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We show that a model, recently used to describe all the dynamical regimes of the magnetic field

generated by the dynamo effect in the von Kármán sodium experiment, also provides a simple explanation

of the reversals of Earth’s magnetic field, despite strong differences between both systems. The validity of

the model relies on the smallness of the magnetic Prandtl number.
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The Earth’s magnetic field can be roughly described as a
strong axial dipole when averaged on a few thousands
years. As shown by paleomagnetic records, it has fre-
quently reversed its polarity on geological time scales.
Field reversals have also been reported in several numeri-
cal simulations of the geodynamo [1,2] and, more recently,
in a laboratory experiment involving a von Karman swirl-
ing flow of liquid sodium (VKS [3]). It is worth pointing
out that numerical simulations are performed in a parame-
ter range orders of magnitude away from realistic values,
and that both the parameter range and the symmetries of
the flow in the VKS experiment strongly differ from those
of Earth’s core. We thus expect that if a general mechanism
for field reversals exists, it should not depend on details of
the velocity field. This is expected in the vicinity of the
dynamo threshold where nonlinear equations govern the
amplitudes of the unstable magnetic modes. We assume
that two modes have comparable thresholds. This has been
observed for dipolar and quadrupolar dynamo modes [4]
and has been used to model the dynamics of the magnetic
fields of the Earth or the Sun [5]. However, in contrast to
these previous models, we consider two axisymmetric sta-
tionary modes and expand the magnetic field Bðr; tÞ as

B ðr; tÞ ¼ aðtÞB1ðrÞ þ bðtÞB2ðrÞ þ . . . : (1)

We define AðtÞ ¼ aþ ib and write the evolution equation
for A using the symmetry constraint provided by the in-
variance B ! �B of the equations of magnetohydrody-
namics. This imposes A ! �A; thus, the amplitude
equation for A is to leading nonlinear order

_A ¼ �Aþ � �Aþ �1A
3 þ �2A

2 �Aþ �3A �A2 þ �4
�A3 (2)

where �, �, and �i are complex coefficients. Equations of
the form (2) arise in different contexts, for instance for
strong resonances, and their bifurcation diagrams are well
documented [6]. Defining A ¼ R expði�Þ, a further simpli-
fication can be made when the amplitude R has a shorter
time scale than the phase � and can be adiabatically
eliminated. In that case, � obeys an equation of the form

_� ¼ �0 þ
X
n�1

ð�n cos2n�þ �n sin2n�Þ: (3)

The absence of odd Fourier terms results from the invari-
ance B ! �B that implies � ! �þ �. Stationary solu-
tions of (3) disappear by saddle-node bifurcations when
parameters are varied. When no stationary solution exists
any more, a limit cycle is generated which connects the
former stable point �s to �s þ �, i.e., Bs to �Bs (see
Fig. 1). This elementary mechanism for reversals is not
restricted to the validity of (3) but results from the two
dimensional phase space of (2) [1]. Thus, the qualitative
features of the dynamics can be captured using the simplest
possible model keeping the leading order Fourier coeffi-
cients �0 and �1 (�1 can be eliminated by changing the
origin � ! �þ �0).
So far, we did not consider possible effects of fluctua-

tions. The flow in the Earth’s core, as well as in the VKS
experiment, is far from being laminar. We can therefore
assume that turbulent fluctuations act as noisy terms in the
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FIG. 1 (color online). Phase space of a system invariant under
B ! �B and displaying a saddle-node bifurcation: (a) below
the onset of the saddle-node bifurcation, (square, blue): stable
fixed points; (circle, red): unstable fixed points. (b) Above the
threshold of the bifurcation, the fixed points (empty symbols)
have collided and disappeared, the solution describes a limit
cycle. Note that in (a), below the onset of the saddle-node
bifurcation, fluctuations can drive the system from Bs to Bu
(phase Bs ! Bu) and initiate a reversal (phase Bu ! �Bs) or
an excursion (phase Bu ! Bs).
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low dimensional system that describes the coupling be-
tween the two magnetic modes. In Fig. 1(a), the system is
below the threshold of the saddle-node bifurcation and in
the absence of fluctuation exhibits two stable (mixed)
solutions. If the solution is initially located close to one
of the stable fixed points, say Bs, fluctuations can push the
system away from Bs. If it goes beyond the unstable fixed
point Bu, it is attracted by the opposite fixed point �Bs,
and thus achieves a polarity reversal. A reversal is made
of two successive phases. The first phase Bs ! Bu in
Fig. 1(a) is the approach toward an unstable fixed point.
The deterministic dynamics acts against the evolution, and
this phase is slow. The second phase Bu ! �Bs, is fast
since the deterministic dynamics favors the motion.

At the end of the first phase, the system may return
toward the initial stable fixed point (phase Bu ! Bs),
which corresponds to an excursion. We emphasize that,
close enough to the saddle-node bifurcation, reversals
require vanishingly small fluctuations. To take them into
account, we modify the equation for � into

_� ¼ �0 þ �1 sinð2�Þ þ ��ðtÞ; (4)

from which we derive the evolution of the dipole by D ¼
R cosð�þ �0Þ. � is a Gaussian white noise and � is its
amplitude. We have computed a time series of the dipole
amplitude for a system below the threshold of the bifurca-
tion (�1 ¼ �185 Myr�1, �0=�1 ¼ �0:9, �0 ¼ 0:3) and

with noise amplitude �=
ffiffiffiffiffiffiffiffiffij�1j

p ¼ 0:2. The value of �1

results from a fit of paleomagnetic data (see below). The
dipole amplitude is displayed in Fig. 2 together with a time
series of the magnetic field measured in the VKS experi-
ment and the composite record of the geomagnetic dipole
for the past 2 Myr. The three curves display very similar
behaviors with abrupt reversals and large fluctuations. We
have checked that similar dynamics are obtained when
Eq. (2) with noisy coefficients is numerically integrated.
One of the most noticeable features common to these

three curves is the existence of a significant overshoot that
immediately follows the reversals. In Fig. 3, the enlarged
views of the period surrounding reversals and excursions
also show that this is not the case for the excursions. In fact,
the relative position of the stable and unstable fixed points
(Fig. 1) controls the evolution of the field. During the first
phase, reversals and excursions are similar, but they differ
during the second phase. The synopsis shows that the
reversals reach the opposite fixed point from a larger value
and thus display an overshoot while excursions do not.
Below the onset of bifurcation, reversals occur very

seldomly, which indicates that their occurrence requires
rarely cooperative fluctuations. The evolution from the
stable to the unstable fixed point (phase Bs ! Bu in
Fig. 1) can be described as the noise driven escape of the
system from a metastable potential well. The durations of
polarity intervals are equivalent to the exit time and are
exponentially distributed [7] according to

P½T� / expð�T=hTiÞ: (5)

The averaged duration hTi depends on the intensity of the
fluctuations and on the distance to the saddle-node bifur-
cation. For the model studied, we obtain

hTi ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
1 � �2

0

q exp

�
2j�1j ½2ð�1 þ �0Þ=�1�3=2

3�2

�
; (6)

which corresponds to hTi ’ 170 kyr for the parameters
used in Fig. 2. We observe that the deterministic parameter
(�=j�1j ’ 17 000 years) is of the order of the Ohmic dis-
sipation time of the Earth whereas much larger time scales
are measured for hTi because of the low noise intensity.
This explains that the mean duration of phases with given
polarity is much larger than the one of a reversal. The
above predictions assume that the noise intensity and the
deterministic dynamics do not vary in time. It is likely that
the Rayleigh number in the core and the efficiency of
coupling processes between the magnetic modes have
evolved throughout the Earth’s history. The exponential
dependence of the mean polarity duration hTi on noise
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FIG. 2 (color online). (Top) Time series of the dipole ampli-
tude for a system below the threshold of the bifurcation (see text
for the values of the parameters). (Middle) Time series of the
magnetic field measured in the VKS experiment for the two
impellers rotating with different frequencies F1 ¼ 22 Hz, F2 ¼
16 Hz (data from [3]). (Bottom) Composite paleointensity curve
for the past 2 millions years, present corresponds to t ¼ 0 (data
from [22]).
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intensity implies that a moderate change in convection can
result in a very large change of hTi. This might account for
changes in the rate of geomagnetic reversals and very long
periods without reversals (so called superchrons). The
reversal rate reported in [8] is displayed in Fig. 4 together
with a fit using Eq. (6) assuming a linear variation in time
of the coefficients governing the distance between Bs and
Bu. A simple variation of one parameter captures the
temporal evolution of the reversal rate. Thus, although it
can be claimed that there are several fitting parameters, this
quantitative agreement strengthens the validity of our
model of reversals.

We now consider the different possibilities for the mode
B2ðrÞ coupled to the Earth’s dipolar field B1ðrÞ. Assuming
that the equator is a plane of mirror symmetry, the different
modes can be classified as follows: dipolar modes are the
ones unchanged by mirror symmetry, D ! D, whereas
quadrupolar modes change sign,Q ! �Q. From an analy-
sis of paleomagnetic data, McFadden et al. have proposed
that reversals involve an interaction between dipolar and
quadrupolar modes [9]. In that case, B1ðrÞ and B2ðrÞ
change differently by mirror symmetry. If the flow is
mirror symmetric, this implies that Eq. (2) should be
invariant under A ! �A which amounts to � ! ��.
Consequently, �n ¼ 0 in (3) and no limit cycle can be
generated. We thus obtain an interesting prediction in that
case: if reversals involve a coupling of the Earth’s dipole
with a quadrupolar mode, then this requires that the flow in
the core has broken mirror symmetry. This mechanism
explains several observations made in numerical simula-
tions: reversals of the axial dipole, simultaneous with the
increase of the axial quadrupole, have been found when the
North-South symmetry of the convective flow is broken
[10]. It has been shown that if the flow or the magnetic field

is forced to remain equatorially symmetric, then reversals
do not occur [11]. The possible effects of heterogeneous
heat flux at the core-mantle boundary (CMB) on the dy-
namics of the Earth’s magnetic field have also been inves-
tigated numerically [12]. Compared to the homogeneous
heat flux, patterns of antisymmetric heterogeneous heat
flux were shown to yield more frequent reversals. Within
our description, this appears as a direct consequence of the
breaking of hydrodynamic equatorial symmetry driven by
the thermal boundary conditions. From the point of view of
the observations, little is known on the actual flow inside
the Earth’s core. It has recently been noted that the ends of
superchrons are followed by major flood basalt eruptions
and massive faunal depletions [13]. The authors suggested
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FIG. 4 (color online). Variation of the reversal rate hTi�1 close
to a superchron together with the fit with Eq. (6). Data (d) have

been extracted from [8]. j�1j ¼ 185 Myr�1, �=
ffiffiffiffiffiffiffiffiffij�1j

p ¼ 0:2,
�0=�1 ¼ �0:9ð1� 	=650Þ for 	 < 80, �0=�1 ¼ �0:9ð0:55þ
	=360Þ for 	 > 120, where 	 is time in millions of years.
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FIG. 3 (color online). Comparison of reversals and excursions in the solution of the equation for � (left), the VKS experiment
(middle) (data from [3]), and in paleomagnetic data (right) (data from [22]). Black curves represent the averaged curve, each
realization being represented in grey.
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that large thermal plumes ascending through the mantle
favor reversals and subsequently produce large eruptions.
In the light of our work, it is tempting to associate to the
thermal plumes (which provide a localized thermal forcing
at the surface of the CMB) with an enhanced deviation
from the flow equatorial symmetry, which results accord-
ing to the above description in an increase of reversal
frequency and therefore ends superchrons.

In contrast, another scenario has been proposed in which
the Earth’s dipole is coupled to an octupole, i.e., another
mode with a dipolar symmetry [14]. This does not require
additional constraint on the flow in the core in the frame-
work of our model. In any case, the existence of two
coupled modes allows the system to evolve along a path
that avoids B ¼ 0. In physical space, this means that the
total magnetic field does not vanish during a reversal but
that its spatial structure changes.

Numerical simulations of MHD equations [15] or of
mean field models have displayed reversals that involve
‘‘transitions between the steady and the oscillatory branch
of the same eigenmode’’ [16]. Other features of reversals
observed in numerical simulations at magnetic Prandtl
number of order one, such as mechanisms of advection
or amplification of the field due to localized flow processes
[17], are not described by our model which requires the
limit of small magnetic Prandtl number (relevant to the
Earth’s core). In that limit, the small scale magnetic field
induced by small scale velocity modes is strongly damped,
thus allowing the description of the dynamics by a small
number of magnetic modes.

Equations similar to (3) have been studied in a variety of
problems, for instance for the orientation of a rigid rotator
subject to a torque [18], used as a toy model for the toroidal
and the poloidal field of a single dynamo mode. Indeed,
symmetries constrain the form of the equation for � even
though the modes and the physics involved are different.
We emphasize that the above scenario is generic and not
restricted to the equation considered here. Limit cycles
generated by saddle-node bifurcations that result from
the coupling between two modes occur in Rayleigh-
Bénard convection [19]. A similar mechanism can explain
reversals of the large scale flow generated over a turbulent
background in thermal convection or in periodically driven
flows [20]. We have proposed a scenario for reversals of the
magnetic field generated by dynamo action that is based on
the same type of bifurcation structure in the presence of
noise. It offers a simple and unified explanation for many
intriguing features of the Earth’s magnetic field. The most
significant output is that the mechanism predicts specific
characteristics of the field obtained from paleomagnetic
records of reversals and from recent experimental results.
Other characteristic features such as excursions as well as
the existence of superchrons are understood in the same
framework. Below the threshold of the saddle-node bifur-
cation, fluctuations drive random reversals by excitability.

We also point out that above its threshold, the solution is
roughly periodic. It is tempting to link this regime to the
evolution of the large scale dipolar field of the Sun (which
reverses polarity roughly every 11 years). Recent measure-
ments of the Sun surface magnetic field have shown that
two components oscillate in phase-quadrature [21]. This
would be coherent with the oscillatory regime above the
onset of the saddle-node bifurcation if these components
correspond to two different modes.
We thank our colleagues from the VKS team with whom

the data published in [3] have been obtained.
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