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We consider the steady axisymmetric motion of an electrically conducting fluid
contained within a spherical shell and permeated by a centred axial dipole magnetic
field, which is strong as measured by the Hartmann number M . Slow axisymmetric
motion is driven by rotating the inner boundary relative to the stationary outer
boundary. For M � 1, viscous effects are only important in Hartmann boundary
layers adjacent to the inner and outer boundaries and a free shear-layer on the
magnetic field line that is tangent to the outer boundary on the equatorial plane of
symmetry. We measure the ability to leak electric current into the solid boundaries
by the size of their relative conductance ε. Since the Hartmann layers are sustained
by the electric current flow along them, the current inflow from the fluid mainstream
needed to feed them increases in concert with the relative conductance, because of the
increasing fraction L of the current inflow leaked directly into the solids. Therefore
the nature of the flow is sensitive to the relative sizes of ε−1 and M .

The current work extends an earlier study of the case of a conducting inner
boundary and an insulating outer boundary with conductance εo = 0 (Dormy, Jault &
Soward, J. Fluid Mech., vol. 452, 2002, pp. 263–291) to other values of the outer
boundary conductance. Firstly, analytic results are presented for the case of perfectly
conducting inner and outer boundaries, which predict super-rotation rates Ωmax of
order M1/2 in the free shear-layer. Successful comparisons are made with numerical
results for both perfectly and finitely conducting boundaries. Secondly, in the case of
a finitely conducting outer boundary our analytic results show that Ωmax is O(M1/2)
for ε−1

o � 1 � M3/4, O(ε2/3
o M1/2) for 1 � ε−1

o � M3/4 and O(1) for 1 � M3/4 � ε−1
o .

On increasing ε−1
o from zero, substantial electric current leakage into the outer

boundary, Lo ≈ 1, occurs for ε−1
o � M3/4 with the shear-layer possessing the character

appropriate to a perfectly conducting outer boundary. When ε−1
o = O(M3/4) the current

leakage is blocked near the equator, and the nature of the shear-layer changes. So,
when M3/4 � ε−1

o , the shear-layer has the character appropriate to an insulating
outer boundary. More precisely, over the range M3/4 � ε−1

o � M the blockage spreads
outwards, reaching the pole when ε−1

o = O(M). For M � ε−1
o current flow into the

outer boundary is completely blocked, Lo � 1.
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146 A. Soward and E. Dormy

1. Introduction
The steady flow of viscous fluid confined inside a spherical shell, which results when

the inner (radius r∗
i ) and outer (radius r∗

o ) solid boundaries rotate at different angular
velocities, namely ΩS∗

i and ΩS∗
o respectively, about a common axis, is referred to as

spherical Couette flow. In recent years its magnetohydrodynamic (MHD) extension,
for which the fluid is electrically conducting and is permeated by a magnetic field
applied externally, has attracted considerable attention. One reason for the interest
is geophysical. In particular, the electromagnetic coupling between the conducting
fluid outer core and the poorly conducting solid mantle may play an important role
in Earth’s dynamo process and may in addition affect relatively short-time scale
phenomenon such the variation in Earth’s length of day (see, e.g., Zatmann 2001).
Another reason is astrophysical and concerns the rotation rate of the solar radiative
zone (see, e.g., Garaud & Guervilly 2009). Further interest stems from laboratory
models that involve MHD spherical Couette flow (see, e.g., Nataf et al. 2006; Kelley
et al. 2007), which are motivated by the geophysical application.

Like others before, we will consider a steady axial dipole magnetic field of typical
strength B∗

0 maintained by electromagnetic sources within the inner sphere. We will
assume that the outer sphere is stationary, ΩS∗

o = 0. Using the fluid shell gap width
L∗ ≡ r∗

o − r∗
i as our unit of length, the magnetic field strength and the importance of

advection are measured by the Hartmann and magnetic Reynolds numbers,

M ≡ L∗B∗
0√

μ0ρνη
and ReM ≡ L∗2ΩS∗

i

η
(1.1a,b)

respectively, where ρ is the density; ν is the viscosity; μ0 is the magnetic permeability;
and η is the magnetic diffusivity. We restrict attention to strong magnetic fields and
slow steady flow which correspond to the limits

M � 1 and ReM � 1 (1.2a,b)

respectively. The latter assumption, ReM � 1, ensures that the magnetic field
perturbations are small and is essentially the basis on which we linearize our equations.
We add the assumption that the Reynolds number Re ≡ L∗2ΩS∗

i /ν is sufficiently small
(really a condition on the magnetic Prandtl number η/ν ≡ Re/ReM ) in order that
we may restrict attention to the axisymmetric differential rotation of the fluid and
ignore any meridional secondary flow, including possible instabilities, in our equation
of motion (2.7a).

In the large-M limit (1.2a), viscous forces are negligible in the bulk of the flow,
called the mainstream, but are important in various boundary and free shear-
layers. Hartmann layers of width δ∗

H ≡ √
μ0ρνη/B∗

0 =L∗/M form on the inner
and outer boundaries. Their properties, which have been studied extensively since
the pioneering theoretical and experimental investigations of Hartmann (1937) and
Hartmann & Lazarus (1937) (see also the review of Hunt & Shercliff 1971), are
crucial to our development. Since the Hartmann layer width is inversely proportional
to the magnitude of the normal component of magnetic field, its width is very large
on the outer boundary close to the ‘equatorial’ plane (i.e. plane of symmetry), where
the dipole magnetic field lines are tangent to the boundary. We give the label C to the
magnetic field line that touches the outer boundary at the point Eo on the equator
(see figure 1). The outer Hartmann layer becomes singular at Eo, forming a Roberts
layer (Roberts 1967b), which in turn triggers a free shear-layer on the magnetic field
line C of width δ∗

C ≡
√

L∗δ∗
H = L∗/M1/2, which continues until C intersects the inner
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Figure 1. The northern hemisphere geometry (here for an aspect ratio of ζi ≡ ri/ro = 1/2).
At large M , the polar P and equatorial E mainstream regions are separated by the shear-layer
containing the magnetic field line C joining Eo to Q. The widths of the inner and outer solid
shell boundaries are δi and δo respectively.

sphere at a point Q. Free shear-layers of this thickness have been found in other
MHD contexts (see Hunt & Malcolm 1968; see also Müller & Bühler 2001), though
similar sidewall layers are perhaps more common (see, e.g., Roberts 1967a). Other
related free layers, such as those of Stewartson (1966), pertain to rapidly rotating
flows and have been surveyed by Soward & Dormy (2007). The presence of the shear-
layers on C-lines in the shell was clearly identified by the numerical simulations of
Dormy, Cardin & Jault (1998; see also Dormy 1997 and the discussion of Starchenko
1998a,b). Surprisingly Dormy et al. (1998) found, for the case of a conducting inner
and insulating outer boundary, that the angular velocity in these M−1/2 shear-layers
exceeded by about 50 % the angular velocity ΩS∗

i of the inner sphere. This so called
super-rotation was later confirmed by the liquid sodium experiments of Nataf et al.
(2006).

The subsequent theoretical investigations of Hollerbach (2000, 2001) and Hollerbach
& Skinner (2001) drew attention to the fact that the magnitude of the super-rotation
is strongly dependent on the electrical conductivities of the solid boundaries, which
have a controlling influence on the electric current flow throughout the entire system,
both fluid and solid. To understand this phenomenon, we begin by noting that viscous
forces are negligible in the mainstream. There the Lorentz force, which dominates the
dynamics, is un-balanced and negligible. As is well known, this force-free configuration
is achieved by the electric current being channelled along the lines of the applied
magnetic field. On leaving the mainstream, this electric current flows partly along the
Hartmann layers and partly through their adjacent solid boundaries in proportions
dependant on the relative conductance of the of the solids to the fluid. Any net
current inflow or outflow across the mainstream must finally be returned along the
free shear-layer which embeds the C-line.

In the case of an inner conducting boundary and an outer insulating boundary,
first considered by Dormy et al. (1998), electric current flow in the outer insulating
boundary is blocked off entirely. So only a relatively small amount of electric current
from the mainstream is needed to feed the outer boundary Hartman layer. To achieve
this small-electric-current flow in the mainstream, it is necessary that the azimuthal
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magnetic field produced by magnetic induction must be small too. In a steady state,
this requirement constrains the angular velocity Ω∗ to be almost constant on field
lines, which is the ‘law of isorotation’ of Ferraro (1937). Effectively, the magnetic field
is almost frozen to the fluid. Thus, the fluid in the mainstream locks on to the inner
conducting boundary and rotates solidly with angular velocity Ω∗ = ΩS∗

i ; the entire
angular velocity jump ΩS∗

i is accommodated across the outer boundary Hartmann
layer. The electric current in this Hartmann layer flows towards the equator, from
where it is returned to the inner solid sphere along the narrow shear-layer embedding
the C-line. The resulting relatively large electric current density in the shear-layer
leads to a large Lorentz force, which drives the super-rotation. Dormy et al. (2002)
provided a detailed numerical and analytic investigation of this case.

On letting the outer boundary have even a small electrical conductivity, currents
leak into the solid, and to maintain the same current flow in the Hartmann layers, the
electric current flow in the mainstream must increase. In short, the induced azimuthal
magnetic field must increase in concert with the outer boundary conductivity. So,
when the conductivity of both the inner and outer boundaries is comparable to that
of the fluid, the electric current in the mainstream is so large that to maintain it
by magnetic induction, Ω∗ is no longer constant on field lines and Ferraro’s law of
isorotation is violated. Indeed these ideas are consistent with the numerical results of
Hollerbach (2000, 2001) and Hollerbach & Skinner (2001), who also found that the
super-rotation increases in concert with the outer boundary conductivity.

One of the main obstacles to obtaining analytic solutions for the case of boundaries
with finite electrical conductivity is that a potential problem for the magnetic field
must be solved in the solids. Consequently the required magnetic field boundary
conditions at the solid–fluid interface are non-local and depend on the solution of
the potential problems in the solids, except in the perfectly conducting or insulating
limits. The difficulty may be avoided by considering thin shell boundaries, for which
a local boundary condition can be constructed (see, e.g. Shercliff 1956; Walker 1981).
Indeed, such an assumption may well be very reasonable for laboratory dynamos.
The works of Hollerbach, Canet & Fournier (2007) and Mizerski & Bajer (2007) have
taken advantage of this approximation and have considered a thin outer boundary
of relative conductance εo (see (2.31c)), which provides a measure of the capability of
the boundary to carry electric current; εo = 0 for an insulating boundary and ε−1

o = 0
for a perfectly conducting boundary.

Mizerski & Bajer (2007) extended the asymptotic analysis for M � 1 of Dormy
et al. (2002) to include the case of a finitely conducting outer boundary. Though most
of their analysis is restricted to a plane layer geometry, the mechanisms, which they
found, can be identified in spherical geometry. The main limitation of their analysis
is that they restricted attention to the case of only a very small relative conductance
εo = O(M−1). In this range they reported only a small increase O(εoM

3/4ΩS∗
i ) of

the super-rotation rate. Indeed, on increasing εo, Mizerski & Bajer (2007) left the
parameter regime for which their asymptotic analysis is valid. They did, however,
obtain numerical solutions of the complete system of governing partial differential
equations for εo =O(1). Even so, Mizerski & Bajer (2007) were unable to find
super-rotation rates of magnitude O(M1/2ΩS∗

i ), predicted by the numerical results of
Hollerbach et al. (2007) for spherical shell (as opposed to plane layer) geometry.

Bühler (2009) considered the case of concentric cylindrical shell boundaries together
with an applied uniform axial magnetic field. For his choice of perfectly conducting
inner and outer boundaries, Bühler (2009) identified the importance of the electric
potential ϑ∗, which defines the electric field E∗ = − ∇∗ϑ∗. Since the ‘relative’ electric
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potential on each boundary, i.e. as measured in the frame co-rotating with that
boundary, is constant and since the ‘true’ electric potential is continuous across the
Hartmann layers, the mainstream value of ϑ∗ =O(L∗2ΩS∗

i B∗
0 ) is readily determined

and is found to exhibit a jump Θ∗
C of the same size across the C-line. In consequence,

the azimuthal angular velocity Ω∗
C inside the free shear-layer is necessarily large,

inducing a jump of the electric potential across it of magnitude δ∗
CL∗Ω∗

CB∗
0 . This equals

Θ∗
C when δ∗

CΩ∗
C ∼ L∗ΩS∗

i with the physical interpretation that the azimuthal volume
flux carried inside the shear-layer is the same order of magnitude as that carried by
the main bulk of the flow in the mainstream. Furthermore, since δ∗

C = L∗/M1/2, we
conclude that the magnitude of the shear-layer super-rotation is Ω∗

C =O(M1/2ΩS∗
i ).

In contrast, when the inner and outer boundaries are perfectly conducting and
insulating respectively, the jump in the electric potential across the layer is almost
totally eliminated and then Ω∗

C =O(ΩS∗
i ). Nevertheless, as found by Dormy et al.

(2002), the super-rotation still exists because the maximum value of Ω∗
C exceeds ΩS∗

i .
The outline of our paper is as follows. In § 2 we formulate the mathematical problem

and describe the spatial domain structure appropriate to the large-Hartmann-number
limit. The mainstream problem outside the Hartmann boundary layers and free shear-
layer on the C-line is developed in § 2.1; the Hartmann boundary layer jump conditions
are derived in § 2.2; the mainstream problem is completed on making the thin solid
boundary approximation in § 2.3. It should be remarked that this approximation is
not necessary in the limiting cases of perfectly conducting or insulating boundaries.

The case of perfectly conducting boundaries is investigated in detail in § 3 by both
analytic and numerical methods, like Bühler (2009) before. Unlike Bühler (2009),
our applied magnetic field lines are not generally normal to the boundaries. So
their oblique intersection causes our mainstream electric current channelled by the
field lines to possess a component parallel to the boundaries. According to Ohm’s
law that, in turn, leads to a tangential component of the ‘relative’ electric field (as
measured in the reference frame rotating with the fluid), which is the raison d’être
for our Hartmann layers. In the model of Bühler (2009), Hartmann layers are absent
because of the orthogonal intersection of the uniform applied magnetic field with
the boundaries. In § 3.1 and Appendix A, we present the analytic solution of our
mainstream problem and compare the results with those of the complete governing
partial differential equations; they are contrasted with the results for thick boundaries
possessing the same electrical conductivity as the fluid in § 3.2 in order to test the
limitations of the perfect-conductivity approximation. We formulate the shear-layer
problem in § 3.3 and Appendix B; numerical solutions of the shear-layer equations
are provided in § 3.4.

In § 4 we consider the case of a perfectly conducting inner boundary together with
a thin outer boundary of relative conductance εo. We investigate the limit M ↑ ∞ in
§ 4.1; numerical solutions of the mainstream problem are found for the εo = O(1) case,
while for the εo � 1 case analytic solutions are given in Appendix C. We consider
the nature of the double limit M � 1, εo � 1 in § 4.2, where we discuss the role of
the outer Hartmann layer, whose width is measured conveniently by the inverse of
a latitudinally dependent local Hartmann number Mloc

o , introduced in § 2.2, based
on the magnitude of the radial component of the applied dipole magnetic field on
the outer boundary. It decreases in size from O(M) at the pole to Mloc

oC = O(M3/4)
near the equator on the shear-layer length scale. The fraction Lo of the mainstream
electric current entering the Hartmann layer but then leaked directly into the solid
boundary is dependent on the product εoM

loc
o . The nature of the shear-layer, however,

is determined by the leakage LoC at the equator, which depends on εoM
loc
oC . It is this
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physical feature which flags the importance of the product εoM
3/4 previously identified

in the analysis of Mizerski & Bajer (2007). The form taken by the shear-layer problem,
when εoM

3/4 = O(1), is outlined in § 4.3, while the implied estimates for the magnitude
of the super-rotation are given in § 5.1. Having absorbed the mathematical formulation
of the problem in § 2, the reader might benefit from skimming the contents of our
concluding § 6, where we elaborate on these parameter range considerations, before
studying the intervening sections.

The results of §§ 4 and 5.1 are extended to the case of an inner solid thin shell
boundary of finite conductance εi =1 in § 5.2 so that we can make some tentative, yet
encouraging, comparisons with the numerical results obtained by Hollerbach et al.
(2007).

2. Formulation
We adopt L∗(≡ r∗

o − r∗
i ), L∗ΩS∗

i , B∗
0 , L∗ΩS∗

i B∗
0 and B∗

0/(μ0L
∗) as our units of length,

velocity, magnetic field, electric field and electric current respectively. The superscript
‘*’ is dropped for all dimensionless quantities so that, for example, the fluid shell gap
width and inner boundary angular velocity are ro − ri = 1 and ΩS

i = 1 respectively
(see (2.10)).

Relative to cylindrical polar coordinates (s, φ, z), we denote points (s, z) on the
inner and outer boundaries by (si, zi) and (so, zo) respectively. Our applied dipole
magnetic field BM is represented by

BM = s−1∇A × φ̂ = −∇Φ, (2.1a)

where φ̂ is the unit vector in the azimuthal direction, which has the properties

BM · ∇A = 0 and − BM · ∇Φ = |BM |2 = s−2|∇A|2. (2.1b,c)

Here BM is normalized by the choice

A ≡ 1
2
s2 r−3 , Φ ≡ 1

2
zr−3 (r ≡

√
s2 + z2). (2.2a,b)

Relative to spherical polar coordinates (r, θ, φ), the radial and azimuthal (r, θ)
components of magnetic field determine the useful relations

rBr =
1

s

∂A

∂θ
= − r

∂Φ

∂r
= 2Φ, (2.3a)

rBθ = − ∂Φ

∂θ
= − r

s

∂A

∂r
=

A

s
. (2.3b)

Furthermore, (2.2a,b) may be used to express s and Φ as functions of A and r ,

s/r =
√

2rA, 2r2Φ = (sgn z)
√

1 − 2rA, (2.4a,b)

which are used to determine the boundary values (2.13a,b). In terms of (r, A)
coordinates, the area element dS ≡ ds dz weighted by s may be expressed as

s dS =
r

2Φ
dr dA. (2.4c)

Points on the magnetic field line C : A= Ac ≡ 1/2ro, which touches the outer
sphere boundary tangentially at the equator Eo : (ro, 0), are denoted by (sc, zc). This
C-line intersects the inner sphere boundary at Q : (sQ, zQ) (see figure 1) and divides
the northern hemisphere, z � 0, of the fluid shell up into two regions P : A < Ac
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and E : A > Ac. In the former polar region P the magnetic field lines intersect
both the inner and outer shell boundaries, r = ri and r = ro. In the latter equatorial
region E the magnetic field lines intersecting the inner sphere boundary cross the
equator within the fluid and return to the inner sphere without ever meeting the
outer spherical boundary. For our analysis of the free shear-layer on C, we will find
it convenient to employ the equatorial Hartmann number

M ≡ M

2r2
o

(2.5)

introduced by Dormy et al. (2002), which is based on the local magnetic field strength
B∗

0/2r3
o at Eo and the length r∗

o .
For our choice of units, the slow steady azimuthal velocity u = (0, sΩ, 0) forced

by rotating the inner sphere induces small magnetic field perturbations (0, ReMB, 0).
By Ampère’s law the corresponding electric current ReM j is determined by

j = s−1∇(sB) × φ̂. (2.6a)

Just as A is a ‘stream function’ for the applied magnetic field BM providing a measure
of magnetic flux, so is sB a ‘stream function’ for j measuring electric current flux.
The electric field perturbation E is related to j by Ohm’s law j = σ (E + u × BM ),
where σ is a dimensionless measure of the electrical conductivity taking the value
unity in the fluid. For our steady state, we have ∇ × E =0, and so we may write
E = − ∇ϑ , where ϑ is the electric potential. Then Ohm’s law determines

j = −σ (∇ϑ − Ω ∇A). (2.6b)

From (2.6a,b) the θ-components of electric current jθ and field Eθ = − r−1∂ϑ/∂θ are
related by

jθ = −1

s

∂(sB)

∂r
= −σ

r

(
∂ϑ

∂θ
− Ω

∂A

∂θ

)
. (2.6c)

Our choice of units is guided by the properties of the fluid in the region ri < r < ro,
where by construction σ = 1 in (2.6b,c). On linearizing the equations of motion and
magnetic induction on the basis that Re and ReM are small, their φ-components
give

M2s−1 BM · ∇ (sB) + (∇2 − s−2)(sΩ) = 0, (2.7a)

s BM · ∇ Ω + (∇2 − s−2)B = 0 (2.7b)

respectively. In view of (2.6b) the Lorentz force M2(s−1 BM · ∇(sB))φ̂ appearing in
(2.7a) has the alternative representation

M2 j × BM = M2(s−1(∇ϑ) · (∇A) − |BM |2 sΩ) φ̂. (2.8)

We take advantage of the symmetry A(s, −z) = A(s, z) of the applied dipole field
and assume that in consequence, Ω(s, −z) = Ω(s, z), ϑ(s, −z) = ϑ(s, z) and B(s, −z) =
− B(s, z). Respectively, they imply

∂Ω

∂z
=

∂ϑ

∂z
= B = 0 on the equator z = 0. (2.9)

In order to avoid unnecessary sign complications, we henceforth restrict attention to
the upper half-sphere z � 0.
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The fluid is bounded inside and outside by rigid boundaries on which the angular
velocities are

Ω = ΩS
(i,o) ≡

{
1 on r = ri,

0 on r = ro.
(2.10)

The inner and outer rigid boundaries are electrically conducting shells of thickness δi

and δo, and their respective dimensionless conductivities σ = σS
i and σ = σS

o generally
differ from the value σ =1 of the fluid. More precisely, σS

(i,o) is the conductivity ratio

of the solid to fluid. Inside these solids Ohm’s law (2.6b) reduces to j = − σS
(i,o)∇(ϑ −

ΩS
(i,o)A) with the consequence that ∇ × j = 0, and by implication the magnetic field

satisfies

(∇2 − s−2)B = 0 in

{
ri − δi < r < ri,

ro < r < ro + δo.
(2.11)

Across each of the fluid–solid interfaces the tangential magnetic and electric fields
are continuous:

B, Eθ and σ −1jθ are continuous across r = r(i,o). (2.12a)

The continuity of σ −1jθ follows from Ohm’s law because the no-slip condition ensures
that u × BM is continuous The regions r < ri − δi and ro + δo < r beyond the shells
(when they exist, i.e. δi < ri and δo < ∞) are vacuums, where B = 0. On application of
the boundary condition, B continuous across the solid–vacuum interface, we obtain
the condition

B =0 on r = r(i,o) − ς(i,o)δ(i,o), where

{
ςi =1,

ςo =− 1.
(2.12b)

In our development below, we will use the subscripts i and o to denote values
on r = ri and r = ro on the same magnetic field line A= constant. Accordingly all
functions labelled by the subscripts i and o are functions of A alone. So, for example,
(2.4a,b) determine

s(i,o)(A) = r(i,o)

√
2r(i,o)A, Φ(i,o)(A) = 1

2
r−2
(i,o)

√
1 − 2r(i,o)A, (2.13a,b)

where the positive value of the square root in (2.4b) has been taken as we restrict
attention to the region z � 0. For any scalar function such as the electric potential
ϑ evaluated at the inner or outer boundary, the θ-derivative of ϑ(i,o)(A), using (2.3a),
satisfies (

1

s

∂ϑ

∂θ

)
(i,o)

=
1

s(i,o)

∂ϑ(i,o)

∂θ
=

(
1

s

∂A

∂θ

)
(i,o)

ϑ
′
(i,o) = 2Φ(i,o) ϑ

′
(i,o) , (2.14a)

where, here and henceforth, the prime denotes differentiation with respect to A. On
replacing ϑ by Φ in (2.14a) and using (2.2a) and (2.3b), we obtain

(4r3Φ)(i,o) Φ
′

(i,o) =

(
2r3

s

∂Φ

∂θ

)
(i,o)

= − 1, (2.14b)

which, together with

Br(i,o) = (2r−1Φ)(i,o) (2.14c)

(see (2.3a)), is central to our large-Hartmann-number asymptotics.
To help clarify the subsequent development, we summarize our labelling

conventions. We identify the values of functions on the inner i or outer o boundaries,
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the C-line and at the point Q by the subscripts i, o, c and Q respectively, e.g.

Φ(i,o)(A) ≡ Φ(r(i,o), A), Φc(r) ≡ Φ(r, Ac), ΦQ ≡ Φ(ri, Ac). (2.15a,b,c)

The notation (. . .)(i,o) means that everything inside the brackets is evaluated at either
the i or the o boundary, e.g. in (2.14c), (2r−1Φ)(i,o) ≡ 2r−1

(i,o)Φ(i,o). The values of
mainstream functions at the locations identified by (2.15) may differ from the actual
values inside the adjacent boundary or shear-layer. So, for example, the mainstream
values Ω(i,o) of the angular velocity Ω generally differ from the boundary values ΩS

(i,o),
where the superscript S is used to denote values in the solids.

2.1. The mainstream solution

In the large-Hartmann-number limit

M � 1 (2.16)

for which our asymptotic analysis is valid, viscous dissipation in the mainstream
exterior to all boundary layers is negligible at leading order. With the neglect of
viscosity and the absence of an azimuthal pressure gradient, the azimuthally directed
Lorentz force is unopposed and thus vanishes. The consequence of j × BM ≈ 0 is that
the electric current lines, sB = constant, are aligned with the meridional magnetic
field lines, A= constant, consistent with the implication BM · ∇(sB) = O(M−2) of
(2.7a). We therefore introduce the electric current flux function −G(A) defined by

sB = −G + O(M−2), (2.17a)

from which we deduce that the electric current (2.6a) is

j = J BM + O(M−2), J ≡ − G′ (2.17b)

and hence from (2.3b) that

rsjθ = A J + O(M−2). (2.17c)

Then from Ohm’s law (2.6b) with σ = 1, we obtain

∇ϑ = Ω ∇A + J ∇Φ + O(M−2) (2.18a)
or, equivalently,

∇(ϑ − ΦJ) = (Ω − Φ J′) ∇A + O(M−2). (2.18b)

Integration of (2.18b) shows that

ϑ − Φ J = T(A) + O(M−2), (2.19a)
where

Ω − Φ J′ = F(A) + O(M−2), F ≡ T′. (2.19b)

Here Φ and, in consequence, both ϑ and Ω should be interpreted as functions of A

and r (see (2.4b)).
When the perturbation magnetic field B in the mainstream is small, the Ohmic

diffusion term (∇2 − s−2)B in the magnetic induction equation (2.7b) is negligible.
This leaves BM · ∇Ω = 0, implying that the angular velocity Ω = constant on field
lines (i.e. small J′ and Ω ≈ F(A)). This is the law of isorotation of Ferraro (1937),
which possesses the corollary that the electric potential is also constant on field lines
(i.e. small J and ϑ ≈ T(A)). More generally, we find (see § 3.1) that the neglect
of Ohmic dissipation is unjustified and that the Ohmic diffusion term needs to be
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retained in our leading-order approximation of (2.7b). Then Ferraro’s law Ω ≈ F(A)
and its corollary ϑ ≈ T(A) are broken by the additional contributions ΦJ and ΦJ′

in (2.19a,b) to ϑ and Ω respectively, which are no longer functions of A alone.
In the equatorial region E : Ac ≡ 1/2ro < A � 1/2ri , we note that the boundary

condition B = 0 on z = 0 (see (2.9)) implies that

G = 0. (2.20a)

Substitution of J = −G′ =0 into (2.19a,b) determines

ϑ = T + O(M−2), Ω = T′ + O(M−2), (2.20b,c)

where T(A) is ultimately determined by the Hartmann jump condition at the inner
shell boundary r = ri .

In the polar region P : 0 � A < Ac, we denote the mainstream values of ϑ , Ω

next to the inner and outer boundaries by ϑ(i,o)(A), Ω(i,o)(A) and rewrite (2.19a,b) in
the form

ϑ = ϑ(i,o) + (Φ − Φ(i,o)) J + O(M−2), (2.21a)

Ω = Ω(i,o) + (Φ − Φ(i,o)) J′ + O(M−2), (2.21b)

where Φ(i,o)(A) are defined by (2.13b). Since (2.21a,b) are pairs of equations, elimination
of ϑ and Ω in each pair determines the electric potential and angular velocity jumps

ϑi − ϑo = (Φi − Φo) J + O(M−2), (2.21c)

Ωi − Ωo = (Φi − Φo) J′ + O(M−2) (2.21d)

across the mainstream between the inner and outer spheres along field lines
A= constant. The latter (2.21d) is needed to obtain our key second-order differential
equation (2.35) for G(A). Along the polar axis s = 0, we must have B = 0, which
provides the boundary condition

G(0) = 0. (2.22)

A second boundary condition is required on the C-line A= Ac, which is ultimately
determined by matching with the shear-layer that embeds the magnetic field line C.

Significantly, the transverse length scale across the shear-layer on C, though
small O(M−1/2), is large compared with the Hartmann layer length scale O(M−1).
Consequently, inside the shear-layer, the contribution −M2|BM |2sΩ to the Lorentz
force (2.8) is large compared with the viscous force (∇2 − s−2)(sΩ) in (2.7a). With
the viscous force neglected, the entire Lorentz force (2.8) vanishes,

(∇ϑ − Ω ∇A) · (∇A) ≈ 0, (2.23a)

a result which also holds in the mainstream (see (2.18a) and recall that (∇Φ) ·
(∇A) = 0). Integration of (2.23a) across the shear-layer shows that the electric potential
ϑ suffers the jump

ΘC ≡ ϑ |
A↓Ac

− ϑ |
A↑Ac

≈
∫ A↓Ac

A↑Ac

Ω dA (2.23b)

in passing from the equatorial region E to the polar region P. Used in conjunction
with (2.4c), we may determine the volume flux

VC ≡
∫

C

∫ A↓Ac

A↑Ac

sΩ dS ≈
∫

C

rΘC

2Φc

dr (2.23c)
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(cf. Bühler 2009, equation (42)) carried by the shear-layer, where Φc(r) ≡ Φ(r, Ac)
(see (2.15b)).

2.2. The Hartmann layers

The determination of the unknown functions F and G (also J = − G′) of A requires
knowledge of the jump conditions across the Hartmann layers adjacent to the inner
and outer boundaries. The Hartmann layer solution of the governing equations (2.7)
appropriate to each of the inner i and outer o boundaries is

Ω ≈ Ω(i,o) + (ςω)(i,o) exp
[
−M
(
ς |Br |

)
(i,o)

(
r − r(i,o)

)]
, (2.24)

where Ω(i,o), introduced in (2.21b,d), is the mainstream angular velocity just outside
each Hartmann layer and (ς |Br |)(i,o) ≡ ς(i,o) |Br(i,o)| and ω(i,o) = ς(i,o)(Ω

S − Ω)(i,o),
specifically

ωi = 1 − Ωi, ωo = Ωo, (2.25a,b)

are the magnitudes of the angular velocity jumps across them; the magnitude of the
angular velocity jump across the mainstream is

Ωi − Ωo = 1 − (ωi + ωo). (2.25c)

In the northern hemisphere z � 0, where Br = |Br |, the Hartmann layer solution
(2.24) determines the composite expansions

sB ≈ − G + M−1
(
ωs2
)

(i,o)
exp
[
−M
(
ς |Br |

)
(i,o)

(
r − r(i,o)

)]
, (2.26a)

rs jθ ≈ A J +
(
ςωrs2Br

)
(i,o)

exp
[
−M
(
ς |Br |

)
(i,o)

(
r − r(i,o)

)]
(2.26b)

of the magnetic field B and the tangential component of electric current jθ , which
embed the mainstream solutions (2.17a,c). For later use, we introduce the local
Hartmann numbers Mloc

(i,o) = M(r |Br |)(i,o), based on the radial component of magnetic
field B∗

r and radius r∗ at the inner and outer boundaries. With the help of (2.3a) and
(2.13b), each may be expressed in the form

Mloc
(i,o) ≡ 2M |Φ(i,o)| = Mr−2

(i,o)

√
1 − 2r(i,o)A. (2.27)

The tangential component of electric field Eθ = jθ − sΩBr (see (2.6c)) in the
Hartmann layers determined upon the substitution of (2.24) and (2.26b) is given
by

rsEθ = − s
∂ϑ

∂θ
≈ A J −

(
Ωrs2Br

)
(i,o)

, (2.28a)

independent of the boundary layer coordinate M(r − r(i,o)). When (2.28a) is evaluated
at the outer edge of the Hartmann layers, the use of (2.2a), (2.3a) and (2.14a–c)
determines

−
(

Eθ

sBr

)
(i,o)

= ϑ
′

(i,o) ≈ Φ
′
(i,o) J + Ω(i,o), (2.28b)

consistent with (2.19a,b). We may interpret the contribution AJ/(rs)(i,o) in (2.28a) to
Eθ (i,o) as the tangential component of the ‘relative’ electric field (as measured in the
reference frame rotating with the fluid at angular velocity Ω(i,o)). At the boundaries
continuity across the solid–fluid interfaces fixes the values inside the solids:

ES
θ (i,o) ≈ Eθ (i,o), ϑS

(i,o) ≈ ϑ(i,o). (2.29a,b)
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Likewise, with the help of (2.26a,b), continuity of B and σ −1jθ (see (2.12a)) across the
solid–fluid interfaces determines the relations

(sBS)(i,o) ≈ − G + M−1
(
ωs2
)

(i,o)
= − G + 2M−1

(
ωr3
)

(i,o)
A, (2.29c)( σ

σS
rs jS

θ

)
(i,o)

≈ A J +
(
ςωrs2Br

)
(i,o)

= A J + 4
(
ςωr3Φ

)
(i,o)

A (2.29d)

respectively, where we have made use of (2.13a) and (2.14c). The values of (sBS)(i,o)

and (rs jS
θ )(i,o) inside the solids at their surfaces r = r(i,o) are related via the solution

of the potential problems (2.11) within the range 0 < ς(i,o)(r − r(i,o)) < δ(i,o).

2.3. Thin finitely conducting boundaries

The main obstacle to obtaining analytic solutions of the complete system of governing
equations is the necessity of solving the potential problem for the magnetic fields in
the solids. For thick shells it is only possible to make progress in certain limiting
cases such the case of an insulating outer boundary σS

o = 0 considered by Dormy
et al. (2002) and the case of perfectly conducting boundaries σS

(i,o) = ∞, which we
will discuss in § 3. The MHD solutions in the flow region ri < r < ro for both of
these problems are largely independent of the solid shell width and are equally well
described in the thin shell limit

δ(i,o) � r(i,o). (2.30)

When this approximation is made for thin boundaries of finite conductivity σS
(i,o) the

electric currents in the solids are locally uniform and parallel to the boundaries. The
magnitudes of their total electric current flow are determined by the magnetic field
jumps across the thin solids. In view of the zero value of B at the solid–vacuum
interfaces (see (2.12b)), their magnitudes are simply(

δ jS
θ

)
(i,o)

≈ − (ςBS)(i,o) (2.31a)

or more usefully ( σ

σS
rs jS

θ

)
(i,o)

≈ −
( ς

ε

)
(i,o)

(sBS)(i,o), (2.31b)

where

ε(i,o) ≡
(

σS

σ

δ

r

)
(i,o)

(2.31c)

are the relative conductances of the solid shells (see Shercliff 1956; see also Walker
1981). The relation (2.31b) may be used in conjunction with the magnetic boundary
conditions (2.29c,d) to determine the magnitude

ω(i,o) =
− ς(i,o)J + ε−1

(i,o)G/A

2r3
(i,o)

(
2Φ(i,o) + (ε(i,o)M)−1

) (2.32)

of the angular velocity jumps across the inner and outer Hartmann layers. The relative
size of the two terms 2Φ(i,o) and (ε(i,o)M)−1 is the same as the relative size of the local
Hartmann number Mloc

(i,o) (see (2.27)) and ε−1
(i,o).

In view of the physical interpretation of sB as a measure of the electric current flux
across any closed axisymmetric surface, we may define the ratio of the electric current
fluxes carried by the inner and outer Hartmann boundary layers equator-ward across
the circles (r(i,o), A) to the total electric current inflow from the the mainstream across
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the polar cap bounded by those circles as

1 − L(i,o) ≡
(

G +
(
sBS
)

(i,o)

)/
G, (2.33a)

where L(i,o) measures the fraction leaked directly into each solid boundary. Further
use of (2.29c) and (2.32) determines the values

L(i,o) = 1 +
ς(i,o)ε(i,o)(AJ/G) − 1

ε(i,o)M
loc
(i,o) + 1

, (2.33b)

where Mloc
(i,o) are defined by (2.27).

Inside the equatorial region E, the result (2.20a) states that G = 0 everywhere,
implying J =0 also. Hence it follows from (2.32) that ωi = 0, whenever εi > 0. In
turn, this determines Ωi = 1 − ωi =1 with the consequence (see (2.20c)) that

Ω ≈ F = 1, sB ≈ − G = 0 in E. (2.34a,b)

It means that, when the inner solid shell is electrically conducting, the fluid in the
equatorial region E co-rotates with the inner boundary r = ri , on which the Hartmann
layer is absent.

The formulation of the mainstream problem in the polar region P is completed
upon substitution of the values of Ωi − Ωo and ω(i,o) given by (2.21d) and (2.32)
respectively into (Ωi − Ωo) + (ωi + ωo) = 1 (see (2.25c)). It yields

(Φi − Φo) J′ − J − ε−1
i G/A

2r3
i

(
2Φi + (εiM)−1

) +
J + ε−1

o G/A

2r3
o

(
2Φo + (εoM)−1

) = 1, (2.35)

which, since J ≡ −G′, is a second-order ordinary differential equation for G(A). It
must be solved subject to the polar boundary condition G(0) = 0 (see (2.22)) and
the appropriate matching condition across the shear-layer on C, which generally is
simply G(Ac) = 0 to ensure continuity of B (see (2.34b)). However, in the double
limit εo � 1, M � 1, the differential equation (2.35) leads to a singular perturbation
problem in which a small parameter multiplies the highest derivative G′′. Then, as
we explain in §§ 4.1 and 4.2, there are two limiting possibilities: for sufficiently large
εo, matching is achieved by demanding that the solution of (2.35) satisfies G(Ac) = 0,
while for sufficiently small εo, the second derivative term G′′ is negligible throughout
the mainstream polar region, and so no boundary condition is imposed.

We may illustrate the latter limiting possibility by the the special insulating
outer boundary case εo = 0 (Lo = 0) considered by Dormy et al. (2002). The polar
mainstream solution for that case may be recovered from our thin shell equation
(2.35) with ε(i,o) > 0, which in the limit εo ↓ 0 yields

− sB ≈ G = M−1r2
o (A/Ac) in P, (2.36)

showing that G = O(M−1) and J = − G′ =O(M−1). It follows from (2.19b) that
Ω = F(A)+O(M−1) in the mainstream, i.e. Ferraro’s (1937) law of isorotation holds,
while from (2.32) it follows that 1 − Ωi =ωi = O(M−1) (also 1 − Li = O(M−1)). Since
F(A) = Ωi = 1 + O(M−1), we deduce that the entire mainstream co-rotates with the
inner boundary not only in E (see (2.34)) but in P as well (cf. Dormy et al. 2002,
equation (2.13a)), leaving the angular velocity jump between the inner and outer
sphere to be accommodated by the outer Hartmann layer: ωo = 1+O(M−1). Solution
(2.36) meets the boundary condition G(0) = 0 but takes the approximate non-zero
value G(Ac) = M−1r2

o at the C-line. The requirement that G must adjust across the
C-line to zero is the raison d’être for the shear-layer and the super-rotation in it. A
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significant feature of solution (2.36) derived by Dormy et al. (2002) for the insulating
outer boundary case is the small O(M−1) size of G in P. When both boundaries are
conducting, which is the main concern of this paper, G is relatively large, O(1), in P,
and then much stronger super-rotation is achieved in the shear-layer C.

3. Perfectly conducting boundaries of finite thickness
The main objective of this section is to describe analytic and numerical results for

finitely conducting thick boundaries. An analytic solution for the mainstream region
is possible, when the boundaries are perfect conductors. The case of a perfectly
conducting boundary must be interpreted with caution. For if the boundaries are
truly perfectly conducting, 1/σ S

(i,o) = 0, the magnetic fields in them are frozen and
have no possibility of adjusting to conditions external to the solid conductors. We
must therefore consider finite but highly conducting boundaries and consider the
limit σS ↑ ∞ instead. Then over sufficiently long times the magnetic field in them can
respond to achieve whatever steady-state field is appropriate; i.e. the length of time
required for transients to decay tends to infinity in concert with σS

(i,o).
Despite these cautionary remarks, the perfectly conducting limit is attractive, as

Bühler (2009) found too, because relative to the co-rotating frame the solid boundaries
support no electric field and are equi-(electric)-potential surfaces in their rotating
frames. Since for a sphere rotating with the constant angular velocity unity, we have
u × BM = ∇A; it follows that

ϑS
i = A − Am, ϑS

o = 0, when σS
(i,o) ↑ ∞, (3.1a,b)

where the as-yet-unknown constant Am measures the potential difference between
the outer and inner boundaries on the symmetry axis s =0. Since ES

θ i = (sBr )i ,
ES

θ o = 0 and Ωi =1 − ωi , Ωo = ωo, it follows that the mainstream ‘relative’ tangential
electric field component (Eθ + sΩBr )(i,o) is simply −(ςsωBr )(i,o), which, by Ohm’s law

(2.28b), equals the tangential electric current component JBθ(i,o). Since s(i,o)Φ
′
(i,o) =

− (Bθ/Br )(i,o) (see (2.3a,b) and (2.14b)), the equality yields

ω(i,o) = ς(i,o)Φ
′

(i,o)J. (3.2)

By implication, the vanishing of ω(i,o) coincides with the vanishing of JBθ(i,o). So,
whereas our tangential component of the applied magnetic field only vanishes at
the poles A= 0, in the case of the cylindrical shell geometry of Bühler (2009), his
uniform magnetic field was normal to all plane boundaries. Thus Bühler (2009) had
no ‘relative’ tangential electric field at the boundaries with the consequence that there
were no Hartmann layers.

Directly, the solution for G(A) is known, and the magnetic field BS
(i,o) on the surface

of the solids is given by the boundary condition (2.29c). Then the magnetic field inside
the solid conductors, 0 < ς(i,o)(r(i,o) −r) < δ(i,o), is determined by the solutions of (2.11).
We stress that result (3.2) is independent of the solid widths δ(i,o) and, in particular,
is given by our thin shell boundary result (2.32) with ε−1

(i,o) ↑ ∞. These simplifications
allow us to develop the analytic theory of § 3.1 below, which is supported by the
full numerical integration of the governing equations (2.7a,b). The shear-layer theory
connecting the polar and equatorial mainstream regions is developed in § 3.3, and
numerical solutions of the shear-layer equations are described in § 3.4.

To test the sensitivity of the results to the perfectly conducting boundary
approximation, we report in § 3.2 numerical results for the case in which the entire
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space outside the fluid is occupied by rigid solids (ri − δi =0, ro + δo → ∞) with the
same electrical conductivity as the fluid (σS

(i,o) = σ ).
All numerical results reported in this section are for the particular case

ri = 4, ro = 5, ζi (≡ ri/ro) = 0.8, (3.3a,b,c)

Ac ≡ 1/2ro = 0.1. (3.3d)

Other parameters βi , αi dependent on ζi (see (B 2c,d)), which we need, take the
values

βi = 53/2/25 ≈ 0.3494, αi = 6/53/2 = 0.5367. (3.4a,b)

3.1. The mainstream solution

In the perfectly conducting boundaries limit

ε(i,o) ↑ ∞, (3.5)

the mainstream solution (2.20b,c) in the equatorial region E is completed upon the use
of T′ = F = 1 (see (2.34a)) and application of the inner boundary condition (3.1a).
They give T = A − Am, which together with G =0 (see (2.34b)) determine

ϑ = A − Am, Ω = 1, B = 0 in E. (3.6a,b,c)

For the polar region P, substitution of ϑ(i,o) = ϑS
(i,o) (see (2.29b)) given by (3.1a,b)

into (2.21a) determines

ϑ =

{
A − Am + (Φ − Φi) J,

(Φ − Φo) J,
(3.7a,b)

whose equivalence shows that

(Φi − Φo) J = A − Am. (3.8)

Evidently, the magnetic field line A= Am is significant because on it the mainstream
electric current JBM (see (2.17b)) vanishes. Finally, upon substitution of the values
of Ω(i,o) determined by (2.25a,b) and (3.2), the angular velocity Ω in the polar region
P given by (2.21b) becomes either of the following two forms:

Ω =

{
1 − (ΦiJ)′ + Φ J′,

− (ΦoJ)′ + Φ J′.
(3.9a,b)

Their equivalence shows that [(Φi −Φo)J]′ = 1, which is the differential equation (2.35)
for our case of perfectly conducting boundaries and for which (3.8) is the integral. We
may illustrate these polar region results by applying them to the uniform magnetic field
case A= (1/2)s2, Φ = −z of Bühler (2009) for the flow between cylindrical shells. Upon
making the change of variables J → jz, Am → −φ0, ϑ → φ, sΩ → v and s → r and
adopting his value φ0 = −1/4, our formulae (3.8), (3.7b) and (3.9b) determine his results
(26), (20) and (24) respectively for the flow in the region r < 1 above his inner cylinder.

To complete the specification of our polar problem, we require the solution G(A)
of G′ = − J, where J is given by (3.8), which vanishes on the symmetry axis A= 0
and at the C-line A= Ac:

G(0) = G(Ac) = 0. (3.10)

The analytic solution of this problem, which also determines Am, is given in Appendix
A. Of particular interest is the value of J at Ac determined by (3.8). Noting that
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Φo(Ac) = 0, it is

Jc = (Ac − Am)/ΦQ, (3.11)

where ΦQ ≡ Φi(Ac) (see (2.15c)). The explicit value of Jc ≡ J(Ac) is given by (A 5)
in Appendix A. Further, the use of the equatorial and polar values (3.6a) and (3.7a)
of ϑ on the C-line determines the electric potential jump (2.23b). It is

ΘC = (ΦQ − Φc) Jc, (3.12a)

which, in turn using (2.23c), determines the volume flux carried by the shear-layer:

VC = Ξ Jc, where Ξ ≡ 1

2

∫ ro

ri

(
ΦQ

Φc

− 1

)
r dr (3.12b)

is a line integral along C. The explicit values of Jc and Ξ are given by (A 5) and
(B 5) respectively.

To appreciate the divergent nature of the angular velocity Ω in the vicinity of the
C-line, we note that Φ

′
o determined by (2.13b) and (2.14b) may be written in the form

Φ
′

o = −A3/2
c (Ac − A)−1/2. (3.13)

So, as A ↑ Ac, the derivative of (3.8) yields the divergent asymptotic behaviour
J′/Jc ≈ Φ

′
o/ΦQ, since Φo(Ac) = 0. Used in conjunction with (3.9a), this result

establishes the divergent form Ω − 1 ≈ −ΘC(J′/Jc), in which ΘC is given by
(3.12a). The asymptotic behaviour of B follows from (2.17a) and (3.10). The results
so obtained are

sB ≈ − Jc(Ac − A),

Ω − 1 ≈ A3/2
c (ΘC/ΦQ) (Ac − A)−1/2

⎫⎬⎭ as A ↑ Ac. (3.14a,b)

They are needed to provide the boundary conditions on the shear-layer problem.
The fact that B =0 on both the axis of symmetry A= 0 and the the C-line

A= Ac (see (3.10)) means that all electric current following the magnetic field lines
A= constant in the fluid flows inwards in the region 0 < A < Am, where J < 0,
and returns outwards in the region Am < A < Ac, where J > 0. This is illustrated in
figure 2 (bottom left) for data (3.3) and (3.4a), which by the results of Appendix A
determines

�m ≡ Am/Ac ≈ 0.5065, giving Jc ≈ 1.7657 (3.15a,b)

(see (A 1c) and (A 5)). To complete this current circuit, almost all the electric current
returns in the solids. Only a relatively small fraction 1 − L(i,o) = O(M−1) is returned
in the Hartmann layers (see (2.33a,b)). Note that the maximum of −sB occurs
on the field line A= Am, where J =0. In view of (3.2), the angular velocity jumps
ω(i,o)(Am) also vanish implying that Ωi(Am) = 1 and Ωo(Am) = 0. Elsewhere, the angular
velocity jump across the inner and outer Hartmann layers defined by (3.2) determine
Ωi( = 1 − ωi) = 1 − Φ

′
i J and Ωo( = ωo) = − Φ

′
oJ respectively, in which Φ

′
(i,o) < 0 (see

(2.13b) and (2.14b)). So at the points of intersection of a field line A= constant with
the inner and outer boundaries, we have Ωi < 1, Ωo < 0 for 0 < A < Am and Ωi > 1,
Ωo > 0 for Am < A < Ac. The corresponding contours Ω = constant are illustrated
in figure 2 (top left). Interestingly, the super-rotation 1 < Ω (solid) begins in the
mainstream, though it increases by an order of magnitude in the shear-layer. On
increasing latitude there is a region in which 0 < Ω < 1 (dotted). Finally there is a
region adjacent to the outer boundary, containing the polar axis of reverse rotation,
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Figure 2. Case (3.3), ri = 4, ro = 5 (ζi = 4/5); σS
(i,o) ↑∞: contours of constant Ω (top row) and

sB (bottom row) in the meridional plane for the asymptotic solution (left column) and the full
solution at (2M ≡)M/r2

o = 105 (right column). In the top row, the contours are drawn dashed
for Ω < 0, dotted for 0 < Ω < 1 and solid for Ω > 1. In the top right figure, the contour lines
are only drawn up to two thirds of the peak value to reduce cluttering in the vicinity of the
C-line. In the bottom row, the solid contours all correspond to negative values of sB .

where Ω < 0 (dashed). The actual values of the angular velocity jumps ω(i,o) across
the inner and outer Hartmann layers and Ωi − Ωo across the mainstream are plotted
versus A in figure 3.

The results from the solution of the complete system of partial differential equations
(2.7a,b) at (2M ≡)M/r2

o = 105 (see (2.5)) again for the boundary radii (3.3a,b) are
illustrated in the two right-hand portraits in figure 2. Plots of −sB versus A at
r = (ri + ro)/2 for various values of M are illustrated on figure 4 and are compared
with the asymptotic formula (A 1a) for −sB = G(A) given in Appendix A. The
agreement of the asymptotics with the numerics at 2M = 105 for figures 2 and 4 is
most reassuring.

3.2. Numerical solutions for finitely conducting boundaries

The numerical solution of the full governing equations (2.7a,b), for the case of perfectly
conducting boundaries just reported at the end of § 3.1 and those we report here in
this section for the case of finitely conducting boundaries, σS

(i,o) = σ , filling all space
exterior to the fluid (ri − δi =0, ro + δi → ∞, again using data (3.3)), were obtained
using the code introduced by Dormy et al. (1998). The computational approach relies
on a poloidal-toroidal decomposition of all vector fields. A pseudo-spectral algorithm
with a spherical harmonic decomposition is used in θ and φ and coupled with a
finite-difference method on a stretched grid in the radial direction. Time dependance
is reintroduced in (2.7a) but not in (2.7b) which is solved for exactly at each time
step. This procedure leads to faster convergence to the steady state than would be
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Figure 3. Case (3.3), ζi = 4/5; σS
(i,o) ↑ ∞: contributions to the jump in Ω across the shell

following an imposed field line as a function of A on the range 0 � A � Ac = 0.1, as
determined by the asymptotic solution. They are ωi (dotted) across the inner Hartmann layer,
Ωi − Ωo (dashed) across the the mainstream and ωo (solid) across the outer Hartmann layer.
The total jump ωi + (Ωi − Ωo) + ωo is unity (see (2.25c)).
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Figure 4. Case (3.3), ζi = 4/5; σS
(i,o) ↑∞: comparison of the current fluxes −sB at mid-radius

r = (ri + ro)/2 plotted versus A, as determined by the full numerics for various values of
2M ≡ M/r2

o , with the asymptotic mainstream value G(A). To graph plotting accuracy the
curve for the highest Hartmann number 2M = 105 numerical results for −sB coincides with
the asymptotic curve G(A).

achieved by considering the full time dependence in both (2.7a) and (2.7b), because it
filters out Alfvén waves.

For our finitely conducting boundaries, the meridional current again largely follows
the meridional applied magnetic field lines. Thus contours of constant sB resemble
those in figure 2, and so we refrain from plotting them again. On the other hand,
though contours of constant Ω for the case of perfectly conducting boundaries (see
the upper right portrait of figure 2) and the case of finitely conducting boundaries
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Figure 5. Case (3.3), ζi =4/5; σS
(i,o) = σ : as in figure 2 (top row, right column), contours

of constant Ω (0 < Ω < 1, dotted; super-rotation, 1 < Ω , solid) for the case of
solid boundaries having the same electrical conductivity as the fluid; from left to right
(2M ≡)M/r2

o = 103, 104, 105 respectively. Note the absence of reverse flow, Ω < 0, present in
the case of perfectly conducting boundaries, identified by the dashed lines in figure 2.

illustrated in figure 5 for various values of large M are qualitatively similar, there are
some quantitative differences; e.g. the range of Ω is not as big in the latter conducting
case. This fact is partly evidenced by the absence in figure 5 of the reverse rotation
(i.e. Ω < 0) visible in figure 2.

3.3. The shear-layer on C
In order to understand the nature of the shear-layer on C, we introduce the Shercliff
(1953) variables L∗ΩS∗

i M1/2V± ≡ s∗Ω∗ ± (η/ν)1/2B∗
φ/

√
ρμ0 , with

V± = M−1/2sΩ ± M1/2B, (3.16)

in which the choice of scale factor M1/2 is guided by asymptotic behaviours (3.14a,b)
of the mainstream solution in the vicinity of the C-line. The variables Ω and B satisfy
(2.7a,b), when

BM · ∇ V± ± M−1(∇2 − s−2)V± = s−1Bs V∓, (3.17)

where Bs ≡ BM · ∇s is the s-component of BM . These should be interpreted as
advection–diffusion equations, which are coupled by the source terms on their right-
hand sides. The advection is manifest by BM ; when BM is directed from the inner
to the outer sphere, V+ (V−) is convected inwards (outwards). As a consequence, V+

(V−) is continuous across the Hartmann layer on the outer (inner) sphere, as implied
by (2.24) and (2.26a).

Our analytic formulation of the shear-layer problem parallels the earlier
development of Dormy et al. (2002). The appropriate measure of distance l from
Q along the C-line A= Ac is weighted by s2

c |BM | (sc = s(r, Ac)) and defined by (B 3)
of Appendix B. The weighted distance normal to C is measured by the stretched
magnetic flux coordinate

n ≡ (Ac − A)/ΔC, where ΔC ≡
√

αi/2M (3.18a,b)

is the shear-layer A-scale. Our choice of sign in the definition of n ensures that n is
positive in P and negative in E. From definition (2.2a) of A, we note that the field
line A= AC ≡ Ac − ΔC intersects the outer sphere at (s, z) ≈ (ro, δC), where

δC/ro = (ΔC/Ac)
1/2 = (αi/M)1/4, (3.19)
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in which M ≡ M/2r2
o is the equatorial Hartmann number (see (2.5)). Relative to the

boundary layer coordinates (l, n), the boundary layer approximations of (3.17) yield

∂V±

∂l
± ∂2V±

∂n2
=

1

sc

dsc

dl
V∓, (3.20)

where the value of s−1
c dsc/dl is given by (B 4a).

Expressed in our boundary layer coordinates, the asymptotic form (3.14a,b) of the
polar mainstream solutions, valid as A ↑ Ac, determines the asymptotic behaviours
M1/2B ≈ −Jc

√
αi/2 s−1

c n and M−1/2sΩ = O(M−1/4n−1/2) as n ↑ ∞. These estimates
show that the larger size of M1/2B controls the magnitude V± = O(1) of the shear-
layer solution. The asymptotic behaviours mentioned together with the equatorial
mainstream solution (3.6b,c) determine the boundary conditions

V± →
{

∓Jc

√
αi/2 s−1

c n + O
(
M−1/4n−1/2

)
as n ↑ ∞,

0 as n ↓ −∞ (3.21)

for 0 < l < 1 in the shear-layer equation (3.20).
Since the solution determines small O(M−1/2) magnetic fields B =M−1/2(V+ −V−)/2

and large differential rotation Ω =M1/2(V++V−)/(2s), the Hartmann jump conditions
across the inner and outer spheres require the large O(M1/2) differential rotation to
be reduced to an order-unity value, implying V+ = − V− + O(M−1/2) at the endpoints
l =0, 1. On the equator the symmetry condition B = 0 gives V+ = V−. So, in summary,
the endpoint boundary conditions on the solution of (3.20) are

V+ =

⎧⎨⎩− V− at

{
l = 0 and

l = 1 for n > 0,

V− at l = 1 for n < 0.

(3.22)

In view of (3.6a) we express the electric potential ϑ in the shear-layer in the form

ϑ = Ac − Am + Θ, (3.23a)

where, by (2.23a), Θ(l, n) satisfies

∂Θ

∂n
= −ΔCΩ with Θ →

{
− ΘC as n ↑ ∞,

0 as n ↓ − ∞ (3.23b,c)

(cf. Bühler 2009, equation (30)), in which, from (2.23b),

ΘC = ΔC

∫ ∞

−∞
Ω dn =

√
αi

2

∫ ∞

−∞

V+ + V−

2sc

dn. (3.24a)

Differentiation of ΘC and use of the shear-layer equation (3.20) and boundary
conditions (3.21) and (3.22) determines

dΘC

dl
=

αi

2

Jc

s2
c

= − dβ

dl

Jc

r2
o

with ΘC(0) = 0, (3.24b,c)

where we have made use of (B 4b). Integration of (3.24b) subject to (3.24c) gives

ΘC = r−2
o (βi − β) Jc, (3.24d)

which on use of (B 2a) agrees with (3.12a). Together (3.24a,d) provide an integral
property of the solution of the shear-layer equation (3.20) subject to the boundary
conditions (3.21) and (3.22).
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The application of the Hartmann jump condition on the outer sphere warrants
closer inspection. In terms of the boundary layer coordinates the outer boundary
in the vicinity of E0 ((l, n) = (1, 0)) is located at n= no(l) ≈ α

3/2
i M1/2(1 − l)2 (see

Dormy et al. 2002, equation (3.8)), which lies within the shear-layer n= O(1), when
|1 − l| =O(M−1/4). On it, the Hartmann jump condition (3.2) becomes

∂

∂n
(V+ − V−) = − 2α

3/4
i M1/4n1/2(V+ + V−) for n > 0. (3.25)

Provided that n � M−1/6, we can legitimately make the approximation V+ + V− =0
used in (3.22). As n is decreased the left- and right-hand sides of (3.25) become
of comparable size when n= O(M−1/6). This determines the extent of the equatorial
Hartmann layer, which has small latitudinal length z = O(M−1/3) � δC = O(M−1/4) and
radial thickness ro − r = O(M−2/3) (see Dormy et al. 2002, figure 7). However, inside
the equatorial Hartmann layer, another boundary layer problem needs to be solved
and the jump condition (3.25) no longer applies. Dormy et al. (2002) formulated
and solved the equatorial Hartmann layer problem for the case of an insulating
boundary, on which the magnetic field B vanishes: V+ − V− = 0. The solution built
on the pioneering study by Roberts (1967b) of circular pipe flow in the presence
of a uniform transverse magnetic field. There is, however, an important distinction
between the Roberts problem, for which the uniform magnetic lines crossing the plane
of symmetry intersect the outer boundary, and our problem, for which the dipolar
magnetic field lines crossing the equatorial plane peel away from the boundary to
trigger the shear-layer. This geometrical difference leads to dynamical differences
that are manifest in the respective solutions of the two problems. Despite these
essential differences, we refer to the equatorial Hartmann layer as a Roberts layer.
Unfortunately, in our perfectly conducting case, we require the electric current jθ

to vanish instead: ∂(V+ − V−)/∂n= 0. Though the vanishing of the rotation rate Ω

on the boundary (V+ + V− = 0) is the same for both problems, the difference of the
magnetic boundary conditions appears to render the analytic solution of our perfectly
conducting case intractable.

Finally, the error estimates stemming from matching to the polar mainstream (3.21)
and to the Roberts layer (hinted at by (3.25)) consistently show that the O(1) solution
for V± will have errors O(M−1/4).

3.4. Numerical solution of the shear-layer equations

The numerical solution of (3.20) for data (3.3), (3.4) and (3.15) was implemented by
use of an up-wind operator to stabilize the advection term as in Dormy et al. (2002).
The main difference between the present problem and that relevant to the case of the
insulating outer boundary resides in the forcing of this shear-layer via the boundary
conditions. Whereas the solution of the shear-layer equation (3.20) in the case of
the insulating outer boundary is driven from the equator (l = 1) and advected along
the shear-layer, the solution in the present case of perfectly conducting boundaries
is driven by magnetic sources in the polar mainstream region, which diffuse from
n ↑ ∞ (see (3.21)) inwards across the shear-layer. As a consequence, the explicit
relaxation procedure introduced in Dormy et al. (2002) only converges very slowly
for the present problem. So though successive iterations of (3.20) for V+ and V− were
undertaken as in Dormy et al. (2002), the equation for V+ was relaxed, whereas that
for V− was solved explicitly using the Thomas algorithm (i.e. inverting the tri-diagonal
matrix resulting from the second-order operator in n and the diagonal part of the
up-winded advection term). This algorithm yielded rapidly convergent solutions.
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Figure 6. Case (3.3), ζi =4/5; σS
(i,o) ↑ ∞: the asymptotic shear-layer solution (dot-dashed

curve) compared with the full numerics across the shear-layer along the straight line normal
to the C-line at l =0.4. Distance along the straight line is measured by the coordinate n,
which measures flux, Ac − A, stretched by the factor Δ−1

C ∝ M1/2 (see (3.18)). The values of

M−1/2Ω for various values of 2M ≡ M/r2
o , as determined by the full numerics, are illustrated

by the continuous curves. In the 2M = 105 case, the outer boundary is reached at n= no (say)
< 4 short of the right-hand edge of the figure. In the vicinity no − n= O(M−1/2) > 0 of the
outer boundary, the abrupt drop in the curve is a manifestation of the Hartmann layer; the
magnitude of the drop of M−1/2Ω is M−1/2ωo.

From the numerical solution of the complete governing equations (2.7) for the
same data (3.3), the values of M−1/2Ω are plotted versus n along the straight line
normal to the C-line at l = 0.4 on figure 6 for various values of M . They are
compared with the numerical solution M−1/2Ω = (V+ + V−)/2sc of the shear-layer
equation (3.20). A similar plot is given on figure 7 at l =1, for which the straight line
normal to the C-line is the normal to the outer sphere at Eo directed inwards along
the equatorial plane. Figures 6 and 7 show satisfactory convergence with increasing
M , comparable to that found by Dormy et al. (2002) for insulating boundaries.
Nevertheless, corrections obtained from the solution of the equatorial boundary layer
problem ought to improve convergence in figure 7 (cf. Dormy et al. 2002, figure 9), but
unfortunately, as explained at the end of § 3.3, the analytic solution of that problem
subject to the perfect conductor boundary condition (3.22) at l = 1 is not available
to us.

4. Thin shell outer boundary of finite conductivity
Previous MHD Couette flow studies, such as those of Dormy et al. (2002),

Hollerbach et al. (2007), Mizerski & Bajer (2007) and Bühler (2009), have considered
an inner conducting boundary, and so in this section we do the same. Our ultimate
aim (see § 5) is to compare our asymptotic predictions of the super-rotation rate in
the shear-layer with the numerical results of Mizerski & Bajer (2007) (see § 5.1) and
those of Hollerbach et al. (2007) for the case of an inner solid sphere, ri − δi =0,
possessing the same electrical conductivity as the fluid, σS

i = σ (see § 5.2). However,
our numerical comparisons in §§ 3.1 and 3.2 of the respective cases of inner perfectly
and finitely, σS

i = σ , conducting boundaries revealed that the qualitative nature of the
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Figure 7. Case (3.3), ζi = 4/5; σS
(i,o) ↑ ∞: as in figure 6 but at l = 1, where the straight line

normal to the C-line lies in the equatorial plane. The shear-layer solution V+/ro (dot-dashed
curve) is compared with the full numerical solutions M−1/2Ω (continuous curves).

solutions are similar. Therefore, we simplify matters in this section and the following
section, § 5.1, by restricting attention to the perfect conductivity limit

σS
i ↑ ∞, εi ↑ ∞. (4.1)

Like Hollerbach et al. (2007), we consider a thin outer shell and investigate the nature
of the solution for various values of the relative conductance εo.

So far we have solutions in two limiting cases. The first is that of an insulating
outer boundary εo =0 investigated by Dormy et al. (2002), for which the electric
current flow is returned at the outside entirely within the outer Hartmann layer
rather than within the solid bounding shell (Lo = 0). The second is that of a perfectly
conducting outer boundary εo ↑ ∞, studied in § 3, for which the electric current flow
is returned largely within the outer solid instead (1 − Lo = O(M−1)). Since electric
current is unable to leak into the solid, in the former insulating case, a Hartmann
layer on the outer boundary is readily supported which accommodates the entire
angular velocity jump between the inner and outer spherical boundaries. The fact,
however, that −sB = G ≈ M−1r2

o (A/Ac) in the polar region P (see (2.36)) means that
the electric current, though small, flows outward throughout the polar region and has
to return entirely within the shear-layer, so causing the super-rotation. In contrast,
in the latter perfectly conducting case, the bulk of the current flow returns within
the mainstream polar region P. Nevertheless, because the current flows involved are
so large, what remains to flow along the C-line shear-layer is still able to drive the
super-rotation in it, which is even stronger than for the former insulating case.

Our objective here is to understand the transition between the two limiting cases.
It turns out, from a physical point of view, that the distinguishing feature is whether
the return current flow is predominantly in the mainstream as in the εo ↑ ∞ case, or
in the C-line shear-layer as in the εo =0 case; i.e. put mathematically, can we apply
the mainstream boundary condition Gc = 0 or not? Since this distinction depends on
the nature of the solution close to the C-line, which is particularly sensitive to the
Hartmann layer near the equator Eo to the outer boundary, we often find it helpful
to use the equatorial Hartmann number M (see (2.5)) based on conditions there.
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Finally, since we wish to compare our results with those of Hollerbach et al. (2007)
(see particularly § 5.2), all the numerical results presented in this section and the
following section, § 5, are for the particular case in which

ri = 1, ro = 2, ζi = 0.5, (4.2a,b,c)

Ac ≡ 1/2ro = 0.25. (4.2d)

With ζi = 0.5, (B 2c,d) determine the parameter values

βi =
√

2 ≈ 1.4142, αi = 3/23/2 ≈ 1.0607. (4.3a,b)

4.1. The large-Hartmann-number limit

Under the assumption, that

M ↑ ∞ (4.4)

with εi ↑ ∞ (see (4.1)), the electric potential continues to be given everywhere in the
mainstream by

ϑ = A − Am + (Φ − Φi) J (4.5)

(see (3.7a)). With εo = O(1), the angular velocity jumps (2.32), upon use of (2.14b),
become

ωi = Φ ′
iJ, Ωo = ωo = −Φ ′

o(J + ε−1
o G/A), (4.6a,b)

which differs from (3.2) only through the addition of the extra term −ε−1
o Φ ′

oG/A

in (4.6b). Its presence can be traced to the fact that the tangential electric field
(jS

θ /σ S)o = − G/(sδσ S)o (see (2.29c) and (2.31a)) in the outer solid is finite, rather
than zero as it was in the perfectly conducting case, so altering the angular velocity
jump across the outer Hartmann layer determined by (2.29d). However, like in the
perfectly conducting case, we have ignored the electric current carried by the outer
Hartmann layer, as signalled by the neglect of the O(M−1) term in (2.29c), which
vanishes in the limit M ↑ ∞.

With the angular velocity jumps (4.6a,b), the mainstream equation (2.35) reduces
to

[(Φi − Φo) J]′ − ε−1
o Φ

′

oA
−1G = 1 with G′ = − J, (4.7a,b)

where Φi and Φo are defined by (2.13b). We have solved (4.7) subject to the boundary
conditions G(0) = 0, G(Ac) = 0 for the sphere radii (4.2a,b) and have illustrated our
results for various values of εo by plots of J/εo and Ωo versus A over the range
0 � A � Ac in figures 8(a) and 8(b) respectively. In addition, since the value of
Jc ≡ J(Ac) on the C-line determines the asymptotic behaviours (3.14a,b) necessary
to impose boundary conditions on the shear-layer, we plot Jc versus εo in figure 9.

The nature of the solutions portrayed in figures 8 and 9 may be understood, by
considering the limiting cases of large and small εo. In the large-conductance limit

εo � 1, (4.8)

solutions are approximated by the εo ↑ ∞ solution of § 3. The graph of Ωo = ωo versus
A plotted solid in figure 3 for ζi = 4/5 deserves comparison with the εo ↓ 0 curve in
figure 8(b) for ζi = 1/2. Both graphs exhibit reverse flow Ωo < 0 for sufficiently small
A near the poles. For the Hollerbach et al. (2007) boundary radii (4.2), formulae (A 1c)
and (A 5) with (4.3a) determine, in turn,

�m ≡ Am/Ac ≈ 0.5108 and Jc ≈ 0.3459. (4.9a,b)
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Figure 8. Case (4.2), ri = 1, ro = 2 (ζi = 1/2); σS
i ↑ ∞: the numerical solution of the

mainstream equations (4.7a,b), for various values of εo. (a) The scaled mainstream electric
current J(A)/εo is plotted versus A (solid lines). The P-outer solution (4.11b) is used for the
asymptotic εo ↓ 0 solution shown by the dot-dashed line; it is hardly distinguishable from
the numerical solution for εo = 0.001. (b) The outer boundary mainstream angular velocity Ωo

(see (4.6b)) is plotted versus A using solid lines, as in (a). The perfectly conducting boundary
solution of Appendix A is used for the asymptotic εo ↑ ∞ solution shown by the dot-dashed
lines.

They fix the large-εo asymptote for Jc in figure 9.
In the low-conductance limit

εo � 1, (4.10)

(4.7a,b) provide a singular perturbation problem for which separate asymptotic
solutions apply in two overlapping domains spanning the mainstream polar region
P. We refer to the smaller domain close to the C-line as the ‘P-inner’ region and the
larger domain continuing as far as the polar axis as the ‘P-outer’ region.
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Figure 9. Case (4.2), ζi = 1/2; σS
i ↑ ∞: log–log plot of Jc ≡ J(Ac) as a function of εo

determined by the numerical solution of (4.7a,b). The asymptotes Jc/ε
2/3
o ≈ 2.2948 for εo ↓ 0,

determined by (4.15a,b) and (4.3a), and Jc ≈ 0.3459 for εo ↑ ∞ (see (4.9b)) are indicated by
the dashed lines.

The P-outer solution G of (4.7) is small throughout its domain and is given almost
everywhere by

G ≈ − εoA/Φ
′

o = εo4r3
oAΦo = εo(A/Ac)

√
1 − (A/Ac), (4.11a)

J ≡ −G′ ≈ − G
A

+ εoro

A/Ac√
1 − (A/Ac)

, (4.11b)

which is illustrated by the dot-dashed curve in figure 8(a). Since solution (4.11a,b)
shows that G and J are O(εo) it follows from (4.6b) and in turn from (2.19b) that

Ωo ≈ 1 and F ≈ 1 (4.11c,d)

respectively. It means that fluid throughout the P-outer region is locked to the inner
sphere as it is for the case of Dormy et al. (2002) of an insulating outer boundary.
The difference between solution (2.36) of Dormy et al. (2002), which yields G → 0 in
our limit M ↑ ∞ (see (4.4)), for zero εo and solution (4.11a) of the present work for
small but finite εo arises because the electric current at the outside is returned by the
Hartmann layer in the former εo = 0 case but by the solid in the latter 0 < εo � 1
case.

The singular asymptotic behaviour of (4.11a,b), as A ↑ Ac, may be conveniently
expressed in terms of Φo =

√
1 − (A/Ac)/(2r2

o ) (see (2.13b)):

G ≈ 2εor
2
oΦo, J ≈ εo

2roΦo

as Φo ↓ 0. (4.12a,b)

The divergence of J and the corresponding electric potential ϑ (see (4.5)) as the
C-line is approached, indicated by (4.12b), means that the solution cannot meet the
C-line boundary conditions at A= Ac, where Φo = 0. Here the P-outer solution fails
and must be matched instead with the P-inner solution needed to remove this singular
behaviour.



MHD shear-layers in spherical shells with conducting walls 171

The leading-order asymptotic form of the differential equation (4.7a) for the P-inner
problem is

r−2
o βi J′ − ε−1

o 2roΦ
′

oG = 1 with G′ = − J, (4.13a,b)

where βi ≡ r2
oΦQ (see (B 2c)). At the outer edge of the P-inner region the solution of

(4.13) must match (4.12a,b), as well as meet the boundary condition Gc ≡ G(Ac) = 0
on the C-line. The analytic solution (C 5) to this problem given in Appendix C shows
that the A-flux scale ΔP of the P-inner region is O(ε2/3

o ). From it we may introduce
the length δP defined by the coordinate (s, z) ≈ (ro, δP), where the magnetic field line
A= Ac − ΔP intersects the outer sphere (cf. definition (3.19) of δC). In fact, we choose

δP/ro = (ΔP/Ac)
1/2 ≡ (εoβi)

1/3. (4.14)

The main finding of Appendix C is that

Jc = ε2/3
o β

−1/3
i roJc, (4.15a)

where, from (C 5) and (C 6),

Jc = (2π/
√

3) Ai(0) ≈ 1.2879. (4.15b)

This result provides the small-εo asymptote for Jc in figure 9.
Throughout most of the P-inner region, Ωo is given correct to leading order by

Ωo = −Φ ′
oε

−1
o G/A (see (C 9)) because the other contribution −Φ ′

oJ to expression
(4.6b) is negligible, as is made self-evident by examination of (C 7). As the C-line is
approached, however, the small Ac − A approximation G ≈ Jc(Ac − A), J ≈ Jc of
the solution of (4.13) becomes valid so that whereas G tends to zero, J remains finite.
In consequence the term −Φ ′

oJ neglected in (4.6b) must be reinstated leading to the
form

Ωo ≈ Jc

2ro

[
ε−1

o

(
Ac − A

Ac

)1/2

+

(
Ac

Ac − A

)1/2
]

for A ↑ Ac (4.16)

given by (C 8). It possesses the minimum

Ωo min = ε−1/2
o r−1

o Jc at Ac − A = εoAc � (εoβi)
2/3Ac = ΔP (4.17a)

well inside the P-inner region sufficiently close to the C-line for formula (4.16) to be
valid. Moreover, use of our asymptotic result (4.15a) shows that

Ωo min = ε1/6
o β

−1/3
i Jc. (4.17b)

So the monotonic decrease of Ωo predicted by (C 9) from unity in the P-outer region
to almost zero in the P-inner region is terminated at A= (1 − εo)Ac after which
Ωo diverges. The way that this minimum develops as εo decreases is illustrated in
figure 8(b).

4.2. Large but finite Hartmann number

In the previous section, § 4.1, we formally took the limit M ↑ ∞ so that we could
ignore the electric current carried by the outer Hartmann layer (1 − Lo = 0; see
(2.33a)). Moreover, in the small-εo limit, the mainstream ‘relative’ tangential electric
field component determined by Ohm’s law, (Eθ + sΩBr )o = JBθo, at the edge of the
outer Hartmann layer (see the discussion above (3.2)) was negligible in Ohm’s law
throughout both the P-outer (as evinced by solution (4.11a)) and P-inner (manifest
by the absence of the term −Φ ′

oJ in the asymptotic form (4.13a) of (4.7a)) regions.
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In this section we consider the double limit

M � 1, εo � 1 ; (4.18)

we no longer neglect the jump BS
o + G/so in the tangential magnetic field across the

Hartmann layer but continue to neglect the contribution JBθo to Ohm’s law. Under
these assumptions, the angular velocity jump (2.32) across the outer Hartmann layer
becomes

ωo ≈ ε−1
o G/A

2r3
o

(
2Φo + (εoM)−1

) , (4.19)

in which the term (εoM)−1 has been reinstated in the denominator and the term J
has been neglected in the numerator. Likewise, the fraction of the electric current
leaving the mainstream and captured by the Hartmann layer given by (2.33b) reduces
to

1 − Lo = 1
/(

εoM
loc
o + 1

)
(4.20)

(see (2.27)), which is O(1) when εoM
loc
o =O(1) but tends to zero as M ↑ ∞.

In the P-outer region, we make the approximation G � 1 just as before in § 4.1,
which implies by (2.21d) and (4.6a) that Ωi ≈ Ωo ( = ωo) and (1 − Ωi = ) ωi ≈ 0
respectively. In consequence the fluid remains locked to the inner sphere with all the
angular velocity jump occurring across the outer Hartmann layer. With Ω ≈ ωo ≈ 1,
the solution determined by (2.19b) and (4.19) is

F ≈ 1, G ≈ (A/Ac)
(
εo

√
1 − (A/Ac) + 1

2
M−1
)

(4.21a,b)

(c.f. Mizerski & Bajer 2007, p. 265, equation (7.8a,b)), where 2M = M/r2
o (see (2.5)).

We emphasize that expression (4.21b) for G differs from our earlier result (4.11a) by
the presence of the extra term M−1(A/2Ac).

Since our only alteration to the analysis of § 4.1 is to replace expression (4.6b) for
ωo by (4.19), the corresponding modified form of the governing equations (4.13a,b)
for the P-inner problem is simply

− r−2
o βi G′′ +

(
εo

√
1 − (A/Ac) + 1

2
M−1
)−1

G = 1. (4.22)

Scale analysis of (4.22) shows that the A-flux scale ΔP given previously by (4.14) now
satisfies

β−1
i (ΔP/Ac)

2 ∼ εo(ΔP/Ac)
1/2 + 1

2
M−1 (4.23)

so that ΔP/Ac = (εoβi)
1/3 when (εoβi)

−1 � (2M/βi)
3/4, as given before by (4.14), while

ΔP/Ac ∼ (βi/2M)1/2 when (2M/βi)
3/4 � (εoβi)

−1.
Crucial to our understanding of the asymptotic solutions is the relative size of the

flux widths ΔP of the P-inner mainstream region determined by the above estimates
and ΔC of the shear-layer on C given by (3.18b):

ΔP

ΔC
=

{
(εoβi)

2/3(M/αi)
1/2 for 1 � (εoβi)

−1 � (2M/βi)
3/4,

(βi/2αi)
1/2 for (2M/βi)

3/4 � (εoβi)
−1.

(4.24)

Here the ratio αi/βi = 2(2−ζi)ζ
2
i (see (B 2c,d)) is of order unity, except when the radius

ratio ζi ≡ ri/ro is small. In reality the P-inner region only exists when ΔP � ΔC,
which occurs when εoM

3/4 � 1. In that case, the analysis of § 4.1 is valid, and the
shear-layer solution is fixed by the value of Jc. Otherwise, when either εoM

3/4 � 1
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or εoM
3/4 = O(1), we must ignore the P-inner solution and match the shear-layer

solution directly with P-outer solution (4.21) (see also the discussion following (5.8)).

4.3. The shear-layer on C for ΔP = O(ΔC)

The nature of the shear-layer on C depends critically on Hartmann jump conditions
at the outer boundary. For that the local Hartman number at A= AC ≡ Ac − ΔC
determined by (2.27) and (3.19) is

Mloc
oC ≡ Mloc

o (AC) = 2α
1/4
i M3/4. (4.25)

The corresponding electric current leakage parameter (4.20) evaluated at A= AC,
namely LoC ≡ Lo(AC), is given by

1 − LoC = 1
/(

εoM
loc
oC + 1

)
. (4.26)

When ΔP = O(ΔC) or equivalently in view of (4.24)(
1
2
εoM

loc
oC =

)
α

1/4
i εoM3/4 = O(1), (4.27)

the shear-layer equation (3.20) continue to apply, but as the results of this section
show, the boundary conditions (3.21) and (3.22), that their solutions must satisfy, are
modified.

Central to the boundary condition modification is the matching of the shear-
layer solution at large n with the P-outer mainstream solution (4.21a,b) for small
Ac−A(> 0). When expressed in terms of the shear-layer coordinates l, n, its asymptotic
form is

F ≈ 1, G ≈ εo(ΔC/Ac)
1/2 n1/2 + 1

2
M−1. (4.28a,b)

From them we may construct expressions for the shear-layer-dependent variables V±
defined by (3.16). Then in place of (3.21) we obtain

M1/2V± →
{
sc ∓ r2

o s
−1
c

(
1 + εoM

loc
oC n1/2

)
as n ↑ ∞,

sc as n ↓ −∞ (4.29)

on 0 < l < 1.
The vanishing of the angular velocity jump on the inner sphere ωi ≈ 0, implying

Ωi ≈ 1, determines the condition

M1/2(V+ + V−) = 2sQ (4.30)

at l = 0, while at the equator Eo on the outer sphere, condition (4.19), in which G is
replaced by −sB , together with the symmetry condition (2.9) determines

V+ =

{
− V−/

(
1 + 2(εoM

loc
oC )−1n−1/2

)
for n > 0,

V− for n < 0
(4.31)

at l = 1. It should, however be noted that the boundary condition for n > 0 at l =1
relies on the the thin shell approximation. For it to be valid, the θ-length scale δC
(see (3.19)) tangent to the outer boundary of the shear-layer must be large compared
with the outer solid boundary thickness δo:

δo/ro � δC/ro = (αi/M)1/4 = O(ε1/3
o ), (4.32)

in the parameter range (4.27) for which this estimate applies.
In the low-conductance limit Mloc

oC /2 = α
1/4
i M3/4 � ε−1

o (LoC ≈ 0), the boundary
conditions (4.29)–(4.31) reduce to those employed by Dormy et al. (2002, equations
(3.10)–(3.12)) and their shear-layer results apply. Interestingly, on reinstating the small
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O(εoM3/4) correction terms in the boundary conditions (4.29) and (4.31), Mizerski &
Bajer (2007) found, albeit in a plane layer geometry, a corresponding small O(εoM3/4)
increase in the super-rotation rate above the lowest order asymptotic value of Dormy
et al. (2002).

In the alternative limit 1 � ε−1
o � α

1/4
i M3/4 = Mloc

oC /2 (LoC ≈ 1), the boundary
conditions (4.30) and (4.31) at l = 0 and l = 1 reduce to (3.22) appropriate to a
perfectly conducting outer boundary. Likewise the matching condition (4.29) reduces
to V± → 0 as n ↓ −∞ on 0 � l � 1, in agreement with (3.21). However, as n ↑ ∞,
(4.29) gives

MB ≈ ± M1/2V± → − εoM
loc
oC r2

o s
−1
c n1/2 (4.33)

on 0 � l � 1, which does not correspond to that given by (3.21). The reason for this
discrepancy is that we have effectively extended the shear-layer outwards to include
the P-inner mainstream. Accordingly the matching condition, (4.33) corresponds to
matching directly with the P-outer mainstream solution G ≈ 2εor

2
oΦo (see (4.12a)).

This is an unnecessary complication that we obviously ignore.
In summary, we have identified three parameter ranges in which shear-layer

solutions have different scales:

V± =

⎧⎪⎨⎪⎩
O(1) for ε−1

o � 1 � M3/4,

O(ε2/3
o ) for 1 � ε−1

o � M3/4,

O(M−1/2) for 1 � M3/4 � ε−1
o .

(4.34)

Throughout the first two ranges (LoC ≈ 0) the value of V± is determined by the
perfectly conducting boundary calculation of § 3.3 via the value of Jc. In the first
range, ε−1

o � 1 � M3/4, Jc is given by (A 5) of Appendix A; in the second range,
1 � ε−1

o � M3/4, Jc is given by by (4.15) of § 4.1; while in the intermediate range,
εo = O(1) (0 < LoC < 1), the numerical solution of (4.7) determines the values of Jc

plotted versus εo in figure 9. The solution for V± in the third range 1 � M3/4 � ε−1
o

(LoC ≈ 1) is determined simply by the insulating boundary results of Dormy et al.
(2002) while Mizerski & Bajer (2007) essentially investigated the the influence of small
but finite εoM

3/4 in their plane geometry.
The shear-layer results for the first two combined ranges ε−1

o � M3/4 and the
third range M3/4 � ε−1

o have clearly distinguishable character. The transition, when
εo = O(M−3/4), between the two cases is more complicated. For that, the shear-layer
problem of § 3.3 must be solved subject to the boundary conditions (4.29)–(4.31)
just derived. Then the problem for each distinct value of εoM

3/4 needs to be solved
separately. Since the accurate solution of the shear-layer equations for any one
particular case, as in § 3.3 for εo ↑ ∞, is a very considerable undertaking, we have not
attempted the time-consuming numerical calculations needed to solve the shear-layer
equations for a variety of distinct values of εoM

3/4. We remark, however, that solutions
for M3/4 � ε−1

o (the Dormy et al. (2002) problem) are recovered in the limit εo ↓ 0.

5. Shear-layer super-rotation
The objective of this section is to determine the magnitude of the super-rotation in

the shear-layer and to make comparisons with the results of Mizerski & Bajer (2007)
and Hollerbach et al. (2007). The case of an inner perfectly conducting boundary is
considered in § 5.1, for which we simply apply the results of § 4. Since both Mizerski
& Bajer (2007) and Hollerbach et al. (2007) considered the case of an inner boundary
of the same conductivity as the fluid, we address this issue in § 5.2. Recall, however,
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that the results of § 3.2 showed that this distinction has little effect on the solution (see
figure 5), and so we ignore the distinction when making comparisons with Mizerski
& Bajer (2007) in section § 5.1.

5.1. Inner perfectly conducting boundary ε−1
i =0: a comparison with

Mizerski & Bajer (2007)

Our shear-layer estimates (4.34) show that the corresponding peak values of Ω , which
occur in them, are

Ωmax =

⎧⎪⎨⎪⎩
O(M1/2) for ε−1

o � 1 � M3/4,

O(ε2/3
o M1/2) for 1 � ε−1

o � M3/4,

O(1) for 1 � M3/4 � ε−1
o .

(5.1)

As explained in § 4.2, throughout the first two ranges

ε−1
o � M3/4, (5.2)

the amplitude of V± is proportional to Jc (see the shear-layer boundary condition
(3.21)). As a consequence, the peak value Ωmax of the angular velocity is determined
as a linear function of Jc by the formula

Ωmax = Υ Jc, in which Υ ≡
[
Ωmax /Jc

]
εo↑∞ (5.3a,b)

is given by the solution of the shear-layer problem outlined in § 3.3 for the perfectly
conducting boundary case εo ↑ ∞. The numerical results of § 3.4, for the ζi = 0.8
case, give [Ωmax]εo↑∞ ≈ 0.0823 × M1/2. So, since the mainstream analytic solution of
Appendix A determines [Jc]εo↑∞ ≈ 1.766 (see (3.15b)), we deduce that

Υ ≈ 0.0466 × M1/2 for ζi = 0.8. (5.4)

In general, the value of Jc needed in (5.3a) is obtained from the numerical solution
of the mainstream equations (4.7a,b). Results for the ζi = 0.5 case are illustrated in
figure 9, which provides a plot of Jc versus εo. Though the analytic solution gives
[Jc]εo↑∞ ≈ 0.35 (see (4.9a)), we did not solve the corresponding shear-layer problem
to determine [Ωmax]εo↑∞, and so we are unable to evaluate formula (5.3b) for Υ .
Nevertheless, since Ωmax ∝ Jc, figure 9 may also be regarded as a plot of a scaled
Ωmax versus εo. Interestingly the plot bears a striking resemblance to the plot of
Mizerski & Bajer (2007) for Umax (cf. our Ωmax) versus σS

o /σ in figure 6(b) of their
work, where for their boundary of finite thickness σS

o /σ is similar to our εo. Whereas
the results of Mizerski & Bajer (2007) are obtained from the numerical integration
of the full system of governing differential equations, albeit in their planar geometry,
our figure 9 results are derived from an asymptotic theory valid for ε−1

o � M3/4.
Though the value of Ωmax in the last range M3/4 � ε−1

o of (5.1) is determined
directly by the insulating outer boundary εo ↓ 0 theory of Dormy et al. (2002), it too
is dependent on the radius ratio ζi . Dormy et al. (2002) obtained

Ωmax ≈ 1.4147 for ζi = 0.35, εo = 0. (5.5)

Unfortunately, since all asymptotic results obtained in this paper pertain to other
ζi-values, namely ζi = 0.8 and 0.5, we are unable to provide a unified quantification
of Ωmax over the entire range 0 � εi < ∞ for any single value of ζi . This deficiency is
due to the enormously time-consuming numerical computations needed to solve the
shear-layer problem, which prohibits our presentation of other results.
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Figure 10. Case (4.2), ζi =1/2; εi = 1: the scaled mainstream electric current flux G(A)/
(εo + M−3/4) plotted versus A, which solves (2.35), when M = 104, for various values of εo.
The value of A, at which the limiting case εo = 0 has its maximum, is identified by the vertical
dotted line; it is shown to indicate the C-line shear-layer flux width O(M−1/2) in the vicinity
of A = Ac = 0.25, where matching with the shear-layer ought to occur.

5.2. Inner finitely conducting boundary εi = O(1): a comparison with
Hollerbach et al. (2007)

Hollerbach et al. (2007) considered the case of a thin outer solid boundary (like us)
and a solid inner sphere with the same conductivity as the fluid σS

i = σ (unlike us).
Of course, our thin boundary theory does not apply to the thick inner boundary case
of Hollerbach et al. (2007), but we believe that the results inside the fluid are not
particularly sensitive to the precise form of the inner magnetic boundary condition.
We attempt to make quantitative comparisons with Hollerbach et al. (2007) by solving
the mainstream equation (2.35) subject to the boundary conditions G(0) = G(Ac) = 0
(valid for ε−1

o � M3/4) for the the ri =1, ro = 2 case (see (4.2)) of Hollerbach et al.
(2007) with εi ≡ (σS

i /σ S)(δi/ri) unity on the basis that δi = ri:

ζi = 0.5, εi = 1. (5.6a,b)

The dependence of the mainstream equation (2.35) on the finite conductance εi is
captured by the angular velocity jump (2.32),

ωi =
− J + ε−1

i G/A

2r3
i

(
2Φi + (εiM)−1

) , giving ωi ≈ Φ ′
i(J − ε−1

i G/A) (5.7a,b)

when εi = O(1) and M � 1, across the inner boundary Hartmann layer. So any
feature for our εi = 1 case, that differs from the ε−1

i = 0 case, stems from the extra
term −Φ ′

iG/A (5.7b), absent in (3.2).
To identify any different character of the solution when εi = 1, we solved (2.35) as it

stands, based on the full expression (5.7a) for ωi rather than the approximated form
(5.7b). Results for the M = 104 case are used to obtain the plots of G/(εo + M−3/4)
versus εo portrayed in figure 10; the cosmetic scale factor 1/(εo + M−3/4) is included
to reduce the changes in the magnitude of G, which occur as εo is increased from
0 to 1 in figure 10 across εo = O(M−3/4) ∼ 10−3. Note that the locations of the
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maxima A=Amax of G in figure 10 compare reasonably with the zeros of −J = G′

in figure 8(a). As the value of εo decreases the comparison becomes less favourable
because the term (εoM)−1 in (4.19) was omitted in the derivation of the solutions
portrayed in figure 8(a). The corresponding failure of the compatibility of the graphs
in figures 8(a) and 10 is most pronounced close to Ac. It reflects how we deal with the
Hartmann layer jump condition at the outer boundary rather than the differing jump
conditions at the inner boundary. With that proviso, the evidence of figures 8(a) and
10 suggests that the qualitative features of the mainstream solution for εi =1 with
ωi given by (5.7a) are adequately described by the solution for ε−1

i =0 with ωi given
by (4.6a).

To interpret the results in figures 8(a) and 10, it is helpful first to examine the
plot of Jc versus εo in figure 9. It shows that the small and large asymptotic
behaviours (for the case ε−1

o = 0 at any rate) are reached below ∼0.01 and above
∼1 respectively. It means that behaviour of the small- and large-εo type should
be interpreted in the sense of 10εo � 1 and 10εo � 1 respectively. The fact that
10εo is the relevant number rather than εo simply reflects the fact that we have
neglected the factors dependent on the the radii ri and ro in our order of magnitude
estimates. With this proviso, the εo = 1, 0.1 and 0.01 cases illustrated in figure 10
appear to typify ε−1

o � 1, ε−1
o = O(1) and 1 � ε−1

o � M3/4 behaviour respectively and
are largely independent of the large value of M . The εo = 0.001 = M−3/4 and εo =0
cases illustrated in figure 10 possibly reflect the ε−1

o = O(M3/4) and M3/4 � ε−1
o regimes

respectively.
The εo = 0 solution plotted in figure 10 has clear outer and inner structures. The

P-outer solution is

G ≈ 1
2
M−1(A/Ac) (5.8)

(see (2.36) and also (4.21b)). The P-inner governing equation is −r−2
o βi G′′ +2MG = 1

(cf. (4.13a,b)). Its solution describes the boundary layer of flux width O(M−1/2) visible
in the right part of figure 10 in the vicinity of A=Ac. This is the same size as the
flux width ΔC of shear-layer on C. As explained at the end of § 4.2, the P-inner
region does not exist, and the Dormy et al. (2002) type of shear-layer appropriate to
an insulating outer boundary must be matched directly to the P-outer solution (5.8).
Therefore, we have marked the maximum of G for the εo = 0 solution by the vertical
line in figure 10 because it roughly indicates the location A= AC ≡ Ac − ΔC of the
outer edge of the shear-layer, for all values of εo. All solutions portrayed to the right
of that line are unphysical and should be ignored.

The remaining question about the other cases εo �= 0 concerns the type of shear-
layer onto which the mainstream solutions portrayed in figure 10 ought to match.
To that end, we consider the values GC and −JC, of G and its slope G′ on the
vertical line A= AC of figure 10. If JC is reasonably well approximated by the value
Jc at A= Ac, as in the εo = 1, 0.1 cases, matching to the § 3.3 type of shear-layer
(ε−1

o = 0) with JC = Jc ought to be appropriate. If on the other hand, JC/Jc � 1,
matching the Dormy et al. (2002) type of shear-layer (εo = 0) to G = GC appears to
be sensible. The remaining two cases εo = 0.01, 0.001 are intermediate in the sense
that JC/Jc = O(1). Therefore we propose that they should be matched to a § 4.3
(ΔP = O(ΔC)) type of shear-layer intermediate between the other two extreme cases.

We now consider the numerical results of Hollerbach et al. (2007), for case (5.6),
illustrated in the left panel of figure 2 of their work, in which log(Ωm) is plotted
versus log(Ha2) in the range 103/2 � Ha � 103 for various values of εo. These data
are reproduced by the dashed curves in figure 11 of the current paper, which plots
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Figure 11. Case (4.2), ζi = 1/2; εi = 1: the values of Jc ≡ J(Ac) (right scale), determined
by the solutions of (2.35) for various εo, plotted versus log(M2) by the continuous lines. For
comparison, the maximum value of the angular velocity Ωmax (left scale), determined by the
data of figure 2 of Hollerbach et al. (2007), is illustrated by the dashed lines.

Ωmax = Ωm versus log(M2), where (M ≡) M/(2r2
o ) = Ha. In the same figure we plot

(continuous lines) the values of Jc obtained by solving the mainstream equation
(2.35) subject to the boundary conditions G(0) = G(Ac) = 0 in exactly the same way
that the results illustrated in figure 10 were obtained.

The comparison in figure 11 is motivated by result (5.3a), which indicates that
Ωmax = Υ Jc when ε−1

o � M3/4. As noted in § 5.1, our numerical solution in § 3.4
of the shear-layer equations was for the radius ratio ζi =4/5, and so value (5.4)
of the constant of proportionality Υ , which it determines, does not apply in the
ζi =1/2 case of Hollerbach et al. (2007). Nevertheless, the logarithm of (5.3a) gives
log(Ωmax) = log(Jc) + log Υ , where log Υ = constant. Since both Ωmax and Jc are
plotted using a log-scale in figure 11, the only indeterminacy is the location of the
origin Jc = 1 (i.e. log(Jc) = 0) on the Jc-axis. Without that information, we estimate
its location so as to obtain a reasonable comparison with the results of Hollerbach
et al. (2007) in the domain ε−1

o � M3/4 (see (5.2)), where we expect our asymptotic
results to apply, i.e. for large M and moderate εo at the top right-hand corner of the
figure.

We recall that figure 10 was plotted for the log(M2) = 8 case, which lies beyond
the right-hand end of the scale in figure 11. Since our asymptotic theory is based on
M � 1, we chose the large value M = 104 to emphasize the distinct character of the
solution for the various values of εo considered. Guided by our interpretation of the
results in figure 10, we expect that our asymptotic results will agree with the numerical
results of Hollerbach et al. (2007) on increasing M for the εo = 1, 0.1 cases, though
some reasonable agreement might be achieved for the εo = 0.01 case, with perhaps
vague agreement for the εo =0.001 case. We do not reproduce the data of Hollerbach
et al. (2007) for the εo =0 case, as formula (5.3a) is certainly inapplicable. The
comparisons of the trends with increasing M in figure 11 are remarkably encouraging
despite the fact that the inner sphere boundary conditions of Hollerbach et al. (2007)
are not properly modelled by our asymptotic theory and that our use of the formula
Ωmax = Υ Jc only applies when ε−1

o � M3/4.
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Figure 12. A log–log plot of Ac − A versus ε−1
o , in which we identify regions of the polar-P

mainstream, between the pole (the upper horizontal line Ac − A = 0) and the edge of the
shear-layer (the lower horizontal line Ac − A = ΔC). The oblique thick solid line Ac − A = ΔP
and thick dashed line Ac − A = Δloc divide the space from left to right into three regions,
namely I, II and III. Ferraro’s law holds in II and III but not in I. Electric current leakage
into the outer boundary is blocked in III but is substantial in I and II.

6. Concluding remarks
The analysis in this paper has extended the mainstream and free shear-layer theory

of Dormy et al. (2002) for the case of a conducting inner boundary and an insulating
outer boundary to more general boundary conductivities. The key simplification that
has permitted progress for other boundary conductivities is the thin shell boundary
approximation (2.31a), which ensures that all magnetic boundary conditions are
local. Then the structure of the mainstream solution is governed by the second-order
ordinary differential equation (2.35), which we have solved for various values ε(i,o) of
the relative conductances (2.31c) of the inner, i, and outer, o, boundaries.

Most of our large-M study has been concerned with the nature of the flow
for the case of a perfectly conducting inner boundary over the complete range of
conductance εo of the outer boundary. The mainstream solution of § 4.1 for εo = O(1)
is important because it describes the transition between the limiting cases of large
and small εo. When εo � 1, the complete solution including both the mainstream and
shear-layer solutions are approximated well by the case of the perfectly conducting
outer boundary, εo ↑ ∞, in which the electric field vanishes. An essential feature
of the polar-P mainstream flow is its failure to meet Ferraro’s law of isorotation,
as evinced before in the cylindrical shell model of Bühler (2009). When εo =O(1),
the electric field in the outer solid can no longer be neglected (see (4.6b) and
the discussion that follows it), which leads to a modification of the mainstream
solution. On decreasing εo, Ferraro’s law of isorotation continues to fail in a P-inner
region 0 < Ac − A � O(ΔP) = O(ε2/3

o Ac) (see (4.14)) neighbouring the C-line shear-
layer identified by domain I in figure 12. The size of the P-inner region continues
to shrink until the magnetic flux width ΔP coincides with the shear-layer width
Ac − AC = ΔC = O(M−1/2Ac) (see (3.18b)) at ε−1

o = O(M3/4), where the P-inner region
disappears. Note also that A= AC identifies the Ac − A= ΔC axis of figure 12.

In parameter regimes, for which the induced azimuthal magnetic field B∗
φ in the

polar mainstream region is sufficiently small so that Ferraro’s law of isorotation is
met (domains II and III in figure 12), the value of B∗

φ is related simply, via the local

outer boundary Hartmann number Mloc
o (A) (see (2.27)), to its value B∗

φ |
εo↓0 (see (2.36))
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in the insulating limit εo ↓ 0 by

B∗
φ

B∗
φ |

εo↓0

=

⎧⎪⎨⎪⎩
εoM

loc
o (A) for 1 � ε−1

o � M3/4,

εoM
loc
o (A) + 1 for M3/4 � ε−1

o � M,

1 for M � ε−1
o .

(6.1a,b,c)

The first case (6.1a), which provides the dimensional form of solution (4.11a), only
applies in the P-outer region, Ac − A � ΔP, exterior to the P-inner region discussed
in the previous paragraph. The second and third cases (6.1b,c), determined by (4.21b)
and (2.36) respectively, apply throughout the polar region, Ac − A � ΔC. The third
case (6.1c) identifies the parameter range for which the insulting outer boundary
solution of Dormy et al. (2002) pertains.

A more illuminating form of the intermediate case (6.1b), which encompasses the
limiting cases (6.1a,c) is

(1 − Lo) B∗
φ = B∗

φ

∣∣
εo↓0

, (6.2)

where 1 − Lo = 1/(εoM
loc
o (A) + 1) (see (4.20)) is the fraction of the electric current

inflow from the mainstream retained by the Hartmann layer; Lo is the remaining
fraction leaked into the solid boundary. In essence, the electric current flow in the
mainstream must increase with εo to maintain the state of the Hartmann layer. Since
Mloc

o (see (2.27)) decreases from the value M/r2
o at the pole to zero at the equator,

where it meets the shear-layer, the importance of the electric current leakage decreases
with latitude in concert.

The outer Hartmann layer and solid boundary currents become comparable, when
Lo = 1/2, at the location A= Aloc, where

εoM
loc
o (Aloc) = 1 implying Δloc ≡ Ac − Aloc =

(
r2
o

εoM

)2

Ac (6.3)

(see (2.27)). So on decreasing ε−1
o across the intermediate range (6.1b), the value of Δloc

decreases from Ac at the pole, when ε−1
o = M/r2

o , to ΔC at the edge of the shear-layer,
when ε−1

o =O(M3/4). Essentially electric current leakage into the outer boundary is
blocked, Lo = 0, in the region 0 < Ac−A � O(Δloc) = O((εoM)−2Ac) neighbouring the
C-line shear-layer identified by domain III in figure 12, while leakage is substantial,
Lo ≈ 1, in domains I and II.

The nature of the shear-layer on the C-line, A= Ac, is dependent on the magnitude

LoC = Lo(AC) = εoM
loc
oC
/(

εoM
loc
oC + 1

) (
Mloc

oC ≡ Mloc
o (AC)

)
(6.4)

(see (4.25) and (4.26)) of the electric current leakage into the outer boundary near
the equator at A=AC, determined by the shear-layer flux width ΔC. There are two
limiting cases of small and large electric current leakage, which are respectively

LoC = O(εoM
3/4) for εoM

3/4 � 1, (6.5a)

1 − LoC = O(ε−1
o M−3/4) for 1 � εoM

3/4. (6.5b)

Firstly, in the small-εo limit, εoM
3/4 � 1, the insulating outer boundary shear-layer

solution of Dormy et al. (2002) applies. Its distinctive character stems from the fact
that the total electric current carried by the shear-layer is determined by the jump
in value of s∗B∗

φ from zero in the equatorial E-region to −(r∗
o /L

∗)2
√

μ0ρνη in the
polar P-region. The latter is the dimensional form of (2.36) at the C-line, A= Ac,
obtained with the help of the Hartmann number definition (1.1a). Significantly, this
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condition is independent of both εo and the typical size B∗
0 of the applied meridional

magnetic field B∗
M , as the polar-P mainstream is entered. Mizerski & Bajer (2007)

considered the influence of O(εoM
3/4) corrections and found a small increase in the

super-rotation rate of O(εoM
3/4ΩS∗

i ) above the O(ΩS∗
i ) value of Dormy et al. (2002).

Their result may be explained by the terms proportional to εoM
loc
oC appearing in the

shear-layer boundary conditions (4.29) and (4.31), as mentioned in the paragraph
following (4.32).

Secondly, in the large-εo limit, 1 � εoM
3/4, the perfectly conducting boundary shear-

layer solution applies. The magnitude of Ω∗ inside the shear-layer is fixed by the
jump ΘC of the electric potential across it, which in turn is proportional to the polar
mainstream electric current Jc B∗

M/(μ0L
∗) at the C-line (see (3.12a) and (3.24d)).

In contrast to the small-εo shear-layer solution, which is constrained by the total
electric current flow along it, the electric potential constraint across it is dependent on
both εo (via Jc; see figure 9) and B∗

M . Our result, that the maximum super-rotation
is Ω∗

max = O(M1/2ΩS∗
i ) in the limit εo ↑ ∞ (see § 3.3), is consistent with the results

of Bühler (2009) for his fluid bounded by perfectly conducting cylindrical shells.
Moreover, our predictions over the entire large-εo range, 1 � εoM

3/4, explain the
substantial values of Ω∗

max found in the interesting numerical results of Hollerbach
et al. (2007), as discussed in § 5.2.
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Appendix A. The perfectly conducting boundary solution
The value of G obtained by integrating (Φi − Φo)G′ = Am − A given by (3.8) (see also
(2.13b)) with J = − G′ may be expressed in the form

G(A) = �m g0(� ) − g1(� ) with � ≡ 2roA = A/Ac, (A 1a,b)

where to meet the boundary condition conditions G(0) = 0 and G(AQ) = 0 (see (3.10))
we choose g0(0) = g1(0) = 0 and

�m ≡ 2roAm = Am/Ac = g1(1)/g0(1) (A 1c)

respectively. Our result is

g0(� ) =
1

2

∫ �

0

1

ζ −2
i

√
1 − ζi� −

√
1 − �

d�, (A 2a)

g1(� ) =
1

2

∫ �

0

�

ζ −2
i

√
1 − ζi� −

√
1 − �

d�, (A 2b)

where ζi ≡ ri/ro (see (B 1d)). The values of these integrals are

g0(� ) =
γ 2

i

1 − ζi

[
ĝ0

(√
1 − ζi� ; ζiγi

)
+ ζ 2

i ĝ0

(√
1 − � ; ζ −1

i γi

)]
, (A 3a)

g1(� ) =
γ 2

i

1 − ζi

[
ζ −1
i ĝ1

(√
1 − ζi� ; ζiγi

)
+ ζ 2

i ĝ1

(√
1 − � ; ζ −1

i γi

)]
, (A 3b)
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where

γ 2
i ≡ ζi(1 − ζi)

1 − ζ 3
i

=
ζi

1 + ζi + ζ 2
i

(A 3c)

and

ĝ0(χ ; ξ ) = 1 − χ − ξ tan−1

[
ξ (1 − χ)

ξ 2 + χ

]
,

dĝ0

dχ
= − χ2

ξ 2 + χ2
, (A 4a,b)

ĝ1(χ ; ξ ) = −1

3
(1 − χ3) + (1 + ξ 2) ĝ0(χ ; ξ ) ,

dĝ1

dχ
= −χ2(1 − χ2)

ξ 2 + χ2
. (A 4c,d)

Of particular interest is the value of (3.11), namely

Jc ≡ − G′
c =

roζ
2
i (1 − �m)√

1 − ζi

=
ro(1 − �m)

2βi

, (A 5)

where βi = (1/2)ζ −2
i

√
1 − ζi (see (B 2c)).

Appendix B. The C-line

Points on the C-line A= Ac ≡ 1/2ro may be defined parametrically by

s = sc(l(ζ )) ≡ roζ
3/2 , z = zc(l(ζ )) ≡ roζ (1 − ζ )1/2 (B 1a,b)

(see (2.2a) and (2.4a)), where

ζ ≡ r/ro and ζi ≡ ri/ro. (B 1c,d)

Though sc and zc are defined here as functions of ζ , we have introduced the
intermediate dependence on l(ζ ), as defined below by (B 3), because the function
sc(l) is needed for our application in § 3.3.

The value Φc of Φ (see (2.1a) and (2.2b)) on the C-line is conveniently measured
by

β(ζ ) ≡ − r2
o

∫
Eo

BM · dx = r2
oΦc = 1

2
ζ −2
√

1 − ζ (B 2a)

(see (2.4b)), where Eo : (ro, 0) is the equator of the outer sphere. Likewise, we define

α(ζ ) ≡ − 2

∫
Eo

s2
c BM · dx = 2

∫
Eo

s2
c dΦc

= 2

∫ 1

ζ

1 − 3
4
ζ

(1 − ζ )1/2
dζ = (2 − ζ )

√
1 − ζ . (B 2b)

The values of β and α at the intersection of C with the inner sphere at Q : (sQ, zQ)
are

βi ≡ β(ζi) = r2
oΦQ = 1

2
ζ −2
i

√
1 − ζi, (B 2c)

αi ≡ α(ζi) = (2 − ζi)
√

1 − ζi. (B 2d)
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For the shear-layer problem developed in § 3.3, the appropriate measure of distance
along C from Q is distance weighted by s2

c |BM |:

l(ζ ) ≡ 2

αi

∫
Q

s2
c BM · dx = 1 − α(ζ )

αi

; (B 3)

here l has been normalized by 2/αi so that l(ζi) = 0 at Q and l(1) = 1 at Eo. Equation
(3.20) governing the shear-layer C contains

1

sc

dsc

dl
=

1

sc

dsc

dζ

/
dl

dζ
=

3αi

4

√
1 − ζ

ζ
(
1 − 3

4
ζ
) , (B 4a)

while the differential equation (3.24b) for the shear-layer integral (3.24a) involves

dβ

dl
= − αi

2

(ro

sc

)2
. (B 4b)

The parameter Ξ introduced in (3.12b) is

Ξ ≡ r2
o

2

∫ 1

ζi

(
βi

β
− 1

)
ζ dζ =

ro(ro − ri)

140

(
64ζ −2

i + 32ζ −1
i − 11 − 15ζi

)
. (B 5)

Appendix C. The P-inner mainstream solution

To solve the P-inner equations (4.13a,b) we take advantage of the property
4r3

oΦoΦ
′
o = − 1 (see (2.14b)) and adopt Φo as the independent variable:

βi

r3
o

dJ
dΦo

− ε−1
o 2G = − 4r2

oΦo,
1

r2
o

dG
dΦo

= 4roΦoJ. (C 1a,b)

On making the change of variables

J =
εor

2
o

δP
J, G =

εoδP

ro

G, Φo =
δP

2r3
o

ϕ, (C 2a,b,c)

where δP is defined by (4.14), the system of equations (C 1) reduces to

dJ

dϕ
− G = − ϕ,

dG

dϕ
= ϕJ. (C 3a,b)

From (C 3a) we deduce that the boundary condition G(0) = 0 implies dJ/dϕ = 0 at
ϕ = 0 while matching with the P-outer solution (4.12a, b) requires G ≈ ϕ and J ≈ ϕ−1

respectively as ϕ ↑ ∞.
Further differentiation of (C 3a) leads to the inhomogeneous Airy equation

d2J

dϕ2
− ϕJ = −1. (C 4)

The solution, satisfying the boundary conditions dJ/dϕ(0) = 0 and ϕJ → 1 as ϕ ↑ ∞,
is

J (ϕ) = π
[
Ai′(0) Gi(ϕ) − Gi′(0) Ai(ϕ)

]/
Ai′(0) (C 5)

(see Abramowitz & Stegun 1964, pp. 446–448). Together with (C 2a) and (4.14) we
obtain

Jc = J(Ac) = ε2/3
o β

−1/3
i roJc, where Jc ≡ J (0). (C 6a,b)
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The angular velocity Ωo defined by (4.6b) is

Ωo = ϕ−1
(
G + 1

2
ε1/3

o β
−2/3
i J

)
. (C 7)

Since ϕ−1G → 1 and ϕJ → 1 as ϕ ↑ ∞, (C 7) shows that in the same limit, Ωo → 1
as required by matching to the P-outer solution (4.11b). Upon substitution of the
asymptotic behaviours J ≈ Jc and Ωo ∼ (1/2)Jcϕ, valid for small ϕ, into (C 7), we
obtain

Ωo ∼ 1
2
Jc

(
ϕ + ε1/3

o β
−2/3
i ϕ−1

)
. (C 8)

The result emphasizes the fact that though the O(ε1/3
o ) term in (C 7) is negligible

throughout most of the P-inner region leaving

Ωo ≈ ϕ−1G, (C 9)

the omitted term must be reinstated, as in (C 8), when ϕ = O(ε1/6
o β

−1/3
i ).
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