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Abstract

We investigate the instability of mixed Ekman-Hartmann boundary layers arising in rotating
incompressible magnetohydrodynamics flows in a parameter regime relevant to the Earth liquid
core. Relying on the small depth of the layer, we perform a local study in a half space at
a given co-latitude € # 7/2, and assume a mean dipolar axial magnetic field with internal
sources. Instabilities are driven, for high enough Reynolds number, by the quadratic term in
the momentum equation.

Nonlinear stability can be proven using energy methods in the neighborhood of the poles
[2]. Next, following the work of D. Lilly [6], we restrict our analysis to the linear growth phase.
We describe the dependence of the critical Reynolds number in terms of # and Elsasser number
(measuring the relative strength of Lorentz and Coriolis forces). It turns out that no matter
how large the Elsasser number is, there exists a critical band centered on the equator in which
instabilities can occur. For geophysically relevant values of parameters, this band could extend
until some 45 degrees away from the equator. This establishes the possibility of boundary layer
instabilities near the core-mantle boundary (CMB).

We finally present a first attempt of interaction with field maps at the CMB and core flows
derived from the secular variation of the field [4]. We investigate a possible relation between
boundary layer instabilities and rapid geomagnetic impulses (also called “jerks”) observed some
eight times over the last century.

1. Introduction

We investigate the instability of mixed Ekman-Hartmann boundary layers arising in rotating
incompressible magnetohydrodynamic flows in a parameter regime relevant to the Earth liquid
core. The magnetohydrodynamic flow in the Earth’s core is believed to support a self-excited
dynamo process generating the Earth’s magnetic field.

One can try to model the core by a spherical shell Q filled with a a conducting fluid of
density p, kinematic viscosity v, conductivity o, which rotates rapidly with angular velocity €2,,.
We will only consider here phenomena, occuring close to the outer bounding sphere. Important
parameters are the Ekman number F, the Rossby number ¢, the Elsasser number A and the
magnetic Reynolds number @ defined introducing the magnetic diffusivity n = (ou,) ™!, a typical
velocity U, length scale L and magnetic field B as
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We perform a local study in a half space at a given co-latitude 6 # 7/2. The incompressible
conducting fluid is assumed to be governed by the incompressible Navier—Stokes equations cou-
pled with Maxwell’s equations, in which displacement currents are neglected. Outside the Earth
core, the mantle Q¢ is considered as an electrical insulator and the magnetic field is therefore
harmonic.

At the core mantle boundary 02, we require the velocity of the fluid to vanish and the
tangential component of the electric field and magnetic field to be continuous. Since we consider
perturbations of a mean dipolar magnetic field B,, we split B into two parts B = B, + 6b,
where b denotes the scaled perturbation. Thus, equations write as follows

Vp E eq X u

A A6
gu+u-Vu+ — — —Au+ = —curlb x B+ —curlb x b, (1)
€ € € € €

curlu x B, @

Ob+u-Vb=b-Vu+ 7 + 0 (2)
divu =0, divu =0, (3)
and in Q€
curlb =0, curlE = —60;b, (4)
divE =0, divb=0. (5)

We consider in the sequel the following orderings for F, A, 0, ¢
e—=0, A=0(), -0, E~c¢. (6)
These limits are relevant for the Earth’s core, for which we use the following estimates:

B~ 5.10° nT,

p~ 10* kg.m™3,
po ~ 4m.1077 T.m.A™1,
N~ 1.1 m?2.s71,
v~ 1076 m2.s71,
Q~ 7.3.10°° rad.s !,
U~ 107 m.s~1.

This yields adimensionnal numbers of

A~ 0.25,
£~ 4.1077,
E~ 1110715,
0~  3.1.10%,
Re, ~ 16.8.

2. Nonlinear stability

First, we rigorously prove the nonlinear stability, provided the Reynolds number defined on
boundary-layer characteristics is smaller than a critical value. Is is shown that the normal
component of the magnetic field increases the critical Reynolds number for instability and that
the nonlinear stability cannot be established everywhere at the Earth’s core surface.

Let us first introduce the method on the pure Ekman case:

e(pu+u-Vu)+Vp—FEAu+eqg xu=0,

divu = 0, u,—o =0,
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where
E1/2

E~e?2 50, B =
In the interior, away from the boundary
O™ 4wl . Vul™ + pul + Vp = 0,

wnt

divu’™ = 0, u," -nj,—o=0.

Nonlinear stability will be proven in the following sense:

sup/ () — w2 < C/|u(0) () 2.

>0
The main idea of the proof relies on a formal asymptotics expansion of the solution

N 4

; BL
u~uy = Zek (u@”t(t,w,y,z) +u;, (t,w,y, W)) .
k=0
An approximate solution satisfies:
e(Opuny +uy - Vuy) + Vpy — EAuy + e X uy = O(eN+1),
div uy = 0, uN‘Z:() = 0.

The next step is to estimate the energy of the difference v=u — uy:

d |U‘2 E 2
— [ 4= <
dt 2 + € /Vv| -

/v-(u-Vu—uN-VuN)‘—l—...

BL( * )‘ 2
SC?;}S zu (E1/2 /\Vv\ +...

< CE'?sup |ut™| / Vv +...
Then, a stability criterium can be deduced

€ sup |u™ € . ULgy
Regkman = T|/2| = g Sup ™| EY? = % < Reg, (7)
where Lggman = E/? denotes the size of the Ekman boundary layer.
In the general case, one gets

|UBL|OOLBL

14

< RePr. (8)

ReBL = <~ c

For the Ekman—-Hartmann case, the equation far from the boundary writes again as

O™ + u'™ . vul™ + fui™ + Vp = 0,

divu'™ = 0, u'nt. n,—o =0,
with
2F
p= 2tan(T/9)
g2 tan(71/2)
T 1
tan —

2 A+VItAZ
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Figure 1: Representation of an analytical result from our previous study (Res), here using

present conventions. If the Reynolds number Re attached to the boundary layer is lower than

Re;, non-linear stability is demonstrated. We concentrate in the sequel on boundary layer

Reynolds number above Re;.

As a result, the Ekman—Hartmann layer is stable if

e
||UOO||ﬁ S ReS(AaHO)a (9)
since then:
AGO AGO
sup [ (|u<t) a4 My - bsP) </ (\u(O) a2 - bSP) .
>0 £ c

This expression is illustrated on figure 2. (see [2] for detailed analysis).

3. Linear Instability

We now numerically investigate the linear instability of the layer. We study the dependence
of the critical Reynolds number in terms of latitude and the Elsasser number (which measures
the relative strength of Lorentz forces and Coriolis forces). We focus on the parameter range
relevant for the Earth’s core (6). We now consider the linearized system (where A denotes the
boundary layer’s scale)

A
;(atu+U-Vu+u-VU)—%Au+¥ = X(curlb) xe'—exu+¥ ((curl B) x b + (curlb) x B),
0 1 1
X(@b%—U-Vb—I—u-VB—b-VU—B-Vu) = Xcurl(uxe)%—FAb,

divu =0, divb =0,

and seek travelling wave type solutions (f(2) exp(ia(y' — ct))). Angles are specified on figure 3..
We want to minimize Re; depending on the parameters «, 7, 6.

In the case 6, = 0 and in the absence of electromagnetic coupling, Lilly [6] showed that
the Ekman flow is linearly stable to two dimensional disturbances when the Reynolds number
Re, = €+/2/E exceeds the critical value 54.16. The purpose of this work is to extend Lilly’s
results to incompressible MHD flows at a given colatitude 6, € [0, 7/2) for dipolar static magnetic
field.

After validation of against Lilly’s study and Leibovich and Lele [7], we obtain the curve
for critical Reynolds number Re; for instability versus colatitude (figure 3.). The angle for the
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er=e;

Figure 2: Geometry of the local study. Rotation vector and magnetic field respectively make
an angle 6 and 1 with the normal to the boundary. Travelling wave solutions are sought for an
external velocity Uy,. These quantities respectively make an angle § and yo = d + v with the
plante (©2,B).

travelling wave solution with ey (namely d) is represented on figure 3.. Note the bifurcation in
two branches past a critical colatitude (as observed in the non—magnetic case by Leibovich and
Lele). Figure 5.a shows the product a X ¢, this is the pulsation of the travelling wave, near
the equator waves propagate in longitude, above and below they propagate towards the poles.
Figure 5.b displays ¢ + -, this gives the angle of Uy, with ey, note that this angle is close to
—10 degrees near the equator.

4. Linear instability from modeled large scale field over the years

We finally present a first attempt of interaction with field maps at the CMB and core flows
derived from the secular variation of the field [4]. Because the mantle is insulating, the principal
field as mesured in observatories can be expanded in spherical harmonics and downward contin-
ued to the core surface, i.e. the boundary where we seek instabilities (see figure 4.). Consecutive
models in time suggest a surface flow to account for the field variations (additional hypothesis
are however needed to ensure uniqueness of this reconstructed flow: the flow is assumed to be
of large scale and tangentialy geostrophic). We want to investigate possible relations between
boundary layer instabilities and magnetic field variations. Of particular interests are rapid ge-
omagnetic impulses (also called “jerks”) observed some eight times over the last century (1969,
1979, and 1992 are among the most recent related events [5]). These events being very rapid in
time, a small scale instability represents a very good candidate to account for these observations.

The model needs to include an additional angle 99 now that the magnetic field does not
necessarily lie in the meridional plan (see figure 4.). The computed growth rate are represented
on figure 8, whereas the large scale velocity is drawn on figure 9, both in 1980. The complete
results will be published in [4]. It is clear that center of vortices correspond to stable regions.
As expected from the results of the previous section, the most unstable zone is located in a
neighborhood of the equator in the Pacific ocean.
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Boundary layer Reynolds number

Figure 3: Boundary layer Reynolds number for instability for three different values of the Elsasser
number versus co-latitude §. An estimation of the boundary layer Reynolds number near the
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Figure 4: Angles § for instability with respect to ey represented versus the co-latitude 8. The
instability develops in the e, direction near the pole. Past a critical co-latitude (decreasing with
A) two branches of solutions exist. The instability is aligned with ey near the equator.
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Figure 5: a. phase velocity a X ¢, b. v, = 6 + v (between the ey direction and U,). Both
quantities are represented versus co-latitude 6.

Figure 6: The principal magnetic field known at the surface of the Earth can be downward
prolongated through the insulating mantle (the color code presents the radial component of the
prolongated field). This klnowledge of the field at the outer boundary of the core with the
fluid flow derived from its variations, provides the starting point for a refined boundary layer
instability study.
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Figure 7: Geometry for the local instability study based on actual magnetic field and core flow
models. An additional angle 1, is added now that the field is not purely dipolar axial.
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Figure 8: Growth rate of linear instabilities in 1980.
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Figure 9: Growth rate of linear instabilities with represented with the large scale velocity field

in 1980.
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