger in [5,6], with applications to disease spreading and conflagrations. They are still a
widely used and powerful model, see e.g. Rivest’s recent work on auditing elections [24], or the
analysis of deanomization in Bitcoin’s peer-to-peer network [7]. They are well-studied objects
in combinatorial and probabilistic literature [1, 9, 19], and offer fascinatingly rich links with
numerous objects like random recursive trees, m-ary search trees, branching random walks (see
e.g. [2, 4, 13, 26]). In this paper we introduce a variation which offers new links with another
important combinatorial structure: Young tableaux. We solve the enumeration aspects of this
new model, derive the limit law for the evolution of the urn, and give some applications.

In the Pólya urn model, one starts with an urn with b0 black balls and w0 white balls at
time 0. At every discrete time step one ball is drawn uniformly at random. After inspecting
its colour it is returned to the urn. If the ball was black, a black balls and b white balls are
added; if the ball was white, c black balls and d white balls are added (where a, b, c, d ∈ N are
non-negative integers). This process can be described by the so-called replacement matrix :

M =
(
a b

c d

)
, a, b, c, d ∈ N.

We call an urn and its associated replacement matrix balanced if K := a + b = c + d. In
other words, in every step the same number K of balls is added to the urn. This results in a
deterministic number of balls after n steps: b0 + w0 +Kn balls.

Now, we introduce a more general model which has rich combinatorial, probabilistic, and
analytic properties.
Definition 1.1. A periodic Pólya urn of period p with replacement matrices M1,M2, . . . ,Mp

is a variant of Pólya urn in which the replacement matrix Mk is used at steps np+ k. Such a
model is called balanced if each of its replacement matrices is balanced.

In this article, we illustrate the aforementioned rich properties on the following model.
Definition 1.2. We call a Young Pólya urn the periodic Pólya urn of period 2 with replacement

matrix M1 :=
(

1 0
0 1

)
for every odd step, and replacement matrix M2 :=

(
1 1
0 2

)
for every

even step.
Let us describe the composition of the urn after n steps by pairs (bn, wn), starting with

b0 = 1 black ball and w0 = 1 white ball shown in Figure 1. In the first step the matrix M1 is
used and gives the two compositions

(2, 1), and (1, 2).

In the second step, matrix M2 is used, in the third step, matrix M1 is used again, in the fourth
step, matrix M2, etc. Thus, the possible compositions are

(3, 2), (2, 3), and (1, 4), at time 2, and
(4, 2), (3, 3), (2, 4), and (1, 5), at time 3.
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H0 = xy

H1 = x2y + xy2

H2 = 2x3y2 + 2x2y3 + 2xy4

H3 = 6x4y2 + 8x3y3 + 8x2y4 + 8xy5

Figure 1: The evolution of a Young Pólya urn with one initial black and one initial white ball.
Black arrows mark that a black ball was drawn, dashed arrows mark that a white ball was
drawn. Straight arrows indicate that the replacement matrix M1 was used, curly arrows show
that the replacement matrix M2 was used. The number below each node is the number of
possible transitions to reach such a composition. In this article we give a formula for Hn (which
encodes all the possible compositions of the urn at time n) and their asymptotic behaviour.

In fact, each of these compositions is reached in different ways, and such a sequence of
transitions is called a history. Each history comes with weight one. Implicitly, they induce a
probability measure on the compositions at step n. So, let Bn and Wn be random variables
for the number of black and white balls after n steps, respectively. As our model is balanced,
Bn + Wn is a deterministic process, reflecting the identity bn + wn = b0 + w0 + n +

⌊
n
2

⌋
. So

we concentrate from now on our analysis on Bn and bn.
For the classical model of a single balanced Pólya urn, the limit law of the random variable

Bn is fully known: The possible limit laws include a rich variety of distributions. To name a few,
let us mention the uniform distribution [8], the normal distribution [2], the Beta and Mittag-
Leffler distributions [13]. Periodic Pólya urns (which include the classical model) lead to an
even larger variety of distributions involving a product of generalized Gamma distributions [27].
Definition 1.3. The generalized Gamma distribution GenGamma(d, p) with parameters d, p >
0 is defined by the density function (having support [0,+∞])

f(x; d, p) := p xd−1e−x
p

Γ (d/p) ,

where Γ is the classical Gamma function Γ(z) :=
∫∞

0 tz−1e−t dt.
Remark 1.4. Let X ∼ Γ(k) be a Gamma distributed random variable with parameter k > 0.
Its density is equal to

f(x; k) = xk−1e−x

Γ(k) .

Then, for q > 0 the powers Xq are distributed like a generalized Gamma distribution with
parameters p = 1/q and d = k/q. In particular for p = 1 the generalized Gamma distribution
is equal to the Gamma distribution.
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Our main results are the enumeration result from Theorem 2.1, the application to Young
tableaux in Theorem 4.1, and the following result (and its generalization in Theorem 3.1):

Theorem 1.5. The normalized random variable 22/3

3
Bn
n2/3 of the number of black balls in a

Young Pólya urn converges in law to a generalized Gamma distribution:

22/3

3
Bn

n2/3
L−→ GenGamma (1, 3) .

We give a proof of this results in Section 3. Let us first mention some articles where this
distribution has already appeared before:

• in Janson [14], for the analysis of the area of the supremum process of the Brownian
motion,

• in Peköz, Röllin, and Ross [22], as distributions of processes on walks, trees, urns, and
preferential attachements in graphs (they also consider what they call a Pólya urn with
immigration, which is a special case of a periodic Pólya urn),

• in Khodabin and Ahmadabadi [16] following a tradition to generalize special functions by
adding parameters in order to capture several probability distributions, such as e.g. the
normal, Rayleigh, and half-normal distribution, as well as the MeijerG function (see also
the addendum of [14], mentioning a dozen of other generalizations of special functions).

In the next section we translate the evolution process into the language of generating
functions by encoding the dynamics of this process into partial differential equations.

2 A functional equation for periodic Pólya urns
Let hn,k,` be the number of histories of a periodic Pólya urn after n steps with k black balls and `
white balls, with an initial composition of b0 black balls and w0 white balls, and with replacement
matrices M1 for the odd steps and M2 for the even steps. We define the polynomials

Hn(x, y) :=
∑
k,`≥0

hn,k,`x
ky`.

Note that these are indeed polynomials as there are just a finite number of histories after n
steps. We collect all these histories in the trivariate exponential generating function

H(x, y, z) :=
∑
n≥0

Hn(x, y)z
n

n! .

In particular, we get for the first 3 terms of H(x, y, z) the expansion (compare Figure 1)

H(x, y, z) = xy +
(
xy2 + x2y

)
z +

(
2xy4 + 2x2y3 + 2x3y2

) z2

2 + . . .

Observe that the polynomials Hn(x, y) are homogeneous due to balanced urn model.
Now it is our goal to derive a partial differential equation describing the evolution of the

periodic Pólya urn model. For a comprehensive introduction into the method we refer to [8].

4



Cyril Banderier & Philippe Marchal & Michael Wallner Pólya urns and Young tableaux

In order to capture the periodic behaviour we split the generating function H(x, y, z) into
odd and even steps. We define

He(x, y, z) :=
∑
n≥0

H2n(x, y) z2n

(2n)! and Ho(x, y, z) :=
∑
n≥0

H2n+1(x, y) z2n+1

(2n+ 1)! ,

such thatH(x, y, z) = He(x, y, z)+Ho(x, y, z). Next, we associate to the replacement matrices
M1 and M2 from Definition 1.2 the differential operators D1 and D2, respectively. We get

D1 := x2∂x + y2∂y and D2 := x2y∂x+ y3∂y,

where ∂x and ∂y are defined as the partial derivatives ∂
∂x

and ∂
∂y
, respectively. These model

the evolution of the urn. For example, in the term x2∂x, the derivative ∂x represents drawing
a black ball and the multiplication with x2 returning the black ball and an additional black ball
into the urn. The other terms have analogous interpretations.

With these operators we are able to link odd and even steps with the following system∂zHo(x, y, z) = D1He(x, y, z),
∂zHe(x, y, z) = D2Ho(x, y, z).

(1)

Note that the derivative ∂z models the evolution in time. This system of partial differential
equations naturally corresponds to recurrences at the level of coefficients hn,k,l, and vice versa.
This philosophy is well explained in the symbolic method part of [10] and see also [8].

As a next step we want to eliminate the y variable in these equations. This is possible as
the number of balls in each round and the number of black and white balls are connected due
to the fact that we are dealing with balanced urns. First, as observed previously, one has

number of balls after n steps = b0 + w0 + n+
⌊
n

2

⌋
. (2)

Therefore, for any xky`zn appearing in H(x, y, z) with b0 = w0 = 1 we havek + ` = 2 + 3n
2 if n is even,

k + ` = 2 + 3n
2 −

1
2 if n is odd.

This translates directly into
x∂xHe(x, y, z) + y∂yHe(x, y, z) = 2He(x, y, z) + 3

2z∂zHe(x, y, z),

x∂xHo(x, y, z) + y∂yHo(x, y, z) = 3
2Ho(x, y, z) + 3

2z∂zHo(x, y, z).
(3)

Finally, combining (1) and (3), we eliminate ∂yHe and ∂yHo. After that it is legitimate to
insert y = 1 as there appears no differentiation with respect to y anymore. As the urns are
balanced, the exponents of y and x in each monomial are bound (see Equation (2)), so we are
losing no information on the trivariate generating functions by setting y = 1. Hence, from now
on we use the notation H(x, z), He(x, z), and Ho(x, z) instead of H(x, 1, z), He(x, 1, z), and
Ho(x, 1, z), respectively. All of this leads to our first main enumeration theorem:
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Theorem 2.1 (Linear differential equations and hypergeometric expressions for histories). The
generating functions describing the 2-periodic Young Pólya urn satisfy the following system:

∂zHe(x, z) = x(x− 1)∂xHo(x, z) + 3
2z∂zHo(x, z) + 3

2Ho(x, z),

∂zHo(x, z) = x(x− 1)∂xHe(x, z) + 3
2z∂zHe(x, z) + 2He(x, z).

(4)

Moreover, all these functions satisfy linear differential equations (they are D-finite, see e.g. [10,
Appendix B.4] for more on this notion), which in return implies that H satisfies the equation
L.H(x, z) = 0, where L is a differential operator of order 3 in ∂z, and then one has the
hypergeometric closed forms for hn := [zn]H(x, z):

hn =

3n Γ(n2 +1)Γ(n2 + 2
3)

Γ(2/3) if n is even,

3n Γ(n2 +1/2)Γ(n2 +7/6)
Γ(2/3) if n is odd.

(5)

Alternatively, this sequence satisfies h(n + 2) = 2
3h(n + 1) + 1

4(9n2 + 21n + 12)h(n). This
sequence is not found in the OEIS1, we added it there, it is now A293653, and it starts like

1, 2, 6, 30, 180, 1440, 12960, 142560, 1710720, 23950080, 359251200, . . .

In the next section we will use Equations (4) to iteratively derive the moments of the
distribution of black balls after n steps.

3 Moments of periodic Pólya urns
Let mr(n) be the r-th factorial moment of the distribution of black balls after n steps, i.e.

mr(n) := E (Bn(Bn − 1) · · · (Bn − r + 1)) .

Expressing them in terms of the generating function H(x, z), it holds that

mr(n) =
[zn] ∂r

∂xr
H(x, z)

∣∣∣
x=1

[zn]H(1, z) .

Splitting them into odd and even moments, we have access to these quantities via the partial
differential equation (4). As a first step we compute hn := [zn]H(1, z), the total number of
histories after n steps. We substitute x = 1, which makes the equation independent of the
derivative with respect to x. Then, the idea is to transform (4) into two independent differential
equations for He(1, z) and Ho(1, z). This is achieved by differentiating the equations with
respect to z and substituting the other one to eliminate He(1, z) or Ho(1, z), respectively. This
decouples the system, but increases the degree of differentiation by 1. We get(

9z2 − 4
)
∂2
zHe(1, z) + 39z∂zHe(1, z) + 24He(1, z) = 0,(

9z2 − 4
)
∂2
zHo(1, z) + 39z∂zHo(1, z) + 21Ho(1, z) = 0.

In this case it is easy to extract the underlying recurrence relations and solve them explicitly.
1On-Line Encyclopedia of Integer Sequences, https://oeis.org.
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This also leads to the closed forms (5) for hn, from which it is easy to compute the asymptotic
number of histories for n→∞. Interestingly, the first two asymptotic terms are the same for
odd and even number of steps, only the third one differs. We get

hn = n!
√
π

21/6Γ
(

2
3

) (3
2

)n
n1/6

(
1 +O

( 1
n

))
.

As a next step we compute the mean. Therefore, we differentiate (4) once with respect
to x, substitute x = 1, decouple the system, derive the recurrence relations of the coefficients,
and solve them. Note again that the factor (x− 1) prevents higher derivatives from appearing
and is therefore crucial for this method. After normalization by hn we get

m1(n) =


33/2Γ( 2

3)2

2π
Γ(n2 + 4

3)
Γ(n2 + 2

3) if n is even,
33/2Γ( 2

3)2

4π
(n+1)Γ(n2 + 5

6)
Γ(n2 + 7

6) if n is odd.

For the asymptotic mean we discover again the same phenomenon that its first two terms are
equal for odd and even n. We get

m1(n) = 3
22/3

Γ
(

2
3

)
Γ
(

1
3

)n2/3
(

1 +O
( 1
n

))
.

Repeating this process, we can derive also higher moments in a mechanical way. In general
we get the closed form for the r-th factorial moment

mr(n) = 3r

22r/3

Γ
(
r
3 + 1

3

)
Γ
(

1
3

) n2r/3
(

1 +O
( 1
n

))
.

Therefore we see that the moments E (B∗nr) of the rescaled random variable B∗n := 22/3

3
Bn
n2/3

converge for n to infinity to the limit

mr :=
Γ
(
r
3 + 1

3

)
Γ
(

1
3

) . (6)

Furthermore, by the asymptotic result there exist an n0 > 0 and constants ar and br independent
of n such that ar < mr < br, for all n ≥ n0. Thus, by the limit theorem of Fréchet
and Shohat [11]2 there exists a limit distribution to which our rescaled random variables B∗n
converge to. Furthermore, Carleman’s condition∑

r>0
m−1/(2r)
r = +∞,

2As a funny coincidence, Fréchet and Shohat mention in [11] that the generalized Gamma distribution with
parameter p ≥ 1/2 is uniquely characterized by its moments.
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is satisfied, because m−1/(2r)
r =

(
3e
r

)1/6
(1 + o(1)) for large r. Therefore, the moment problem

is determined (i.e. there exists a unique limit distribution) and the sequence of rescaled random
variables (B∗n)n>0 converges in law to the unique limit distribution, and not only a subsequence.

It remains to characterize this limit distribution. Let X ∼ GenGamma(d, p) be a gener-
alized Gamma distributed random variable (as defined in Definition 1.3). It is a distribution
determined by its moments, which are given by

E(Xr) =
Γ
(
d+r
p

)
Γ
(
d
p

) .

Thus, the structure of mr in Formula (6) implies that B∗n converges to GenGamma (1, 3) ,
which completes the proof of Theorem 1.5.

The same approach allows us to study the distribution of black balls for the urn with

replacement matrices M1 = M2 = · · · = Mp−1 =
(

1 0
0 1

)
and Mp =

(
1 `

0 1 + `

)
. We call this

model the Young Pólya urn of period p and parameter `.

Theorem 3.1. The renormalized distribution of black balls in the Young Pólya urn of period p
and parameter ` is asymptotically a distribution, which we call ProdGenGamma(p, `, b0, w0),
defined as the following product of independent distributions:

pα

p+ `

Bn

nα
L−→ Beta(b0, w0)

`−1∏
i=0

GenGamma(b0 + w0 + p+ i, p+ `)

with α = p/(p+ `), and where Beta(b0, w0) is as usual the law with support [0, 1] and density
Γ(b0+w0)

Γ(b0)Γ(w0)x
b0−1(1− x)w0−1.

Sketch. This follows from the following r-th (factorial) moment computation:

E (Br
n) = (p+ `)r

pαr
Γ(b0 + r)Γ(b0 + w0)
Γ(b0)Γ(b0 + w0 + r)

`−1∏
i=0

Γ
(
b0+w0+p+r+i

p+`

)
Γ
(
b0+w0+p+i

p+`

) nαr
(

1 +O
( 1
n

))
,

which in turns characterizes the ProdGenGamma distribution. Here, Indeed, if for some
independent random variables X, Y, Z, one has E(Xr) = E(Y r)E(Zr) (and if Y and Z are
determined by their moments), then X L= Y Z.

This is consistent with our results on the Young Pólya urn introduced in Section 1. Indeed,
there one has w0 = b0 = 1, p = 2, ` = 1, and therefore the renormalized distribution of black
balls pα

p+`Bn/n
α is asymptotically Unif(0, 1) ·GenGamma(4, 3) = GenGamma (1, 3).

We will now see what are the implications of this result on an apparently unrelated topic:
Young tableaux.
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4 Urns, trees, and Young tableaux
As predicted by Anatoly Vershik in [28], the 21st century should see a lot of challenges and
advances on the links of probability theory with (algebraic) combinatorics. A key role is played
here by Young tableaux, because of their ubiquity in representation theory [18]. Many results
on their asymptotic shape have been collected, but very few results are known on their asymp-
totic content when the shape is fixed (see e.g. the works by Pittel and Romik [23, 25] and
Marchal [21], who have studied the distribution of the values of the cells in random rectangular
Young tableaux, while the case of Young tableaux with a more general shape seems to be very
intricate). It is therefore pleasant that our work on periodic Pólya urns allows us to get advances
on the case of a triangular shape, with any slope.

For any fixed integers n, `, p ≥ 1, we introduce the quantity N := p`n(n+ 1)/2. We define
a triangular Young tableau of slope −`/p and of size N as a classical Young tableau with N
cells with length n` and height np such that the first p rows have length n`, the next p lines
have length (n − 1)` and so on (see Figure 2). We now study what is the typical value of
its lower right corner (with the French convention for drawing Young tableaux, see [18] but
take however care that on page 2 therein, Macdonald advises readers preferring the French
convention to “read this book upside down in a mirror”!).

43 56 58 61 83

30 44 45 57 73

22 31 33 52 71

21 25 32 42 60 62 74 75 85 90

18 19 26 41 53 59 63 70 82 87

12 14 23 29 46 54 55 69 76 84

6 8 10 24 34 40 47 51 68 72 77 78 80 86 89

3 5 7 13 16 17 28 37 38 50 64 65 66 81 88

1 2 4 9 11 15 20 27 35 36 39 48 49 67 79

` ` `

p

p

p

p− 1

p
`

`
p

`

S
T

v1

v0

Figure 2: In this section, we see that there is a relation between Young tableaux with a given
periodic shape, some trees and the periodic Pólya urns. The lower right corner of these Young
tableaux is thus following the same generalized Gamma distribution we proved for urns.

It could be expected (e.g. via the Greene–Nijenhuis–Wilf algorithm for generating Young
tableaux, see [12]) that the entries near the hypotenuse should be N − o(N). Can we expect
a more precise description of these o(N) fluctuations? Our result on periodic urns enables us
to exhibit the right critical exponent, and the limit law in the corner:

Theorem 4.1. Choose a uniform random triangular Young tableau Y of slope −`/p and
size N := p`n(n+ 1)/2 and put α = p/(p+ `). Let Xn be the entry of the lower right. Then
(N−Xn)/n1+α converges in law to the distribution of the number of black balls in the periodic

Pólya urn with replacement matrices M1 = · · · = Mp−1 =
(

1 0
0 1

)
and Mp =

(
1 `

0 1 + `

)
, and

with initial conditions w0 = `, b0 = p, i.e. we have the convergence in law, as n goes to infinity:
pα

p+ `

N −Xn

n1+α
L−→ ProdGenGamma(p, `, b0, w0).
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Sketch of proof. We first establish a link between Young tableaux and linear extensions of trees.
Then we will be able to conclude via a link between these trees and periodic Pólya urns.

The right part of Figure 2 presents two trees (the “big” tree T , which contains the “small”
tree S). More precisely, we define the rooted planar tree S as follows

• The left-most branch of S has n` + 1 vertices, which we call v1, v2, . . . , vn`+1, where v1
is the root and vn`+1 is the left-most leaf of the tree.

• For 2 ≤ k ≤ n− 1, the vertex vk` has p+ 1 children.

• The vertex vn` has p− 1 children.

• All other vertices vj (for j < n`, j 6= k`) have exactly one child.

Now, define T as the “big” tree obtained from the “small” tree S by adding a vertex v0 as
the father of v1 and adding N + 1 − n(p + `) children to v0 (see Figure 2). Remark that the
number of vertices of T is equal to 1 + the number of cells of Y . Moreover, the hook length
of each cell in the first row of Y is equal to the hook length of the corresponding vertex in the
left-most branch of S.

Let us now introduce a linear extension ET of T , i.e. a bijection from the set of vertices
of T to {0, 1, . . . , N} such that ET (u) < ET (u′) whenever u is an ancestor of u′. A key
result is the following: if ET is a random uniform linear extension of T , then Xn (the entry of
the lower right corner in a random uniform Young tableau with shape Y) has the same law as
ET (vn`):

Xn
L= ET (vn`). (7)

What is more, recall that T was obtained from S by adding a root and some children to this
root. Therefore, one can obtain a linear extension of the “big” tree T from a linear extension
of the “small” tree S by a simple insertion procedure. This allows us to construct a random
uniform linear extension ET of T and a random uniform linear extension ES of S such that∣∣∣∣∣2(p+ `)

n`p
(N − ET (vn`))− (n`+ p− ES(vn`))

∣∣∣∣∣→ 0 (in probability).

So, to summarize, we have now

ET (vn`) L= ES(vn`) + deterministic quantity + smaller order error terms. (8)

The last step (which we just state here, see our long version for its full proof) is that

ES(vn`) L= distribution of periodic Pólya urn + deterministic quantity. (9)

Indeed, more precisely N −ES(vn`) has the same law as the number of black balls in a periodic
urn after (n − 1)p steps (an urn with period p, with adding parameter `, and with initial
conditions w0 = ` and b0 = p). Thus, our results on periodic urns from Section 3 and the
conjunction of Equations (7), (8), and (9) gives the convergence in law for Xn which we wanted
to prove.
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5 Conclusion and further work
In this article, we introduced Pólya urns with periodic replacements, and showed that they can
be exactly solved with generating function techniques, and that the initial non-linear equation
encoding their dynamics leads to linear (D-finite) moment generating functions, which we iden-
tify as a product of generalized Gamma distributions. Note that [17,20] involve the asymptotics
of a related process (by grouping p units of time at once of our periodic Pólya urns). This related
process is therefore “smoothing” the irregularities created by our periodic model, and allows us
to connect with the usual famous key quantities for urns, such as the quotient of eigenvalues
of the substitution matrix, etc). Our approach has the advantage to make a kind of Tauberian
zoom on each unit of time, giving more asymptotic terms, and also exact enumeration.

In the full version of this work we will consider arbitrary periodic balanced urn models, and
their relationship with Young tableaux. It remains a challenge to understand the asymptotic
landscape of Young tableaux, even if it could be globally expected that they behave like a
Gaussian free field, like for many other random surfaces [15]. As a first step, understanding the
fluctuations and the universality of the critical exponents at the corner could help to get a more
global picture. Note that our results on the lower right corner directly imply similar results on the
upper right corner: just use our formulae by exchanging ` and p, i.e. for a slope corresponding
to the complementary angle to 90o. Thus the critical exponent for the upper right corner is
2−α. In fact, it is a nice surprise that there is even more structure: there is a duality between
the limit laws X and X ′ of these two corners and we get the factorization as independent
random variables (up to renormalization and slight modifications of the boundary conditions)
XX ′ ∼ Γ(b0). Similar factorizations of the exponential law, which is a particular case of Gamma
distribution, have appeared recently in relation with functionals of Lévy processes, following [3].

Acknowledgments: Let us thank Cécile Mailler, Henning Sulzbach and Markus Kuba for
kind exchanges on their work [17,20] and on related questions.
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