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In a previous paper, Oruba et al. (J. Fluid Mech., vol. 818, 2017, pp. 205–240)
considered the ‘primary’ quasi-steady geostrophic (QG) motion of a constant density
fluid of viscosity ν that occurs during linear spin-down in a cylindrical container
of radius r†

= L and height z†
= H, rotating rapidly (angular velocity Ω) about its

axis of symmetry subject to mixed rigid and stress-free boundary conditions for the
case L=H. Here, Direct numerical simulation at large L= 10H and Ekman numbers
E= ν/H2Ω in the range = 10−3–10−7 reveals inertial wave activity on the spin-down
time scale E−1/2Ω−1. Our analytic study, based on E � 1, builds on the results of
Greenspan & Howard (J. Fluid Mech., vol. 17, 1963, pp. 385–404) for an infinite
plane layer L→∞. In addition to QG spin-down, they identify a ‘secondary’ set of
quasi-maximum frequency ω†

→ 2Ω (MF) inertial waves, which is a manifestation of
the transient Ekman layer, decaying algebraically ∝1/

√
t†. Here, we acknowledge that

the blocking of the meridional parts of both the primary-QG and the secondary-MF
spin-down flows by the lateral boundary r†

= L provides a trigger for other inertial
waves. As we only investigate the response to the primary QG-trigger, we call the
model ‘reduced’ and for that only inertial waves with frequencies ω† < 2Ω are
triggered. We explain the ensuing organised inertial wave structure via an analytic
study of the thin disc limit L�H restricted to the region L− r†

=O(H) far from the
axis, where we make a Cartesian approximation of the cylindrical geometry. Other
than identifying a small scale fan structure emanating from the corner [r†, z†

] = [L, 0],
we show that inertial waves, on the gap length scale H, radiated (wave energy flux)
away from the outer boundary r†

= L (but propagating with a phase velocity towards
it) reach a distance determined by the mode with the fastest group velocity.

Key words: waves in rotating fluids

† Email addresses for correspondence: ludivine.oruba@latmos.ipsl.fr,
andrew.soward@ncl.ac.uk, Emmanuel.Dormy@ens.fr

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f C

am
br

id
ge

, o
n 

29
 F

eb
 2

02
0 

at
 1

9:
13

:4
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
10

64

https://orcid.org/0000-0003-0230-8634
https://orcid.org/0000-0001-5536-5718
https://orcid.org/0000-0002-9683-6173
mailto:ludivine.oruba@latmos.ipsl.fr
mailto:andrew.soward@ncl.ac.uk
mailto:Emmanuel.Dormy@ens.fr
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.1064


888 A9-2 L. Oruba, A. M. Soward and E. Dormy

1. Introduction
The linear spin-down of a rapidly rotating fluid, when the containing boundary

is adjusted by a small amount, is characterised by two distinct transient motions.
The primary part which is largely responsible for the spin-down is a quasi-steady
geostrophic (QG) flow exterior to any quasi-steady boundary layers. A secondary part
is the excitation of inertial waves, which decay either due to boundary layer effects
or, if they are of sufficiently short length scale, in the main body of the fluid itself. In
our previous paper (Oruba, Soward & Dormy 2017), we investigated spin-down in a
cylindrical container, radius L, height H, rotating rapidly about its axis of symmetry
subject to mixed rigid and stress-free boundary conditions. There, we focused on
the aspect ratio ` ≡ L/H = 1 and, because our direct numerical simulations (DNS)
revealed little inertial wave activity or more precisely the inertial waves decayed
very rapidly (for reasons that will become clearer later) and were hardly visible,
we only investigated analytically the aforementioned primary QG-flow part. That
study was motivated by the possible application to intense nearly axisymmetric
vortices, which develop in geophysical flows, e.g. hurricanes in the atmosphere, and
westward-propagating mesoscale eddies that occur throughout most of the World
Ocean (Chelton, Schlax & Samelson 2011) as evidenced by the sea surface height
variability. Oscillations, reminiscent of inertial waves, have been observed near the
eye of actual tropical cyclones (e.g. Harlow & Stein 1974; Chen et al. 2015). The
benefits of modelling such objects by isolated structures is well established (see
Persing et al. 2015; Oruba, Davidson & Dormy 2017, 2018; Atkinson, Davidson &
Perry 2019, and references therein). For those applications the aspect ratio ` ought to
be large, and so our previous choice `= 1 is clearly not the most appropriate. Indeed,
later DNS results for large aspect ratio, namely ` = 10, have revealed considerable
persistent inertial wave activity. The analytic results of § 2 apply to all `, while
their numerical predictions are compared with DNS results of § 3 for the largish
aforementioned `= 10. However, it is only in §§ 4–6 that the analysis is restricted to
the limit, `� 1 (see (4.5b)) amenable to asymptotic treatment, enabling us to identify
the wave mechanisms that operate.

As our work builds upon Oruba et al. (2017), we only repeat essential details such
as the description of the model and needed results. Our cylindrical container is filled
with constant density fluid of viscosity ν and rotates rigidly with angular velocity
Ω about its axis of symmetry. That is the frame relative to which our analysis is
undertaken and in which the Ekman number is small:

E= ν/(H2Ω)� 1. (1.1)

Initially, at time t†
= 0, the fluid itself rotates rigidly at the slightly larger angular

velocity RoΩ , in which the Rossby number Ro is sufficiently small (Ro� E1/4) for
linear theory to apply (see Duck & Foster 2001, p. 235). Whereas, the nonlinear
development of spin-down and spin-up differ (see, e.g. Calabretto, Denier &
Mattner 2018, and references therein), their linear evolution, which we consider,
is mathematically equivalent. Relative to cylindrical polar coordinates, (r†, θ †, z†), the
top boundary (r† < L, z†

=H) and the sidewall (r†
= L, 0< z† <H) are impermeable

and stress free. The lower boundary (r† < L, z†
= 0) is rigid. For that reason alone

the initial state of relative rigid rotation RoΩ of the fluid cannot persist and the fluid
spins down to the final state of no rotation relative to the container as t†

→∞. In
order to make our notation relatively compact at an early stage, we use H and Ω−1

as our units of length and time, respectively, and introduce

r†
=Hr, z†

=Hz, Ωt†
= t. (1.2a−c)
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Spin-down inertial waves 888 A9-3

For our unit of relative velocity v†, we adopt the velocity increment RoLΩ of the
initial flow at the outer boundary r†

= L. So, relative to cylindrical components, we
set

v†
= RoLΩv, v = [u, v,w] (1.2d,e)

and refer to [u, v] and w as the horizontal and axial components of velocity,
respectively. The meridional flow [u, w] may be described by a streamfunction
rχ as

u=−
∂χ

∂z
, w=

1
r
∂

∂r
(rχ). (1.3a,b)

Owing to the impulsive nature of the transient spin-down, the classical temporally
spreading diffusion width

∆†
=

√

νt† =H∆, ∆(t)=
√

Et (1.4a,b)

provides a useful measure for defining all boundary-layer widths, both horizontal and
vertical.

1.1. Spin-down between two unbounded parallel plates
When the flow is unbounded in the radial extent the solution to the linear spin-down
problem has the similarity form

[u, v] = (r/`)[u, v](z, t), w= (1/`)w(z, t), (1.5a,b)

χ = (r/`)Ξ(z, t), Ξ = 1
2w(z, t)=

∫ 1

z
u dz, (1.5c,d)

i.e. u=−∂Ξ/∂z, by mass continuity. Here [u, v] solves

∂tu− 2(v− g)= E∂2
z u, ∂tv+ 2u= E∂2

z v, (1.6a,b)

where g(t) (independent of z) is the suitably non-dimensionalised radial pressure
gradient. It is chosen such that the total radial volume flux proportional to
Ξ(0, t)= 〈u〉 = 0, where

〈•〉 =

∫ 1

0
• dz (1.7)

is the z-average. Equation (1.6) are solved subject to the boundary conditions [u, v] =
[0, 0] at z = 0 (rigid) and [∂zu, ∂zv] = [0, 0] at z = 1 (stress free) for t > 0 and, of
course, 〈u〉 = 0 which by (1.6a) implies g= 〈v〉 − 1

2 E∂zu|z=0. The initial condition is
[u, v] = [0, 1] everywhere at t= 0.

We identify the primary part of the flow, largely responsible for the spin-down,
namely a quasi-steady geostrophic QG-flow exterior to a quasi-steady Ekman layer
adjacent to the rigid boundary z= 0 in § 1.1.1. Then, in § 1.1.2, we outline the nature
of the remaining transient motion.
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888 A9-4 L. Oruba, A. M. Soward and E. Dormy

1.1.1. The quasi-geostrophic QG-flow
In the mainstream exterior to the Ekman layer, the z-independent horizontal

components of the primary QG-velocity [uQG, vQG] = (r/`)[uQG, vQG] are described
by

[uQG, vQG](t)= vQG[
1
2 Q, 1], Q= E1/2σ . (1.8a,b)

Motion is dominated by the azimuthal velocity vQG = (r/`)vQG, where

vQG(t)= κE(t), E(t)= exp(−Qt). (1.8c,d)

The constants κ and σ are both close to unity and have expansions:

κ = 1+ 1
4 E1/2

+O(E), σ = 1+ 3
4 E1/2

+O(E) (1.8e,f )

(see Oruba et al. 2017, equations (1.3a–c)). The streamfunction χQG= (r/`)ΞQG(z, t)
(linear in z) has

ΞQG =
1
2wQG(z, t)= (1− z)uQG =

1
2 Q(1− z)vQG. (1.8g)

The non-zero value ΞQG(0, t)= 1
2 QvQG(t), corresponding to wQG(0, t)=2uQG(t), results

from the outflow from the Ekman layer, in which the horizontal velocity is [uE, vE] =

(r/`)[uE, vE] with

[uE, vE] =−vQG[sin(E−1/2z), cos(E−1/2z)] exp(−E−1/2z). (1.9)

Finally, the composite horizontal velocity [u, v] = (r/`)[u, v] is the sum

[u, v] = [uQG, vQG] + [uE, vE]. (1.10)

The azimuthal fluid flux deficit 〈v(r, z, t)〉 − vQG(r, t) (= (µ− 1)vQG(r, t), say, but
see (1.11) below) is important for our interpretation of the DNS. For although vQG(r, t)
is well defined in the limit E ↓ 0, it is not easily determined unambiguously from the
numerics at finite E. Nevertheless, we can readily calculate 〈v〉 and from it we may
extract

vQG =µ
−1
〈v〉, where µ= 1− 1

2 E1/2
+O(E), (1.11a,b)

which is the asymptotic prediction encapsulated by equation (2.20) of Oruba et al.
(2017). The result (1.11a) not only applies to the particular rigid rotation flow (1.8c)
but also to any QG-flow vQG(r, t) with arbitrary r-dependence, which is dominated
by the decay factor exp(−E1/2σ t), as in (1.8d), while possibly evolving on the longer
lateral diffusion time scale, as we will now explain.

The main thrust of Oruba et al. (2017) was to elucidate how the laterally unbounded
QG-flow (1.8) is modified by the outer sidewall at r= ` (r†

= L). There two boundary
layers form whose widths ∆(t) (see (1.4b)) evolve by lateral viscous diffusion.
One develops into the quasi-steady ageostrophic E1/3-Stewartson layer of width
∆(tS)=∆S = E1/3, which forms on the time scale tS = E−1/3. The other, importantly
QG, spreads indefinitely filling the container when ∆(t`) = ` at time t` = `2E−1. So
although (1.8) provides a valid description of the QG-motion on the spin-down time
scale tsd = E−1/2 (see (1.8b,d,e)), its radial dependence is more complicated on the
longer lateral diffusion time scale t` = `2E−1. The temporal evolution of the QG-flow
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Spin-down inertial waves 888 A9-5

vQG(r, t) is sensitive to whether or not the boundary r= ` is stress free as in Oruba
et al. (2017) or rigid as in Greenspan & Howard (1963). However, here we will
filter out any QG-motion, ignore the ageostrophic E1/3-Stewartson layer (discussed
at length in Oruba et al. 2017) and, for that matter, the Ekman E1/2

× E1/2 corner
regions, which are largely passive and have vanishing influence on the flow elsewhere
as E→ 0. Subject to those restrictions we will only investigate the remaining wave
part. With that proviso our study applies equally to both the stress-free (Oruba
et al. 2017) and rigid (Greenspan & Howard 1963) r = ` boundary cases. The DNS
solutions presented here are for the stress-free case, but simulations for the moderately
small E = 10−3 case performed with a no-slip outer wall demonstrated only minor
changes to the inertial waves generated. In summary the key times, pertaining to the
QG-study of Oruba et al. (2017), are ordered as follows:

1� tS = E−1/3
� tsd = E−1/2

� t` = `2E−1. (1.12)

In addition, we stress that all steady boundary layers form on the time scale t=E−1∆2

(see (1.4b)) of their shortest dimension ∆, so, e.g. Ekman layers and corner regions
form on the rotation time t = O(1). All times mentioned are important to us, as we
will report results exterior to all boundary layers for t > 0. So we need to be aware
of any ageostrophic motion that our study cannot explain.

1.1.2. The inertial wave of maximum frequency for t� 1
Relevant to our previous `= 1 study, but of even greater importance to the large `

of interest to us, are the aspects of the seminal work of Greenspan & Howard (1963)
that pertain to the unbounded limit `→∞. They considered the linear spin-up (the
same, except for a change of sign, as spin-down) between rigid boundaries at z=±1.
Our mathematical problem is equivalent to theirs, because at the mid-plane z= 0 their
flow characteristics mimic those at an impermeable stress-free boundary. So, since
their flow satisfies the symmetry conditions χ 7→ −χ , v 7→ v under the reflection
z 7→ −z, we may employ their approximate solution (Greenspan & Howard 1963,
equations (3.9), (3.10)). Following the replacement of their z by z− 1, the similarity
amplitudes of our transient contribution to the spin-down are

ΞMF ≈ E cos(2t)
∞∑

m=1

[
(z− 1)−

sin[ξm(z− 1)]
sin ξm

]
exp(−Eξ 2

mt), (1.13a)

vMF ≈ E sin(2t)
∞∑

m=1

[
1−

cos[ξm(z− 1)]
cos ξm

]
exp(−Eξ 2

mt), (1.13b)

where the ξm are given by the positive roots of

tan ξm = ξm +O(E1/2) (m > 1). (1.13c)

The harmonics with Eξ 2
m = O(1) are unreliable and, to ensure that they may be

neglected, it is necessary that t� 1. The nature of (1.13a,b) is clarified upon setting

ξm = (m+ 1
2)π− ιm (0< ιm < 1

2π), (1.14)

in which ιm is moderately small: ι1≈ 0.219, ι2≈ 0.129, ι3≈ 0.091 with ιm ↓ 0 as m→
∞ (see, e.g. http://mathworld.wolfram.com/TancFunction.html). Obviously, 〈uMF〉 = 0,
but the approximation tan ξm = ξm implies that 〈vMF〉 = 0 too.
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888 A9-6 L. Oruba, A. M. Soward and E. Dormy

For Et � 1, the small amplitude factor E in (1.13a,b) is misleading because
asymptotic evaluation of the sums determines larger amplitudes. To see this, we
note that, for sufficiently small Et, the factor exp(−Eξ 2

mt) is approximately unity for
m� (Et)−1/2. So many harmonics contribute to the sum, which is dominated by the
high harmonics with ξm≈ (m+ 1

2)π (see (1.14)). For those large m, we can make the
continuum approximation, whereby the sums (1.13a,b) are replaced by the integrals

ΞMF ≈ E cos(2t)
∫
∞

0
[(z− 1)+ cos(mπz)] exp(−E(mπ)2t) dm, (1.15a)[

uMF
vMF

]
≈ E

[
− cos(2t)

sin(2t)

] ∫
∞

0
[1− (mπ) sin(mπz)] exp(−E(mπ)2t) dm, (1.15b)

in which we have ignored terms in the expansions of the trigonometric forms
small by factors O(m−1). The amplitude [uMF, vMF] ∝ [− cos(2t), sin(2t)] predicted
by (1.15b) has the circularly polarised property of an inertial wave of maximum
frequency (MF) 2. Significantly, they are modulated by the m-integrals involving
temporal exponential decay, which render them quasi-MF waves. Nevertheless,
henceforth we will omit the qualification ‘quasi’ and refer to them as MF-waves.

Evaluation of (1.15) (use § 1.4 equation (11) and § 2.4 equation (19) of Erdélyi et al.
1954) shows that we may partition the solution into mainstream and boundary-layer
parts,

vMF = vMF + vMF∆, (1.16)

defined by the similarity amplitudes

ΞMF ≈ E1/2(z− 1)
cos(2t)
√

4πt
, ΞMF∆ ≈ E1/2 cos(2t)

√
4πt

exp
(
−

z2

4Et

)
, (1.17a,b)

vMF ≈ E1/2 sin(2t)
√

4πt
, vMF∆ ≈−E1/2 sin(2t)

√
4πt

z
2Et

exp
(
−

z2

4Et

)
, (1.17c,d)

valid for 1� t� E−1, which includes the important spin-down time tsd = O(E−1/2).
In view of (1.15b), uMF and uMF∆ follow from (1.17c,d) upon replacing sin(2t) by
− cos(2t).

The MF-boundary-layer flow [uMF∆, vMF∆], width ∆(t), adjacent to the lower
boundary z = 0, is the transient part of Ekman layer formation. As motion is
constrained to be largely in the plane of the boundary, the dynamics has features
in common with an inertial wave propagating in the direction (here the z-direction)
normal to the plane of motion. Such inertial waves have the maximum frequency 2
and are characterised by [u, v](r, z, t) = (r/`)[uMF, vMF](z, t) in which the similarity
amplitude [uMF, vMF] is independent of r. Hence, the Ekman outflow 2ΞMF|z=0 causes
the mainstream flow vMF to oscillate at frequency 2 as well. In the more general case
of boundaries not normal to the rotation axis, such as the slanting inner boundary
(frustum) considered by Klein et al. (2014), the boundary-layer frequency is again
that of an inertial wave propagating normal to the boundary. Then the group velocity
of the forced waves (same frequency) in the mainstream is directed parallel to the
boundary. Our case with its boundary normal z-directed is degenerate because the
group velocity in the horizontal plane vanishes!
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Spin-down inertial waves 888 A9-7

Interestingly, as already remarked below (1.14), 〈vMF〉 ≈ 0 and so 〈vMF〉 ≈−〈vMF∆〉,
as met by (1.17c,d) and consistent with the fact that vMF∆ =O(∆−1/2vMF). We stress
that the condition 〈vMF〉 ≈ 0 only holds when t � 1 for which tentative estimates
suggest

〈vMF〉 =O(t−1
〈vMF〉). (1.18)

Once Et=O(1), the MF-flow is fully z-dependent and the continuum, i.e.
∑
7→
∫

,
approximation no longer applies. Moreover, on that time scale, ΞMF and vMF (1.13a,b)
are small O(E). The first non-trivial eigenvalue ξ1≈ 4.4934 (see (1.14)) determines the
m= 1 mode with the slowest decay rate that dominates as Et→∞. Recall too that
t=O(E−1) is the time scale on which the QG-sidewall shear layer has spread laterally
an O(1) distance (as exemplified by the QG-solution, equation (3.8a), of Oruba et al.
2017).

1.1.3. The entire flow for 1� t� E−1

When we consider the entire mainstream flow vQG + vMF, an important measure is
the relative decay rates of the respective QG and MF-contributions. Specifically,

(i) the primary QG-part, vQG (see (1.8)), decays exponentially ∝ exp(−E1/2σ t);
(ii) the secondary MF-part, vMF (see (1.17c)), decays algebraically ∝ t−1/2.

At large time, the relative magnitudes of their azimuthal and radial velocities are∣∣∣∣vMF

vQG

∣∣∣∣=O((E/t)1/2eσE1/2t),

∣∣∣∣uMF

uQG

∣∣∣∣=O(t−1/2eσE1/2t). (1.19a,b)

The factor E1/2 in the estimate of the ratio |vMF/vQG| suggests that the MF-wave may
remain insignificant on the spin-down time t = O(E−1/2). However, the absence of
that factor E1/2 in the ratio |uMF/uQG| for the smaller radial velocities is interesting,
because it suggests that, on the Ekman layer formation time scale t=O(1)� tsd, which
we do not consider, the uMF and uQG contributions ought to be of comparable size.

1.2. Spin-down between two parallel plates bounded at r†
= L

The inclusion of a lateral boundary at r= ` complicates matters. In our previous study
(Oruba et al. 2017) of the quasi-steady part of the spin-down, our primary concern
was the evolution of the laterally diffusing QG-layer from that outer boundary on
the long t` = `2E−1 time scale. However, even in the unbounded case discussed in
§ 1.1, inertial waves are excited by the initial impulse, albeit limited to the degenerate
MF-type identified by Greenspan & Howard (1963). Now it is well known that a
myriad of inertial waves exist in our circular cylinder geometry as elucidated, for
example, by Kerswell & Barenghi (1995) and Zhang & Liao (2008) (see also Zhang
& Liao 2017). Though, the inertial waves triggered by the initial impulse in the
bounded cylinder geometry are evidently axisymmetric, the realised mode selection
in the closed cylinder remains complicated and is the objective of our present study.
Other investigations include: combined experimental and theoretical studies (Cederlöf
1988; Dolzhanskii, Krymov & Manin 1992; Davidson, Staplehurst & Dalziel 2006;
Klein et al. 2014), linear inertial wave activity in a half-cone (Li et al. 2012), linear
inertial wave activity in a precessing plane layer (Mason & Kerswell 2002) and linear
and nonlinear waves in a container (Jouve & Ogilvie 2014; Brunet, Dauxois & Cortet
2019).
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Indeed, evidence from the unbounded case, namely the algebraic t−1/2 decay of
the MF-modes, suggests that inertial wave generation is a minor effect. This point
of view was supported by the DNS results of Oruba et al. (2017), which showed
little evidence of any significant inertial wave generation for the case `= 1. However,
more recent DNS results for large aspect ratio (shallow) containers, namely ` = 10,
have revealed significant inertial wave activity on the spin-down time tsd = E−1/2,
as manifest particularly by the contours of χ = const. in figures 1, 2 (below) at
various times (panels a,d,g). For that reason, we focus attention on the large ` case,
but will comment briefly on the relative absence of wave activity for ` = 1 in our
concluding § 7.

Our asymptotic approach, based on small E, builds on the premise that the
Greenspan & Howard (1963) infinite plane layer solution gives a first approximation
to the finite ` bounded problem. However, the main weakness of that solution is its
serious failure to meet the impermeable boundary condition u= 0 at r= `. Specifically,
the z-independent part u(`, t) of the radial velocity has two parts,

uQG(`, t)= 1
2σκE1/2E(t) (QG-trigger) (1.20a)

(see (1.8)) and the remaining part

uMF(`, t)= u(`, t)− uQG(`, t) (MF-trigger). (1.20b)

Our objective is to identify the inertial waves ‘triggered’ by demanding that the radial
velocity correction is −u(`, t) at r= `. This simply extends the idea that flow blocking
provides the trigger for the expanding QG-shear layer at r = `, explored in § 6 of
Greenspan & Howard (1963) (see also Oruba et al. 2017).

When t = O(1), the two trigger contributions −uQG(`, t) and −uMF(`, t) are of
comparable size, but later, up until the spin-down time is reached, 1� t 6 O(E−1/2),
(1.19b) gives the estimate |uMF(`, t)|/|uQG(`, t)| = O(t−1/2) � 1 suggesting that
the QG-triggered motion dominates. Under the assumption that the MF-trigger
−uMF(`, t) is of lesser importance, we ignore it and restrict our attention to the
simpler QG-trigger, valid for 1� t 6 O(E−1). For this ‘reduced model’, we find that
the triggered waves (all with frequency ω < 2) compare remarkably well with the
DNS, when due account is taken of the distinct MF-wave (ω = 2) contribution (see
second paragraph of § 1.3). However, the failure of our reduced model to correctly
capture the early time t = O(1) nature of the complete trigger −u(`, t) leads to a
small phase shift of the dominant wave structure at late time, just perceptible in
figures 1–4. Despite this blemish, our results identify and highlight the key physical
processes that operate. However, we stress that, without consideration of the complete
trigger, detailed quantitative agreement is not to be expected. Finally we remark that
when ` is relatively large, the shallow cylinder also acts as a wave guide for the
triggered inertial waves.

Interestingly Cederlöf (1988) undertook an investigation loosely related to ours in
which, on p. 405, the three flow responses, items (i) QG (ω = 0), (ii) MF (ω = 2),
(iii) triggered inertial waves (0<ω< 2), are each identified.

1.3. Outline
On omitting the MF-flow contribution uMF responsible for the MF-trigger, we
formulate in § 2 the mathematical problem for the QG-triggered wave motion,
E1/2vwave

= v − vQG (2.1), and in § 2.1 simplify using a Fourier series in z. In
§ 2.2 we include viscosity and solve by the Laplace transform method leading to a
Fourier–Bessel series in r (see § 2.3 and appendix A). Wave modes are damped by
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0 2 4 6 8 10

1(a)
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1(b)
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t = 4.72
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1(c)
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1(d)
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1(e)
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t = 11.00
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1(g)
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1(h)
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t = 17.28
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1(i)

FIGURE 1. The case E = 10−3, χ -contours at three distinct instants t = Nπ/2 (N =
3, 7, 11) when E−1/2χMF is maximised: panels (a–c), (d–f ), (g–i) correspond to t= 4.72,
11.00, 17.28, respectively. (a,d,g) Show the direct numerical simulations E−1/2χDNS (colour
scale from −0.3 to 0.3); (b,e,h) and (c, f,i) show the filtered DNS, with the geostrophic
flow subtracted χFNS and the analytic solutions χIW , respectively (colour scale from −0.1
to 0.1).
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FIGURE 2. As in figure 1 but now at three distinct instants t= (N + 1
2 )π/2 (N = 3, 7, 11)

at which E−1/2χMF = 0. Panels (a–c), (d–f ), (g–i) correspond to t = 5.50, 11.79, 18.07,
respectively.

two mechanisms: Ekman suction (see § 2.4) and internal friction considered in § 2.3.

(i) Ekman suction leads to the decay rate dE
= O(E1/2σ E), where the factor σ E

=

(1 − |ω|/2)1/2, estimated from (2.25b,c), depends on the frequency ω. The QG-
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1(e)
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t = 11.00
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FIGURE 3. As in figure 1 but now v-contours for the same instants, at which E−1/2vMF=0
(equivalent to E−1/2χMF maximised). Panels (a,d,g) show E−1/2vDNS (colour scale from −30
to 30); (b,e,h) and (c, f,i) show vFNS and vIW , respectively (colour scale from −0.5 to 0.5).

limit ω→ 0 determines dE
→ E1/2

≈ Q in agreement with (1.8b,d), while the
MF-limit ω ↑ 2 yields dE

↓ 0. For that, the only damping mechanism is internal
friction confined to the expanding shear layer, identified by (1.17b,d), adjacent to
the lower boundary.
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FIGURE 4. As in figure 2 but now v-contours for the same instants, at which E−1/2vMF
is maximised (equivalent to E−1/2χMF = 0). Panel description as in figure 3.

(ii) Internal friction causes the decay rate, dδ = O(Eδ−2), to be dependant on the
mode length scale δ, and leads to the decay rate ratio dδ/dE

= O(E1/2/(δ2σ E)).
So Ekman suction dominates when δ4(1− |ω|/2)� E. However, for modes with
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FIGURE 5. The meridional speed E−1/2
√

u2 +w2 = r−1
|∇(rχ)| at t = 18.07 as in

figure 2(g–i). Respectively, the panels show results for: (a–c) the filtered DNS χFNS, when
(a) E= 10−3, (b) E= 10−5, (c) E= 10−7; (d) the analytic χwave in the limit E ↓ 0; (e) the
full DNS E−1/2χDNS when E= 10−7 (colour scale from 0 to 3).

frequency ω close to 2 or of sufficiently short length scale δ, i.e. when δ4(1−
|ω|/2) � E, internal friction is more important. Such small scale structure is
generated close to r= ` and quickly destroyed near that boundary at the relatively
moderate value E= 10−3 used to produce the DNS-results reported in figures 1–4.

In § 3 we explain how the entire inertial wave (IW) motion E1/2
[uIW, vIW], composed

of the triggered inertial waves E1/2
[uwave, vwave

] (see § 2) together with the basic state
MF-waves [uMF, vMF] (including their thickening boundary layer, see (1.16) and
(1.17)), may be obtained under asymptotic assumptions from the full solution by
removing the QG-part (see § 3.1, particularly (3.4) and (3.6)). For 0 < E � 1, we
extract from the DNS, by the same recipe, our so-called filtered-DNS, or simply FNS,
[uFNS, vFNS] (see (3.5) and (3.7)). Our prime objective, the comparison of [uFNS, vFNS]

with the analytic results for E1/2
[uIW, vIW] undertaken in § 3.2, is only applicable

outside all quasi-steady boundary layers; they include both the Ekman layer width
∆E = E1/2 on the rigid z = 0 boundary and the Stewartson sidewall layer width
∆s = E1/3 abutting the boundary r= `.

Most of our detailed DNS/FNS/IW-comparisons are made for E = 10−3 (see
figures 1–4). They highlight the relevance of the asymptotics for moderate values
of E. Smaller values of E are used in figures 5 and 10(b). This reduces the
boundary-layer widths and lessens the effect of internal friction, allowing us to
see better small scale features (see also animations in supplementary material A
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available at https://doi.org/10.1017/jfm.2019.1064). A sharper picture of the various
detailed structures identified in § 3 is obtained in § 4 upon setting E = 0, which
removes viscous damping entirely. To understand the complex (but elegant) wave
patterns that emerge, we further restrict our domain of interest in § 4.2 to the large
r-limit ` − r = O(1) (` � 1), for which a rectangular Cartesian approximation is
applicable. Two distinct solution techniques are employed.

Firstly in § 5, due to the omission of viscosity, the simplicity of the top z = 1
and bottom z = 0 boundaries permits our use of the method of images, convenient
for handling wave reflection at z= 1 and 0. The primary mode (i.e. unbounded and
without reflection) studied in § 5.1 (see also the supplementary material B) explains
the nature of the singularity near the corner [r, z] = 0, while, in § 5.2 and appendix B,
we appraise the full solution obtained by superimposing the images, i.e. reflections.
The approach clarifies the detailed nature of the inertial waves in the vicinity of r= `.
Further away, wave interference leaves simpler cell forms with dimensions of the gap
width unity.

So, secondly, in § 6, we consider the (r, t)-evolution of individual m-modes of
the z-Fourier series (2.7). For given integer m, we use the method of stationary
phase in § 6.2 to identify the dominant structure at given (r, t). We find that waves
reach a distance xc(t) = ` − rc(t) ∝ m−1t (fixed by the vanishing of the gradient of
the group velocity; see (6.21e)) from the outer boundary. There the waves change
character over a thickening layer width ∆c(t)∝ m−1t1/3, and become evanescent (see
also appendix C) for `− rc(t) > xc(t). Since the transition is relatively abrupt, in the
sense that ∆c(t)/xc(t) ∝ t−2/3, we refer to the layer as a front. The m-dependence,
xc(t)∝m−1, highlights the importance of the smallest m= 1 mode and explains why
detailed structure, associated with larger m, is only to be found for small ` − r,
perhaps O(1). Significantly, since dxc/dt=O(1), the waves reach the axis after time
taxis =O(`).

As we only report results for t< taxis, the relative size of taxis to the spin-down time
tsd, namely taxis/tsd = O(E1/2`), is pertinent. With ` = 10 and E = 10−3, the ratio is
O(1) but decreases in concert with E to zero. This implies that our DNS/FNS/IW-
comparisons at smaller E pertain to earlier stages of the spin-down process. Indeed,
that consideration provides the physical context, namely very early time taxis(� tsd),
for our E ↓ 0 results of §§ 4–6. We end with a few concluding remarks in § 7.

2. The mathematical problem

As already explained our objective is to investigate the inertial wave motion,
velocity E1/2vwave, which is excited by the initial impulse caused by the failure of
the radial QG-velocity u = (r/`)uQG(t) (see (1.5)) to meet the boundary condition
u = 0 at r = `. This failure leads in part to a QG-correction in the form of a shear
layer, width ∆(t)=

√
Et, expanding from r= `. We denote the entire QG-velocity by

vQG(r, t), but not, of course, limited to the special rigid rotation case (1.8). Together
they determine

v = vQG + E1/2vwave (2.1)

in the mainstream exterior to the Ekman layer adjacent to z = 0 and ageostrophic
E1/3-sidewall shear layers adjacent to r = `. The MF-contribution vMF is omitted in
our formulation because it is not part of the QG-trigger. Nevertheless, the MF-waves
will be reinstated in order to make comparison with the DNS. For that, though the

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f C

am
br

id
ge

, o
n 

29
 F

eb
 2

02
0 

at
 1

9:
13

:4
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
10

64

https://doi.org/10.1017/jfm.2019.1064
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.1064


Spin-down inertial waves 888 A9-15

mainstream/boundary-layer decomposition (1.15)–(1.17), valid for t� 1, is physically
illuminating, we adopt the primitive form (1.13), valid for all t> 0.

Subject to the above caveats, the boundary condition u = 0 at r = ` may be
expressed, using (2.1), as

(uQG − uQG)+ E1/2uwave
=−uQG. (2.2)

Elsewhere (0 6 r < `), the difference uQG(r, t) − (r/`)uQG(t) recovers the expanding
QG-shear layer with boundary condition uQG(`, t) = uQG studied by Oruba et al.
(2017). So, in what follows, we simply suppose that the inertial waves are triggered
by the remaining balance

uwave
=−E−1/2uQG =−

1
2κσ E(t) at r= ` (2.3)

(see (1.8), also (1.20a), and (2.6b) below). Throughout this section we simply solve
for the inertial waves vwave triggered by (2.3) and to simplify the notation drop the
superscript ‘wave’ and write v = [u, v,w](←[ vwave).

The complete linear spin-up/-down problem is formulated by Greenspan & Howard
(1963) in their § 2 ‘Formulation’ p. 386, where in addition the full nonlinear equation
of motion is also presented. In summary, the linear equations

∂v

∂t
+ 2u= E(∇2

− r−2)v, [u,w] =
[
−
∂χ

∂z
,

1
r
∂(rχ)
∂r

]
, (2.4a,b)

∂γ

∂t
− 2

∂v

∂z
= E(∇2

− r−2)γ , γ =−(∇2
− r−2)χ (2.4c,d)

govern azimuthal momentum (2.4a) and vorticity (2.4c) (Greenspan & Howard
1963 equations (2.4), (2.5) but also Oruba et al. 2017 equations (2.2)–(2.4)). When
restricted to our inertial wave problem, the system (2.4) is to be solved subject to
the initial (t= 0) conditions

v = 0, γ = 0, (2.5a,b)

and for t > 0 the boundary conditions

rχ = 0, at r= 0 (0< z 6 1), (2.6a)
rχ = 1

2`κσ(z− 1)E(t), at r= ` (0< z 6 1), (2.6b)
χ = 0, at z= 0, 1 (0< r< `), (2.6c)

where (2.6b) corresponds to (2.3): recall that E(t) = exp(−Qt) (1.8). We stress that
the boundary condition (2.6b) is the essential QG-trigger of our inertial waves and
the cornerstone of our investigation.

Some care is needed in the interpretation and implementation of the boundary
conditions (2.6), which strictly apply to the inviscid E= 0 problem and are insufficient
for the viscous (E 6= 0) equations (2.4). From our asymptotic, E� 1, point of view
we only address internal friction in §§ 2.1–2.3 but later incorporate the effects of
Ekman boundary layers in § 2.4. Indeed, we ignore any viscous sidewall layers at
r = ` completely, as highlighted by the discussion between (2.14) and (2.15) below.
The reason for this cavalier approach is twofold:

(i) neither the quasi-steady shear layers nor the QG-evolution of spin-down
associated with them have any influence on the triggered waves (see also
the discussion below (2.20));

(ii) our primary concern is to identify the inertial wave generation, which is all that
the E = 0 solution exhibits. Their damping is a secondary bookkeeping exercise
needed to identify what is realised at finite E so that comparisons can be made
with the DNS.
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2.1. The z-Fourier series
We seek a z-Fourier series solution[

χ

γ

]
=−κσ

∞∑
m=1

(−1)m

mπ

[
χ̃m
γm

]
sin(mπ(z− 1)), (2.7a)

chosen so that χ(r, z, t) satisfies the top and bottom boundary conditions (2.6c), and
use

1
2(z− 1)=−

∞∑
m=1

(−1)m

mπ
sin(mπ(z− 1)) (0< z 6 1) (2.7b)

in our application of the boundary condition (2.6b). The horizontal velocity is[
u
v

]
=−κσ

∞∑
m=1

(−1)m

mπ

[
ũm
ṽm

]
cos(mπ(z− 1)). (2.7c)

A further property of v, due to its assumed form (2.7c), is

〈v〉 = 0, strictly O(E1/2) (2.7d)

when the consequences of the Ekman layer are taken into account. The series (2.7a,c)
satisfy (2.4) when χ̃m(r, t) and ṽm(r, t) are governed by

∂ṽm

∂t
+ 2ũm = EDmṽm, ũm =−mπχ̃m, (2.8a,b)

∂γ̃m

∂t
+ 2mπṽm = EDmγ̃m, γ̃m =−Dmχ̃m, (2.8c,d)

in which

Dm• =
1
r
∂

∂r

(
r
∂•

∂r

)
−

(
1
r2
+ (mπ)2

)
• . (2.8e)

They are to be solved subject to the initial (t= 0) conditions

ṽm = 0, γ̃m = 0 H⇒ χ̃m(r, 0)= I1(mπr)/I1(mπ`) (2.9a−c)

(see (2.5) together with (2.8d) and (2.10) below), and for t>0 the boundary conditions

rχ̃m = 0, at r= 0 (0< z< 1), (2.10a)
rχ̃m = `E(t), at r= ` (0< z< 1) (2.10b)

(see (2.6a,b) and (2.7b)).
In the following §§ 2.2 and 2.3, we solve the problem posed by (2.8)–(2.10) by the

Laplace transform (henceforth LT) method. To that end it is helpful to note that the
initial value, χ̃m(r, 0)= I1(mπr)/I1(mπ`) (2.9c) can be represented, via the use of the
Fourier–Bessel series (A 3) with q= i (giving J1(imπr)= iI1(mπr)), in the form

I1(mπr)
I1(mπ`)

=−

∞∑
n=1

Fmn
J1( jnr/`)
jnJ0( jn)

on 0 6 r< `, (2.11a)

where jn denotes the nth zero (> 0) of J1(x), and

Fmn =
q2

mnω
2
mn

2
, ωmn =

2√
q2

mn + 1
, qmn =

jn

mπ`
. (2.11b−d)
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2.2. The Laplace transform solution
We employ the LT

•̂(z, p)=Lp{•(z, t)} ≡
∫
∞

0
•(z, t) exp(−pt) dt, (2.12)

in which the subscript ‘p’ to the LT-operator L identifies the independent transform
variable. The LT of the governing equations (2.8a–d) and initial conditions (2.9)
determine

p̂̃vm − 2mπ̂̃χm = EDm
̂̃vm, (2.13a)

pDm
̂̃χm − 2mπ̂̃vm = ED2

m
̂̃χm, (2.13b)

where the differential operator Dm is defined by (2.8e),

[̂̃χm,
̂̃vm](z, p)=Lp{[χ̃m, ṽm]} (2.13c)

and Lp is defined by (2.12). Elimination of ̂̃vm leads to a single equation for ̂̃χm,

(p− EDm)
2Dm

̂̃χm − 4(mπ)2 ̂̃χm = 0. (2.14)

As already stressed, we ignore viscous boundary layers and solve (2.14) on the basis
that, when E= 0, it is second order in r, for which the endpoint boundary conditions

r ̂̃χm = 0 at r= 0 and

{
r ̂̃χm = `Ê(p) at r= `,
Ê(p)= (p+Q)−1,

(2.15a,b)

namely the LTs of (2.10) and (1.8d), suffice. Upon seeking modal solutions of the
form [̂̃χm̂̃vm

]
=

[
1

2mπ/p

]
Ê(p)

J1(mπqr)
J1(mπq`)

, (2.16a)

that meet the boundary condition (2.15b) at r= ` and have the property

Dm
̂̃χm =−(q

2
+ 1)(mπ)2 ̂̃χm, (2.16b)

it follows from (2.14) that p and q are related by the ‘dispersion relation’

p2
=−4/(q2

+ 1), where p= p+ E(q2
+ 1)(mπ)2, (2.17a,b)

equivalently

q2
+ 1=−4/p2 and p= p+ E(2mπ)2/p2, (2.17c,d)

from which we obtain the useful result

p
dp
dp
= p− 2E

(2mπ)2

p2
. (2.17e)
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We utilise the inverse-LT of (2.12), namely

• (z, t)=L−1
p {•̂(z, p)} ≡

1
2πi

∫ i∞+c

−i∞+c
•̂(z, p) exp(pt) dp, (2.18)

with c sufficiently large that the integration contour is to the right of all poles. When
applied to ̂̃χm, defined by (2.16a), we may simply write

χ̃m =L−1
p

{
Ê(p)

J1(mπqr)
J1(mπq`)

}
. (2.19)

The initial condition (2.9c) is recovered on expanding the corresponding integrand of
the inverse-LT integral (2.18) about the limit p→∞ (appropriate to t ↓ 0), for which
q→ i (see (2.17a,b)) and pÊ(p)→ 1. For t> 0 the inverse of (2.16a) has two parts:

[χ̃m, ṽm] = [χ̃
k
m , ṽ

k
m ] + [χ̃

AG
m , ṽAG

m ]. (2.20)

The former inertial wave part [χ̃k
m , ṽ

k
m ] stems from the residues (denoted by Res{}) at

the set k of poles p= pmn( 6= 0) linked to the zeros jn of the denominator J1(mπq`)
in (2.19), i.e. q= qmn= jn/(mπ`) (see (2.11d)); for t> 0, explicit evaluation in (2.21)
below shows that each inertial wave part has the property χ̃k

m (`, t) = 0. The poles
pmn(6= 0) are pure imaginary, when E= 0 (see (2.17a,b)), and are thus associated with
wave motion. The latter ageostrophic part [χ̃AG

m , ṽAG
m ] stems from the residues at the

poles of Ê(p)= (p+Q)−1 and p−1. When internal friction is included (dmn 6= 0), this
ageostrophic part determines a Stewartson E1/3-layer and alone meets the boundary
condition χ̃AG

m (`, t)=E(t) (see (2.15b)). However, since we have not applied any stress
related boundary conditions, the flow so determined is unphysical and we consider it
no further. Hence, the wave part of the velocity vwave alluded to in (2.1) is simply vk,
valid on the entire range 0 6 r 6 `.

2.3. The r-Fourier–Bessel series
The residue calculation outlined above is messy to implement, because evaluation of
the residues involves first determining the p-derivatives of the denominator J1(mπq`)
at the poles pm,n ∈k. It can be done but that complication is best bypassed by use of
the Fourier–Bessel series (A 3) with q2

=−1− 4/p2 (2.17a), q2
mn =−1+ 4/ω2

mn (see
(2.11c)) giving 2q2

mn/(q
2
mn− q2)=Fmnp

2/(p2
+ω2

mn) on use of (2.11b). It enables us to
express the residue sum for [χ̃k

m , ṽ
k
m ] derived from (2.16a) directly in the form[

χ̃k
m
ṽkm

]
= −

∞∑
n=1

J1( jnr/`)
jnJ0( jn)

FmnRes
p∈k

{[
p

2mπ

]
p exp(pt)
p2 +ω2

mn

1
p+Q

}

= −

∞∑
n=1

J1( jnr/`)
jnJ0( jn)

Fmn

(
Res
p∈k+

{[
p/2
mπ

]
exp(pt)
p− iωmn

1
p+Q

}
+ c.c.

)
. (2.21)

The pole structure is immediately apparent and identified by the pole half-set, k+,

p= pmn = iωmn ⇐⇒ p= pmn = iωmn − dmn (2.22a,b)
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having ωmn = Im{pmn} > 0, which when combined with their complex conjugates
(denoted by c.c.) form the complete set k. On use of (2.17d,e), we determine

dmn =
E(2mπ)2

ω2
mn

H⇒

[
p

dp
dp

]
p=iωmn

= iωmn + 2dmn. (2.22c,d)

Evaluation of the residues in (2.21), noting that the factor dp/dp|p=iωmn is needed in
the denominator, yields[

χ̃k
m
ṽkm

]
=

∞∑
n=1

J1( jnr/`)
jnJ0( jn)

Fmn

[
◦

χ
k
mn
◦

v
k
mn

]
exp(−λmnt), (2.23a)

in which Fmn is defined by (2.11b) and[
◦

χ
k
mn
◦

v
k
mn

]
=

[
−

1
2

imπ/ωmn

]
iωmn + 2dmn

iωmn − dmn +Q
exp(iωmnt)+ c.c. (2.23b)

Written explicitly, equation (2.23a) is

χ̃k
m =−

∞∑
n=1

Fmn
J1( jnr/`)
jnJ0( jn)

(CE
mn cos φmn + SE

mn sin φmn) exp(−λmnt), (2.24a)

ṽkm =−

∞∑
n=1

Fmn
2mπ

ωmn

J1( jnr/`)
jnJ0( jn)

(CE
mn sin φmn − SE

mn cos φmn) exp(−λmnt), (2.24b)

where

CE
mn = 1−

(3dmn −Q)(dmn −Q)
ω2

mn + (dmn −Q)2
, SE

mn =
(3dmn −Q)ωmn

ω2
mn + (dmn −Q)2

, (2.24c,d)

and

φmn(t)=ωmnt, λmn = dmn. (2.24e,f )

Since the boundary condition (2.10b) on χ̃m at r = ` is non-zero, it is counter-
intuitive that each χ̃k

m (`, t) vanishes. The apparent paradox is resolved by noting the
non-zero value of χ̃m(`, t) is accommodated by the quasi-steady ageostrophic part
χ̃AG

m (`, t) that we disregard.

2.4. Ekman layer damping
The various frictional damping effects that we need to consider are encapsulated by
equation (4.5) of Zhang & Liao (2008), which consists of three sets of terms. The
first corresponds to our internal friction decay rate dmn. The second, proportional to
their Γ −1 (our `−1), corresponds to decay caused by the end wall boundaries, which
is negligible in our large aspect `� 1 limit. Indeed, that friction is absent for our
stress-free outer boundary. The third, namely the remaining pair of terms, identifies
the Ekman layer decay rate dE. For that, we halve the Zhang & Liao result because
we only have an Ekman layer on z = 0 and no layer on z = 1. Accordingly, to
accommodate Ekman layer dissipation, we add the complex growth rate

pE±
mn =−dE

mn ± iωE
mn, (2.25a)
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where [
dE

mn
ωE

mn

]
=

1
2 E1/2σmn+σmn−

[
σ 3

mn+ + σ
3
mn−

σ 3
mn+ − σ

3
mn−

]
, σmn± =

√
1±ωmn/2 (2.25b,c)

(c.f. also Scott 2014, equation (2.22), but in Cartesian geometry and with time unit
(2Ω)−1 rather than our Ω−1). Here, the correction ωE to the frequency is not given
by Zhang & Liao, but can be determined from the formula (2.12) of Kerswell &
Barenghi (1995). To conclude, the formula (2.24a,b) continues to hold, but with
(2.24e, f ) replaced by

φmn(t)= (ωmn +ω
E
mn)t+ ε

E
mn, λmn = dmn + dE

mn, (2.26a,b)

in which the small phase corrections εE
mn are not determined by the aforementioned

results. Although εE
mn is the same size as ωE

mn, as time proceeds it becomes small
compared to the secular phase ωE

mnt. Accordingly, we believe εE
mn to be unimportant

and set εE
mn = 0 in all our numerical evaluations.

3. Comparison with the DNS
To solve the entire linear spin-down problem, we performed DNS of the full

governing equations (2.4) subject to the initial conditions

v/r= 1, rχ = 0 everywhere at t= 0, (3.1)

and boundary conditions

rχ =
∂(v/r)
∂r
=
∂w
∂r
= 0, at r= 0 and ` (0< z< 1), (3.2a)

rχ =
∂(rχ)
∂z
= v/r= 0, at z= 0 (0< r< `), (3.2b)

rχ =
∂2(rχ)
∂z2

=
∂(v/r)
∂z
= 0, at z= 1 (0< r< `), (3.2c)

i.e. the bottom plate is rigid (3.2b), whereas the top and side boundaries are stress
free (3.2a,c).

We solved (2.4) using second-order finite differences in space, and an implicit
second-order backward differentiation (BDF2) in time. We used a stretched grid,
staggered in the z-direction. The simulations were performed with a spatial resolution
up to 2500× 2000, a convergence study confirmed that this resolution is sufficient at
the Ekman number considered here.

In § 2 we considered, from an asymptotic point of view, the inertial wave response
E1/2vwave outside the Ekman layer (see (2.1)) to the QG-trigger subject to the reduced
set of initial and boundary conditions (2.5) and (2.6). The superscript ‘wave’, dropped
in § 2, is reinstated throughout this section. On excluding the sidewall layers, we have
E1/2vwave

= E1/2vk, i.e. the pole contributions. Those considerations ignored the MF-
wave contribution vMF, which needs to be added to E1/2vwave to construct the complete
inertial wave structure E1/2vIW ,

v = vQG + E1/2vIW, E1/2vIW = vMF + E1/2vwave. (3.3a,b)

Our goal is to compare the § 2 results with the DNS identified by the subscript ‘DNS’
and illustrated in panels (a,d,g) of figures 1–4 (below). Care must be taken with the
scale factor E1/2 introduced in E1/2vIW , E1/2vwave and evident in the relations (3.4)–
(3.7) (below). Once these inter-relations have been set up in the following § 3.1, we
adopt the scaling E−1/2v (as in vIW , vwave) for our reference velocity unit in all our
figures.
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3.1. The filtered DNS-velocity vFNS

The most dominant feature of the spin-down, exterior to the bottom Ekman layer,
is the z-independent azimuthal QG-flow vQG, which is larger by a factor of at least
O(E−1/2) than almost all other contributions to the complete flow description. So,
to make comparison with results based on our § 2 theory for E1/2vwave, we need
to remove vQG from v. As vQG is not easily identifiable from the numerics, we
determine it indirectly from the z-average 〈v〉 of v. To this end, we note that, on
ignoring all wave motion, equation (1.11) indicates that 〈v〉 = µvQG + O(E), a result
that even holds in the expanding QG-shear layer adjacent to the outer boundary r= `.
Interestingly, for t � 1, although the MF-wave has vMF = O((E/t)1/2) (see (1.17c),
its z–average 〈vMF〉 is smaller by a factor O(t−1): 〈vMF〉 = O(E1/2t−3/2) (see (1.18)).
Furthermore the inertial waves E1/2vwave in their assumed form (2.7c) have zero
z-average. That assumption is based on neglect of their associated Ekman layer. In
practice, these Ekman layers carry an azimuthal flux smaller by a factor O(E1/2) so
that E1/2

〈vwave
〉 = O(E). This fortuitous estimate indicates that the (IW-)contribution

E1/2vIW (3.3b), outside the Ekman layer, is related to the full solution by

vIW = E−1/2vMF + v
wave
= E−1/2(v −µ−1

〈v〉)+O(E1/2) (3.4)

on a spin-down time t=O(E−1/2) large compared to unity.
We also assume that the quasi-steady z-dependent correction to vQG is relatively

small O(E|vQG|) (see Oruba et al. 2017, equation (2.11a)) so that its presence on the
right-hand side of (3.4) does not corrupt the recipe for the IW-part vIW , at any rate to
the order of accuracy needed. Importantly, we may evaluate v−µ−1

〈v〉 directly from
the DNS results and refer to

vFNS = E−1/2(vDNS −µ
−1
〈vDNS〉) (3.5)

as the ‘filtered DNS’ or simply FNS. It should be emphasised that this filter is delicate
as it needs to determine the difference of the O(1) quantities vDNS and µ−1

〈vDNS〉

accurately to O(E1/2). In figures 3 and 4 (below), we portray vFNS in the FNS panels
(b,e,h), derived from E−1/2vDNS illustrated in the DNS panels (a,d,g), while vIW is
shown in the IW panels (c, f,i).

All contributions to the radial flow u are O(E1/2). Nevertheless, just as for v, we
need to first identify the QG-part uQG =

1
2σE1/2vQG =

1
2(σ/µ)E

1/2
〈vQG〉 (the same

recipe as in (1.8a,b), also (1.11)), and note that the IW-contribution, outside the
Ekman layer, is

uIW = E−1/2uMF + uwave
= E−1/2(u− uQG)+O(E1/2)

= E−1/2u− 1
2(σ/µ)〈v〉 +O(E1/2) (3.6a)

on the spin-down time t = O(E−1/2). Exactly as before in our consideration of vQG,
we neglect the small quasi-steady z-dependent correction O(E|uQG|) to uQG (see
Oruba et al. 2017, equation (2.11b)) on the right-hand side of (3.6a). On defining
the mainstream streamfunction as rχ = r

∫ 1
z u dz, we may extract the IW-part via the

recipe

χIW = E−1/2χMF + χ
wave
= E−1/2χ − 1

2(σ/µ)(1− z)〈v〉 +O(E1/2). (3.6b)

The results (3.6a,b) suggest that we define the radial FNS-velocity and streamfunc-
tion by

uFNS = E−1/2uDNS −
1
2(σ/µ)〈vDNS〉, (3.7a)
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χFNS = E−1/2χDNS −
1
2(σ/µ)(1− z)〈vDNS〉. (3.7b)

In figures 1 and 2 (below), we portray E−1/2χDNS in the DNS panels (a,d,g), χFNS in
the FNS panels (b,e,h) and χIW in the IW panels (c, f,i).

3.2. The inertial wave vIW comparison with vFNS

In the FNS and IW panels of figures 1–4, contours are scaled consistently as in
(3.4)–(3.7) so that amplitude comparisons are readily discernible. The full DNS results,
however, exhibit a wider amplitude range, because they contain, in addition to the
IW-contribution, the generally large QG-part. It is therefore impractical to employ the
same scaling in the DNS panels as used in the FNS and IW panels. The DNS panels
are, however, important as they illustrate the entire spin-down process and provide a
visual measure of the relevance of the IW-contribution. This is particularly pertinent
to E−1/2vDNS which is O(E−1/2) larger than both vFNS and vIW .

The results portrayed in figures 1–4 all concern E= 10−3. The lower Ekman layer
has width E1/2 + 0.03, which is perhaps most readily identifiable in the azimuthal
velocity E−1/2v contour plots of figures 3 and 4. The well-known Ekman spiral is
evident in the DNS panels, whereas on the blown up scale of the FNS panels it
blurs and appears as thin black shaded layer. There is also a persistent ageostrophic
E1/3-sidewall layer at r= ` of width 0.1. Our FNS- and IW-results are only meaningful
in the regions exterior to those quasi-static boundary layers. Note that neither the
Ekman layer nor the sidewall layer appears on the IW panels as they are not part
of either of the constituents (χMF, vMF) or (χwave, vwave) that together compose the
IW-solution.

The time range of our plots starts at t = 4.72 > 1 (i.e. large compared to the
spin-down time) in figures 1 and 3, panels (a–c) and ends at t= 18.07< 103 (i.e. short
compared to the MF boundary-layer (width ∆(t) =

√
Et (1.4b)) diffusion time E−1

needed to fill 0 < z < 1) in figures 2 and 4, panels (g–i). Essentially, the results
apply on the spin-down time tsd =E−1/2 + 30. The actual times chosen in figure 1 (3)
are t = Nπ/2 (N = 3, 7, 11) at which the MF-wave contribution E−1/2χMF ∝ cos(2t)
given by (1.17a) is maximised (for E−1/2vMF ∝ sin(2t) = 0, see (1.17c)). The times
t = (N + 1

2)π/2 (N = 3, 7, 11) used in figure 2 (4) are when E−1/2χMF ∝ cos(2t)= 0
(E−1/2vMF ∝ sin(2t) is maximised). The idea is that at times when E−1/2χMF = 0
(E−1/2vMF = 0), the FNS and IW panels for E−1/2χ (E−1/2v) in figure 2 (3) simply
describe χwave (vwave). However, at times, when E−1/2χMF (E−1/2vMF) are maximised,
the FNS and IW panels for E−1/2χ (E−1/2v) in figure 1 (4), through comparison
with figure 2 (3), identify the role of the E−1/2χMF (E−1/2vMF) contribution. Perhaps
the most striking characteristic of this comparison is that E−1/2χMF (E−1/2vMF)
identified in figure 1 (4) is non-zero throughout the entire domain, just as predicted
by (1.17a (c)). By contrast χwave (vwave) identified in figure 2 (3) is only non-zero
for a limited radial extent from the outer boundary r = `. In the following § 4 we
ignore all damping and in § 6 explain this phenomenon. There is also much detailed
structure in a subdomain close to r= `, which we explain in § 5.

As explained in § 1.1.2(b) and noted earlier in this subsection in the context of time
scales, the MF-wave possesses a spreading boundary-layer width ∆(t)=

√
Et adjacent

to the lower boundary z= 0 quantified by (1.17b,d). This layer is most clearly evident
in the IW panels of figure 4 (sufficiently far to the left for vwave to be negligible),
for which the Ekman layer is absent. It is also evident in the FNS panels, where it
extends beyond the prominent Ekman layer. These features can also be identified, but
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less obviously, in the corresponding panels of figure 1 (sufficiently far to the left for
uwave to be negligible).

The values of χwave, vwave used for our IW-plots are given by the z-Fourier series
(2.7a,c) using χ̃m, ṽm determined by (2.24a,b). Since we found that the slow decay of
the QG-flow has virtually no effect on the result, we set

Q= E1/2σ = 0 (3.8)

in (2.24c,d), which define the parameters CE
mn, SE

mn (2.24a,b). As the formulae (2.24c,d)
for the phase φmn(t) and decay rate λmn account only for the damping by internal
friction, we used instead (2.26a,b), which also takes into account Ekman damping,
but with the slight change of phase εE

mn set to zero, as explained there. To assess
whether or not our damping predictions are reasonable, we need to compare the FNS
IW panels for χFNS and χIW in figure 2 (noting that E−1/2χMF≈ 0) and vFNS and vIW in
figure 3 (noting that E−1/2vMF ≈ 0). Our theoretical model, although generally good,
appears to slightly overestimate damping on the shorter length scales. This appears
to be a shortcoming of our choice of the QG-trigger uQG(`, t)= 1

2σκE1/2E(t) (1.20a).
As we will report elsewhere, the inclusion of the MF-trigger uMF(`, t) improves the
comparison.

4. No damping E ↓ 0

With dissipation included the z-Fourier series representations (2.7a,c) for χ and v
(the superscript ‘wave’ is again generally dropped, except to avoid ambiguity when
discussing numerical results portrayed in the figures), possessing r-Fourier-Bessel
series coefficients (2.24a,b) with parameter values (2.24c,d) and (2.26a,b), determine
results, which compare well with the DNS for E = 10−3, as figures 1–4 in § 3
illustrate. Nevertheless, at that moderately small E, motion on small scales suffers
considerable dissipation and decays rapidly.

To assess the extent to which our wave predictions are visible at smaller E, we plot
filtered DNS (FNS) contours of the meridional speed E−1/2

√
u2 +w2 = r−1

|∇(rχ)| at
E=10−3, 10−5 and 10−7 in figure 5(a–c) at t=18.07. As E decreases from 10−3, a fan
structure emerges near the corner [r, z]= [`,0], which converges rapidly to that for the
analytic χwave contours at E= 0 portrayed in figure 5(d). Although χIW = E−1/2χMF +

χwave (see (3.6b)), rather than χwave, ought to be compared with the FNS results,
the good agreement of figure 5(c,d) suggests that the MF-contribution is negligible,
a suggestion supported by inspection of figure 10(b) at the ordinate t = 18.07 (see
also the discussion in the penultimate paragraph of § 6.3 prior to § 7). Finally we plot
unfiltered DNS contours at E = 10−7 in figure 5(e) expecting the QG-contribution to
χDNS to obscure the waves. That does not happen; instead, the wave pattern remains
prominent though somewhat distorted by the QG-flow.

To explore the suggestions from the small E results of figure 5 in more detail, we
formulate the E ↓ 0 problem in § 4.1 and then identify a large r domain in § 4.2
amenable to asymptotic study.

4.1. Formulation and results
On setting E = 0 in (2.4a–d), these governing equations together with the initial
conditions (2.5a,b) and boundary condition χ = 0 at z= 1 (2.6c) determine

χ =

∫ 1

z
u dz, v =−2

∫ t

0
u dt= 2

∫ t

0

∂χ

∂z
dt, γ = 2

∫ t

0

∂v

∂z
dt. (4.1a−c)
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t = 5.50

t = 11.79

t = 18.07

t = 24.35

FIGURE 6. The analytic χwave-contours in the E ↓ 0 limit at sequential times t = (N +
1
2 )π/2. (a) N = 3, (b) N = 7, (c) N = 11, cf. figures 2(c), ( f ), (i) respectively. (d) N = 15
(colour scale from −0.1 to 0.1).

We continue to consider the representations (2.7a,c) and (2.24a,b), in which Fmn =

q2
mnω

2
mn/2 (2.11b) and φmn=ωmnt (2.24e), but set E1/2σ =Q= 0, κ = σ = 1, dmn= 0 so

that the coefficients become CE
mn= 1, SE

mn= 0 (see (2.24c,d)) and λmn= 0 (see (2.24f )).
In this way, equation (2.24a,b) yield

χ̃m = χ̃
k
m =−

∞∑
n=1

q2
mnω

2
mn

2
J1( jnr/`)
jnJ0( jn)

cos(ωmnt), (4.2a)

[
ũm
ṽm

]
=

[
ũk

m
ṽkm

]
=

∞∑
n=1

qmnω
2
mn

2
J1( jnr/`)
`J0( jn)

[
cos(ωmnt)

−(2/ωmn) sin(ωmnt)

]
. (4.2b)

4.1.1. The E ↓ 0 results
Some solutions χwave

= χ and vwave
= v, realised by substitution of (4.2) into

(2.7a,c), are illustrated in figures 6 and 7, respectively. The times t = 5.50, 11.79,
18.07 adopted in the first three panels (a–c) of figure 6 correspond to the prescription
t = (N + 1

2)π/2 (N = 3, 7, 11) adopted in figure 2, for which E−1/2χMF = 0. By
this choice, we see how the small scale structure of χwave visible in figure 6(a–c)
particularly near the outer boundary r = ` is largely eliminated by dissipation in the
contour plots of χIW in figure 2(c, f,i). Likewise, at times t = 4.72, 11.00, 17.28, i.e.
t = Nπ/2 (N = 3, 7, 11) when E−1/2vMF = 0, a similar comparison of figure 7(a–c)
with figure 3(c, f,i) can be made. To understand in detail this small scale structure,
we formulate an asymptotic approach in § 4.2 based on `� 1 (see (4.5)), which we
apply in §§ 5 and 6.
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t = 11.00

t = 17.28

t = 23.56

FIGURE 7. The analytic vwave-contours in the E ↓ 0 limit at sequential times t = Nπ/2.
(a) N = 3, (b) N = 7, (c) N = 11, cf. figures 3(c), ( f ), (i), respectively. (d) N = 15 (colour
scale from −0.5 to 0.5).

A striking feature of χwave plotted in figure 6, but also evinced by the vwave plots in
figure 7, is the limited distance, x(t)= `− r(t) (say), reached by the wave disturbance
triggered at the outer boundary r = `. For that reason, it is instructive to consider
results for the individual Fourier modes

χwave
m (r, z, t)=−(mπ)−1χ̃m sin(mπz) (4.3)

(see (2.7a)) for which contour plots with m= 1, 2 are illustrated in figure 8 at times
t=15 and 25. Indeed, on comparing the m=1 panels (a,b) with the m=2 panels (c,d),
suggests that each of these two m-modes reaches a distance xm(t)= `− rm(t) related by
x1(t)≈ 2x2(t), with the possible implication that the larger m-modes reach a distance
decreasing with m. This idea is explored further in the space–time (0< t6 30) contour
plots of χwave

m (r, zm, t), for the m = 1, 2 modes, in figure 9(a,b), at their respective
maxima z1=0.5, z2=0.25. From these the spatial extent rm(t). r<` is clearly visible.

In view of the above remarks, we reassess the wave activity in figures 6 and 7.
Sufficiently far to the left, the waves, when existent, are clearly dominated by the
m= 1 mode. On halving the distance to the right-hand outer boundary, r = `, some
interference from the m = 2 mode is visible. Yet further reduction of that distance
leads to interference from successive higher harmonics, that complicates the picture
more. Note too that, though the waves penetrate further to the left with time, a feature
of their negative group velocity, the waves themselves propagate to the right with
positive phase velocity.
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FIGURE 8. The analytic χwave
m -contours in the E ↓ 0 limit (see (4.3)) for the cases m= 1

at (a) t= 15, (b) t= 25, and m= 2 also at (c) t= 15, (d) t= 25 (colour scale from −0.1
to 0.1).

t

30

25

20

15

10

5

0 2 4 6 8 10
r

30

25

20

15

10

5

0 2 4 6 8 10
r

(a) (b)

FIGURE 9. The analytic χwave
m -contours in the E↓ 0 limit (see (4.3)) at fixed z= zm, in the

r–t plane for `= 10. Pertaining to the asymptotic `� 1 results of § 6.3: the solid black
line identifies the critical group velocity, i.e. cgct+ (`− r)= 0 with cgc +−0.245/m (see
(6.21c)) valid for ` − r = O(1). The dashed black line corresponds to the critical phase
velocity cpct= r with cpc=−3cgc + 0.735/m (cf. (6.21d)) also only valid for `− r=O(1).
(a) m= 1 with z1 = 0.5; (b) m= 2 with z2 = 0.25 (colour scale from −0.1 to 0.1).

4.1.2. The E� 1 results
Now the complete inertial wave response is the sum of the MF-wave and the

triggered waves,

χIW = E−1/2χMF +

∞∑
m=1

χwave
m (4.4)
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FIGURE 10. The filtered DNS (FNS) χFNS-contours at fixed z= 0.5, as in 9(a). (a) E=
10−3, (b) E= 10−5 (colour scale from −0.1 to 0.1).

(see (3.6b) and (4.3)). In order to make comparison with the DNS, we plot χFNS-
contours at z = z1 = 0.5 in figure 10 for the cases E = 10−3, 10−5 in panels (a,b)
respectively, in the same style as χwave

1 in figure 9(a). So whereas figure 9(a) concerns
χwave

1 , figure 10 for χIW comprises E−1/2χMF and the other odd harmonics χwave
m (m=

3, 5, 7, . . .) non-zero at z= z1 = 0.5. To the left of the line r≈ r1(t), namely 0< r .
r1(t), where the triggered waves have not reached, only the MF-wave is visible. To the
right of the line, namely r1(t). r<`, much of the pattern in figure 9(a) is reproduced
in figure 10(b) for E = 10−5, broken up to some extent by the MF-wave. However,
there is little evidence of the higher m > 3 harmonics, which only penetrate a short
distance from r= `. The suggestion from figure 10(a,b) is that, although the MF-waves
dominate initially, the triggered inertial waves with frequency less than 2 are more
persistent, a suggestion that must be tempered by the following considerations. At the
end of the introduction (§ 1), we noted the importance of the ratio of the time the
triggered waves take to reach the axis r = 0 (figure 10 suggests taxis ≈ 40 = 4`) and
the spin-down time, namely taxis/tsd = O(E1/24`). With ` = 10, the ratio is O(1) for
E= 10−3 but a factor 1/10 smaller for E= 10−5, a consideration which suggests that
figure 10(a) concerns events on the spin-down time, whereas figure 10(b) concerns
events at a relatively early stage of spin-down. For that our estimate (1.19b) is also
relevant, in the sense that the MF-wave decays algebraically while the inertial wave
decays exponentially like the QG-flow with virtually no decay when E1/2t� 1.

In the above discussion, we introduced the distance xm(t) = ` − rm(t), that each
m-mode reaches from the boundary r = `, in a qualitative way. In § 6 we use our
asymptotic theory, based on `� 1 (see (4.5)), to derive robust results based on x=
O(1), i.e. valid far from the symmetry axis r= 0.

4.2. The Cartesian limit, `= L/H� 1, `− r=O(1)
The wave solutions are best understood by their behaviour at large r. So throughout
this section and the following §§ 5 and 6, we restrict our attention to

x= `− r=O(1) for `� 1, (4.5a,b)

for which two key approximations follow:

J1( jnr/`)
J0( jn)

≈− sin(nπx/`), jn ≈ nπ for n� 1, (4.6a)
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I1(mπr)
I1(mπ`)

≈ exp(−mπx). (4.6b)

Henceforth, we will adopt x rather than r as our independent variable, but it must be
remembered that x measures distance in the opposite direction to r (see (4.5a)).

The essential idea is that for x=O(1), the r= 0 axis is unimportant. So, with `� 1,
we may regard n/` as a continuous rather than discrete variable and approximate the
sum

∑
∞

n=1 •n in (4.2) by the integral
∫
∞

0 •n dn instead. In this way, from (2.11c,d) and
(4.6a), we obtain

n≈ jn/π= (`/π)k, dn≈ (`/π)dk, (4.7a,b)

q= qmn = k/(mπ), ω=ωmn = 2mπ/
√

k2 + (mπ)2. (4.7c,d)

Accordingly, equation (4.2b) is approximated by[
ũm
ṽm

]
≈−

2
π

∫
∞

0

ω2k sin(kx)
4mπ

[
cos(ωt)

−(2/ω) sin(ωt)

]
dk, χ̃m =−

ũm

mπ
. (4.8a,b)

On noting that Lp{exp(iωt)}= (p+ iω)/(p2
+ω2), the Fourier sums (2.7c) for u and

v, based on (4.8), have Laplace transforms[
û
v̂

]
≈

2
πp

[
1
−2/p

] ∞∑
m=1

[∫
∞

0

k sin(kx)
k2 + (mπs)2

dk
]

cos(mπz), (4.9a)

where, on setting E= 0 in (2.17) to obtain

s=−iq= (p2
+ 4)1/2/p ⇐⇒ 4/p2

= s2
− 1, (4.9b,c)

we have noted from (4.7d) and (4.9c) that 4/ω2
+ 4/p2

= k2/(mπ)2 + s2. Evaluation
of the integral in (4.9a) (use § 2.2 equation (15) of Erdélyi et al. 1954) yields[

û
v̂

]
=

1
p

[
1
−2/p

] ∞∑
m=1

exp(−mπsx) cos(mπz) (4.10a)

=
1

2p

[
1
−2/p

] [
−1+

sinh(sπx)
cosh(sπx)− cos(πz)

]
. (4.10b)

A cursory inspection of modal expansion (4.10a) might suggest evanescent behaviour
in x, but it must be recalled that s is complex and related to the LT-variable p by
(4.9b). Indeed, at t = 0, the exponential decay is realised (see (4.11a)), while for
t > 0 all waves are evanescent at sufficiently large x (see § 6.2.2 but more generally
appendix C). Application of the formula χ̂ =

∫ 1
z û dz determines

χ̂ ≈−
1

πp

[
−

πz
2
+ tan−1

(
tan(πz/2)

tanh(sπx/2)

)]
, γ̂ ≈

2
p
∂v̂

∂z
. (4.10c,d)

In order to invert the Laplace transforms, we need to note that s= (p2
+ 4)1/2/p→ 1

as |p| → ∞, i.e. s is defined by a cut connecting p = −2i to p = 2i along the
Im{ p}-axis and by analytic continuation elsewhere. This consideration is essential to
guarantee that we take the correct sign of the square root of (p2

+ 4)1/2. Indeed, this
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Spin-down inertial waves 888 A9-29

property may be used to extract the initial values of χ and u, which are determined by
the form of û and χ̂ in the limit |p|→∞. In that limit, evaluation of the inverse-LTs
is achieved by simply setting s = 1 and then evaluating the residues of (4.10b,c) at
the only remaining singularity, the pole at p= 0 (s= 1), so determining

u(x, z, 0)≈
1
2

[
−1+

sinh(πx)
cosh(πx)− cos(πz)

]
, (4.11a)

χ(x, z, 0)≈−
1
π

[
−

πz
2
+ tan−1

(
tan(πz/2)

tanh(πx/2)

)]
, (4.11b)

with the property

χ(x, z, 0)≈−
1
π

exp(−πx) sin(πz), as x→∞ (4.11c)

(essentially the m = 1 mode χwave
1 defined by (4.3), but see also (4.10a) and (C 4)).

Initially v and γ are zero, but for t� 1 (4.1b,c) determine

v ≈−2tu(x, z, 0), γ ≈−2t2 ∂u
∂z
(x, z, 0). (4.12a,b)

Despite the apparent simplicity of the Laplace transforms û, v̂ and χ̂ given by
(4.10b,c), their direct inversion is not straightforward. That is partly due to the
essential singularity of tanh(sπx) at p= 0 which leads to some apparently suspicious
results following LT-inversion. For example, the forms (4.10a,b) hint at a pole at
p= 0, where none exists in the primitive form (4.9a) (recall that p2s2

→ 4 as p→ 0).
An alternative approach is suggested by the formula

− 1+
sinh(sπx)

cosh(sπx)− cos(πz)
=−1+

1
π

∞∑
l=−∞

2sx
(z− 2l)2 + s2x2

(4.13)

(Gradshteyn & Ryzhik 2007, § 1.445, equation (9)), which we substitute into (4.10b).
Due to the invariance of the sum (4.13) under the shift z 7→ z+ 2, there is only one
independent solution linked to l= 0. We refer to the others, for l 6= 0, as the ‘image
system’.

The various LT-representations suggest two distinct strategies for their inversion.
In § 5, we adopt the ‘method of images’, based on (4.10b) and (4.13), to explain
detailed features of the solution particularly evident at small x. In § 6, we study the
evolution of the individual z-Fourier m-modes (4.8). The smallest, m = 1, identifies
the dominant structure at large x. Indeed, the initial evanescent behaviour identified
by (4.11c) continues to be a feature for sufficiently large x (see appendix C and
§ 6.2.2).

5. The case E ↓ 0: the ‘method of images’
We continue the investigation of wave motion begun in § 4.2 valid at large r,

specifically (4.5a), focusing on the LT-solution (4.10b) with (4.13). Their inverse-LT
takes the form[

u
v

]
≈

[
−

1
2

t

]
+

∞∑
l=−∞

[
ŭl
v̆l

]
,

[
ŭl
v̆l

]
(x, z, t)=

[
ŭ
v̆

]
(x, z− 2l, t). (5.1a,b)
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In § 5.1, we consider only the primary l = 0 mode [ŭ, v̆](x, z, t), which describes
motion throughout the half-plane x > 0, −∞ < z <∞ due to a sink at [x, z] = 0,
or more precisely ŭ(0, z, t) = δ(z), where δ(z) is the Dirac δ-function. In § 5.2,
we compose the complete solution [u, v](x, z, t), defined by (5.1a) formed upon
superimposing the image flows [ŭl, v̆l](x, z, t) due to the image sinks at [x, z]= [0,±2l],
whose net outflow is compensated by the additional uniform inflow contribution
u=− 1

2 . In turn, the corresponding contribution v= t follows from (4.1b). Our use of
the description ‘method of images’, commonly used in physics, is appropriate here,
because of the reflectional properties of each l-constituent.

5.1. The primary l= 0 mode in x> 0, −∞< z<∞
On the introduction of the unit vector

[x, z] = [x, z]/$, $ =
√

x2 + z2, x=
√

1− z2, (5.2a−c)

the primary mode, defined via (4.10b) and (4.13) and expressed in the form

[ŭ, v̆](x, z, t)= (πx)−1
[u, v](z, t) (−1< z< 1) (5.2d)

has LT:

(πx)

[̂̆û̆v
]
(x, z, p)=

[
û
v̂

]
(z, p)=

(p2
+ 4)1/2x2

p2 + 4x2

[
1
−2/p

]
. (5.2e)

In view of our remarks in the penultimate paragraph of § 4.2, the pole at p = 0
determines an unexpected steady geostrophic flow [ŭG, v̆G] given by

(πx)[ŭG, v̆G] = [uG, vG] = [0,−1]. (5.3)

When, however, we consider the full solution in the following § 5.2, we see that
this unwelcome contribution is eliminated under accumulation with the image flows.
Indeed, the entire flow evolves indefinitely with no identifiable non-oscillatory part.

The inverse-LT of (5.2e) at z= 0 for x> 0 (H⇒ [x, z] = [1, 0]) is

u(0, t)= J0(2t), v(0, t)− vG = 2
∫
∞

t
J0(2τ) dτ , (5.4a,b)

alternatively v(0, t)=−2
∫ t

0 J0(2τ) dτ . Elsewhere (indeed, ∀z) it is[
u
v

]
=

[
x2 cos(2xt)
−x sin(2xt)

]
+

∫ t

0

J1(2τ)
τ

[
xEi(2x(t− τ))
Er(2x(t− τ))

]
dτ (5.5a)

in which

E(ϕ)=−1+ exp(iϕ),
[

Ei(ϕ)
Er(ϕ)

]
=

[
sin ϕ

−1+ cos ϕ

]
. (5.5b,c)

On use of Lp{t−1J1(2t)} = 2/[(p2
+ 4)1/2+ p] (see § 4.14 equation (5) of Erdélyi et al.

1954), it is readily verified that the Laplace transform of (5.5a) is (5.2e). In view of
the unlikely relevance of 2/[(p2

+ 4)1/2 + p] to (5.2e), the direct derivation (without
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hindsight) of (5.5a) was not obvious to us. The primitive form (5.5a) is useful for
t = O(1). However, the identity

∫
∞

0 τ−1J1(2τ)E(2xτ) dτ = −1 + |z| + ix (use § 1.12
equation (4) and § 2.12 equation (5) of Erdélyi et al. 1954) permits the alternative
representation

[u, v] = (πx)([ŭ, v̆]ms + [ŭ, v̆]bl)= [u, v]ms + [u, v]bl, (5.6a)

useful for t� 1, where[
u
v

]
ms

−

[
0
vG

]
= |z|

[
x sin(2xt)
cos(2xt)

]
= |z|

[
xEi(2xt)

1+ Er(2xt)

]
, (5.6b)[

u
v

]
bl

=−

∫
∞

t

J1(2τ)
τ

[
xEi(2x(t− τ))
Er(2x(t− τ))

]
dτ . (5.6c)

At given position [x, z], the mainstream motion [ŭ, v̆]ms is composed of the steady
flow [0, v̆G] and the oscillatory flow amplitude (5.6b) frequency 2x stemming from
the poles p = 0 and ±2ix. For t� 1, the remaining [ŭ, v̆]bl (5.6c), stemming from
the cut points p = ±2i, defines an ever thinning boundary layer width ∆bl = xt−1/2,
whose detailed character is described in the supplementary material B. For t� 1, its
width ∆bl= xt−1/2 is small, so that this thin transient boundary layer concerns x− 1≈
−

1
2 z2
= O(t−1), i.e. of quasi-MF type, frequency 2x ≈ 2. In the z > 0 half-space, it

carries the volume flux

[〈ŭbl〉, 〈v̆bl〉] ≡

∫
∞

0
[ŭ, v̆]bl dz=

1
π

∫ 1

0

1
x2z
[u, v]bl dx. (5.7a)

Using (5.6c), the time derivative of 〈ŭbl〉 is

d〈ŭbl〉

dt
=−

∫
∞

t

J1(2τ)
τ

J0(2(τ − t)) dτ ≈−
sin(2t)

πt
for t� 1 (5.7b)

(use Gradshteyn & Ryzhik 2007, § 3.753, equation (2)). Since d〈v̆bl〉/dt=−2〈ŭbl〉, two
successive integrations determine

[〈ŭbl〉, 〈v̆bl〉] ≈ (2πt)−1
[cos(2t),− sin(2t)] for t� 1, (5.7c)

giving the estimate [ŭ, v̆]bl=O(∆−1
bl t−1). Moreover, when z=O(∆bl), we also estimate

from (5.6b) that [ŭms, v̆ms− v̆G] =O(∆blx−2). Hence, both flow velocities are the same
size O(x−1t−1/2) within the evaporating boundary layer.

An interesting variant of the problem just solved was explored by Davidson et al.
(2006). They considered the evolution of a Gaussian eddy, their equation (2.11), close
to the origin relative to cylindrical polar coordinates in the half-space z > 0. They
identify contours of swirl velocity (their figure 1) that resemble our fan structure
(5.6b) in the vicinity of the outer corner [x, z] = [0, 0] for our limiting Cartesian
geometry. We suspect that they have no boundary-layer structure like (5.6c) because
their eddy source is of finite size. The resemblance to our mainstream solution (5.6b)
is unsurprising as wave propagation in both cases is similar though the geometry and
source differ.
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5.2. The full solution on 0 6 z 6 1
With [0, −v̆G] removed, the mainstream solution, [ŭms, v̆ms − v̆G] (5.6b), has the
remarkable feature that the frequency 2x of the oscillation at any given point [x, z] is
constant, independent of time. Nevertheless, consideration of the temporally evolving
lines 2xt of constant phase, emanating from the corner [x, z] = 0, reveals that the
nodes xn = nπ/(2t) (n = 1, 2, . . .) for ŭ lie on a fan, which contracts with time
as illustrated in figures 6 and 7. When internal friction is included, the associated
shortening of the length scale leads to considerable dissipation. This is a well-known
characteristic of phase mixing (Heyvaerts & Priest 1983), which occurs whenever
there is a frequency gradient (here ∇(2x) 6= 0).

Also visible in figures 6 and 7 are the waves reflected at z= 1. They correspond to
the l= 1 image fan emanating from the image sink [x, z] = [0, 2] and are particularly
evident in panels (b,c). Owing to the intensity of the reflections including further
interference from other images, the last panel (d) (longest time) is ‘busy’ and a little
confused. The fan and its images (reflections) are also visible in the small-E FNS-plots
of figure 5(b,c) and unsurprisingly in the χwave-plot (E= 0), figure 5(d). By contrast
unexpected strong reflections are visible in the DNS-plot, figure 5(e), which must
follow from some reinforcement by the QG-meridional flow in certain locations; in
others it must be destructive.

Though much of what is visible in figures 6 and 7 may be understood in terms of
the primary mode [ŭ, v̆]ms and its reflections, the complete mathematical description,
at least within the asymptotic approximations (4.7), (4.8) for x=O(1) and `� 1, is
given by the sum (5.1a). As already remarked [ŭ, v̆]bl is small for t� 1. So we omit
its contribution to the sum (5.1a) and define what remains,[

u
v

]
ms

=

[
−

1
2

t

]
+

∞∑
l=−∞

[
ŭl
v̆l

]
ms

, (5.8)

as the mainstream solution.
A disconcerting feature of (5.8) is the presence of the divergent contribution t to vms.

To test the worth of the approximation (5.8), which ignores the [ŭl, v̆l]bl contributions,
we consider the z-average of that mainstream solution. Since [ŭ, v̆](x, z, t) is symmetric
in z, we note that [〈ŭ〉, 〈v̆〉](x, t)= 1

2

∫ 1
−1[ŭ, v̆] dz with the implication [〈ŭl〉, 〈v̆l〉](x, t)=

1
2

∫ 1+2l
−1−2l[ŭ, v̆] dz. This property permits us to express the integral of the infinite sum

in (5.8) as a single infinite integral:[
〈ums〉

〈vms〉

]
=

[
−

1
2

t

]
+

1
2πx

∫
∞

−∞

[
x|z|Ei(2xt)

−1+ |z| + |z|Er(2xt)

]
dz

=

[
−

1
2

t

]
+

1
2π

∫ 1

−1

[
xEi(2xt)

−|z|−1
+ 1+ Er(2xt)

]
dx

x2
(5.9a)

= −
1
π

∫
∞

2t

[
φ−1 sin φ

2tφ−2 cos φ

]
dφ. (5.9b)

Here, we have used (5.6b) with v̆G = −(πx)−1, noted that x−1dz = −x−2
|z|−1dx and

evaluated (5.9a) with the help of
∫
∞

0 [φ
−1 sin φ, φ−2(1− cos φ)] dφ = [π/2,π/2].

For t� 1, equation (5.9b) behaves like

[〈ums〉, 〈vms〉] ≈ (2πt)−1
[− cos(2t), sin(2t)] +O(t−2). (5.10)
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Reassuringly, the diverging contribution t to v in (5.9a) is eliminated by the
summation and its mean value (5.10), being O(t−1), decays. By implication, since
[〈u〉, 〈v〉] = 0, the z-average of the remaining [u, v]bl =

∑
∞

l=−∞[ŭl, v̆l]bl, namely

[〈ubl〉, 〈vbl〉] =−[〈ums〉, 〈vms〉], (5.11)

decays at the same rate. Moreover the value of [〈ubl〉, 〈vbl〉] predicted by (5.10) and
(5.11) coincides, at least to leading order, with the value of [〈ŭbl〉, 〈v̆bl〉] for the
primary l = 0 mode alone given by (5.7c). By implication, we may ignore entirely
the l 6= 0 contributions [ŭl, v̆l]bl and make the approximation [u, v]bl ≈ [ŭ, v̆]bl, when
t� 1.

Appendix B explores the boundary layer matter further by considering values on the
boundary z= 0. Our main conclusion is that, though the primary l= 0 mode [ŭ, v̆]ms
vanishes there, the mainstream flow [u, v]ms, stemming from the accumulation of the
images l 6= 0, is an order of magnitude larger than the boundary-layer flow [u, v]bl.
Specifically, equation (B 3) confirms the domination of the mainstream solution by
showing that

[ums, vms]z=0 =O(1)�[ŭbl, v̆bl]z=0 =O(x−1t−1/2) (5.12)

(see also (5.7c) and the discussion that follows it).
The most striking feature of our solutions is the contracting (due to the secular

phase angle 2xt, i.e. phase mixing) fan structure (5.6b) of the primary l = 0 mode,
discussed in § 5.1. The interaction of the infinite sum of image fans l 6=0 together with
the l= 0 mode causes secularity that is compensated (i.e. eliminated) by the secular
contribution [− 1

2 , t] to the complete solution [u, v] in (5.1a). Although complicated,
the representation (B 2) on z= 0 clearly indicates how the compensation is achieved
but it is unfortunate that the sum–integral difference in (B 2d) is difficult to evaluate.

Finally, the apparatus of this section is not suited to explain the cell structure visible
at moderate-x nor for that matter the absence of wave motion at large-x. These are
matters resolved in § 6 by consideration of individual z-Fourier m-modes.

6. The case E ↓ 0: individual z-Fourier m-modes
Except close to r= `, the inertial wave motion is dominated sufficiently far to the

left by the m=1 mode χwave
1 ∝ sin(πz) (see (4.3) and figures 1, 2, 6 and 8) and vwave

1 ∝

cos(πz) (see figures 3, 4 and 7) of the z-Fourier series (2.7a,c). So here we focus
attention on the individual m-modes [ũm, ṽm] given by (4.8). Noting (4.10a), their LT-
solution is

− (mπ)−1
[̂̃um,

̂̃vm] = [1,−2/p]̂̃χm, (6.1a)

where ̂̃χm(x, p)= p−1 exp(−mπsx) with s(p)= (p2
+ 4)1/2/p (6.1b,c)

as before in (4.9b). We also find it convenient to connect the cuts from p=±i, rather
than letting them extend to −∞, and to deform the LT-contour of integration into a
circuit C containing the cut and the essential singularity at p= 0:

χ̃m(x, t)=
1

2πi

∮
C

exp(ξ(p))
p

dp with ξ =−mπs(p)x+ pt. (6.1d,e)
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The change of variables ϑ =
√

mπx/(2t), X =
√

2mπxt, equivalent to

ϑX =mπx, X/ϑ = 2t, (6.2a,b)

is suggested by our study of limiting forms of χ̃m(x, t). For ϑ � 1 and ∀t > 0, i.e.
mπx� 2t, (see (6.3a)), the solution χ̃m(x, t) ((C 2) of appendix C) has the wave-like
form (C 5a) provided that 2t� (mπx)−1/2 (C 5c).

However, the remainder of this section is devoted to the study of another limit X�
1, i.e. mπx� (2t)−1, which, for t� 1 of interest to us, is almost all x. That limit
allows us to identify the wave-like character of the solutions that exist for ϑ < ϑc
(see (6.7a)), i.e. mπx<ϑ2

c 2t.

6.1. Case X� 1: large t asymptotics
We evaluate the inverse-LT (6.1d) asymptotically, in the limit t�1 or more precisely

ϑ =
√

mπx/(2t)=O(1), X =
√

2mπxt� 1, (6.3a,b)

by the method of steepest descent, as in appendix C. To encompass the notation, we
express the exponent ξ (6.1e) as the product

ξ =ΞX, with Ξ(ϑ, p)=−ϑs(p)+ 1
2ϑ
−1p. (6.4a,b)

It may be shown (although we omit details) that the dominant contributions to the
integral (6.1d) stem from the saddle points located, where the p-derivative

Ξ,p ≡
dΞ
dp
=

4ϑ
p3s
+

1
2ϑ

(6.5)

vanishes. The relevant saddle points occur at purely imaginary locations defined
parametrically by

p= psa = 2i(1− ϕ2)1/2, s= ssa = 2ϕ/psa (6.6a,b)

together with their complex conjugates, all chosen to satisfy (6.1c). The condition
Ξ,p = 0 implies that p3

sassa =−8ϑ2, from which (6.4b) determines

Ξ =Ξsa = iϕ−1/2(1+ ϕ2), (6.6c)

as well as establishing that ϕ is one of the two real positive roots ϕ+ and ϕ− of the
cubic

ϕ3
− ϕ + ϑ2

= 0. (6.6d)

We order them, 0<ϕ− <ϕ+ < 1, such that they define

psa = p± = iω±, ω± = 2(1− ϕ2
±
)1/2, 2>ω− >ω+ > 0. (6.6e,f )

At ϑ = 0, we have ω+ = 0 and ω− = 2. On increasing ϑ , ω+ increases and ω−
decreases until they coalesce when ϑ reaches

ϑ = ϑc = 21/23−3/4, (6.7a)
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at which

Ξ,pp = 0, ϕ = ϕc = 3−1/2, ω=ωc = 23/23−1/2. (6.7b−d)

The roots φ± only form a real pair for 0<ϑ <ϑc. They coalesce at ϑ =ϑc and emerge
for ϑ >ϑc as a single complex root psa with Re{ psa}> 0. The dominant contribution
to the integral from the emergent psa saddle is small in proportion to exp(XΞsa) with
Re{Ξsa}< 0 (recall that X� 1 (6.3b)). Of course, this is supplemented by its complex
conjugate.

Our formulation in terms of ϑ and X permits us to identify asymptotic ranges
unambiguously. It is well suited to the large ϑ case investigated in appendix C, where
the result (C 5a) is derived valid for X�ϑ1/3(� 1) (see (C 2b) and (C 5b)). However,
when ϑ 6 ϑc, the stationary phase approach adopted in the following section leads to
a clearer physical interpretation. The values of ϕ±, ϕc and related results identified in
(6.6), (6.7) provide the cornerstones on which the analysis builds.

6.2. A stationary phase formulation
Our alternative approach to evaluating the inverse-LT (6.1d) begins by shrinking C
as much as possible, specifically to two lines either side of the imaginary p-axis
connecting the cut points p=±2i. On them, we set p= iω, mπs=−ik and ξ = i(kx+
ωt), and change the integration variable from p to s, noting also that −(mπ)−1dp/ds=
dω/dk= 1/(ω3k). Then, on taking considerable care with the signs of k and ω (real)
on each of the four sections of C (recall that the cut point p= 2i, and the essential
singularity at p= 0 are now at k= 0 and k=∞, respectively), we may express (6.1d)
in the form

χ̃m =
1
π

∫
∞

0

k sin(kx+ωt)+ k sin(kx−ωt)
k2 + (mπ)2

dk (6.8)

equivalent to (4.8), where ω= 2mπ/
√

k2 + (mπ)2 as defined in (4.7d).
On the basis that k > 0 and ω > 0, the waves with phase kx+ ωt (kx− ωt) travel

outwards (inwards) in the direction of x decreasing (increasing). The integrals in the
complex p-plane from which the kx+ ωt (kx− ωt) contribution originates stem from
the sections of C with Re{ p}> (<)0. Only the first set of waves with phase kx+ωt
have points of stationary phase, which correspond to the saddle points p= iω± (see
(6.6e, f )), and so we limit our attention to them. That saddle point analysis identifies
the two dominant waves, linked to φ±, at given x and time t. In order to take
advantage of the ϑ , X formalism (6.4)–(6.7) of the § 6.1 steepest descent problem,
we introduce the new variables K and Υ defined by

k/(mπ)=K/ϑ, ω= 2ϑΥ H⇒ kx+ωt= (K +Υ )X. (6.9a−c)

Following the parallel formalisms, the phase velocity cp =ω/k(> 0) is given by

mπcp =

{
mπω/k, where ω= 2mπ/

√
k2 + (mπ)2,

2ϑ2Υ /K, where Υ = 1/
√

K2 + ϑ2.
(6.10)

The group velocity cg = ∂ω/∂k (<0, see below) is given by

mπcg =

{
mπω′, where ω′ =−ω3k/(2mπ)2,

2ϑ2Υ̇ , where Υ̇ =−Υ 3K, (6.11)
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where the prime and dot denote the partial derivatives with respect to k and K
respectively. Being negative the group velocity is directed inwards (x increasing,
r decreasing), i.e. opposite to the phase velocity. Incidentally, the prefactor to
sin(kx+ωt) in the integral (6.8) may now be expressed as

k/[k2
+ (mπ)2] =−ω′/ω=−cg/ω. (6.12)

On further differentiation of (6.11), we obtain

(mπ)2c′g =
{
(mπ)2ω′′, where kω′′/ω′ = 1+ 3kω′/ω,
2ϑ3Ϋ , where KΫ /Υ̇ = 1− 3(KΥ )2. (6.13)

The points k = k± (k− < k+ with ω′ < 0 H⇒ ω− > ω+) of stationary phase occur
where the k-derivative of the phase kx+ωt vanishes,

mπ(kx+ωt)′|± =
{

mπ(x+ cg±t)
(1+ Υ̇±)ϑX

}
= 0 H⇒

{
cg± =−x/t,
Υ̇± =−1. (6.14)

Substitution of Υ̇± =−1 into (6.11) determines Υ 3
±

K± = 1 which together with (6.10)
yields K2/3

± =K2
±
+ θ 2. A comparison of this identity with (6.6d) shows that

K± = ϕ3/2
±

H⇒ Υ± = ϕ
−1/2
±

, Ϋ± = (3ϕ2
±
− 1)/ϕ3/2

±
≷ 0. (6.15a−c)

Here, ϕ± =K±Υ± = k±ω±/(2mπ) (cf. (6.6b)) are the positive roots (0<ϕ− <ϕ+ < 2)
of (6.6d). Together with (6.13) and (6.14), the inequalities (6.15c) imply that

k±c′g±/cg± = 1+ 3cg±/cp± ≷ 0 with mπcg± =−2ϑ2. (6.15d,e)

A routine stationary phase evaluation of the integral in (6.8) involving sin(kx+ωt),
noting (6.12), determines

χ̃m(x, t)≈



∑
k=k±

−cg±

ω±

(
2

±πc′g±t

)1/2

sin(k±x+ω±t±π/4),

∑
K=K±

−1
Υ±

(
2

±πΫ±X

)1/2

sin[(K± +Υ±)X ±π/4].

(6.16)

In the following two subsections we describe the nature of the solution (6.16) as ϑ
is increased from zero.

6.2.1. Case ϑ� 1 : wave-like solutions for −mπcg±� 1
The simultaneous limits X� 1 and ϑ� 1 restrict mπx to the range

(2t)−1
�mπx� 2t, (6.17)

which only exists for t� 1. With ϑ small, the roots of (6.6d) are ϕ+≈ 1 and ϕ−≈ϑ2.
Accordingly (6.15) determines

K+ ≈ 1, Υ+ ≈ 1, Ϋ+ ≈ 2, k+ ≈mπ/ϑ, ω+ ≈ 2ϑ, (6.18a−e)

K− ≈ ϑ3, Υ− ≈ ϑ
−1, Ϋ− ≈−ϑ

−3, k− ≈mπϑ2, ω− ≈ 2, (6.18f−j)
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with which (6.16) becomes

χ̃m ≈
sin(2X +π/4)
(πX)1/2

+
ϑ5/2 sin(2t−π/4)

(πX/2)1/2
. (6.19)

The former χ̃+m -mode is linked to the essential singularity at p = 0 (ϕ+). In the
restricted limit t� z2/x� x, the z-Fourier series (2.7a) is dominated by terms with
m = O(xt/z2) large and may by summed asymptotically, so recovering (5.6b) in the
limited domain x� 1 (x defined by (5.2a–c)). The complete summation over all m can
only be understood via the analysis of § 5. By implication the χ̃+m -modes are linked to
the fine structure visible in figures 6 and 7 in the vicinity of the corner [r, z] = [0, `].

The latter χ̃−m -mode, smaller by a factor O(ϑ5/2), is linked to the cuts at p=±2i
(ϕ−). There is no asymptotic regime on which the ensuing z-Fourier series (of small
terms) may by summed over m, but the very small relative size O(ϑ5/2) of the χ̃−m -
modes would seem to render them irrelevant anyway.

6.2.2. Case ϑ ≈ ϑc : the critical line x=−cgct (coalescing saddles) and beyond
Although the χ̃−m -mode is small at small ϑ , on increasing ϑ its amplitude increases

and the contributions from both χ̃+m and χ̃−m become comparable when ϑ = O(1);
a trend that continues until K+ and K− coalesce. There, Ϋ± = 0 and so (6.15c)
determines the critical value of ϕc, which together with ϑc were given previously by
(6.7a,c):

ϕc = 3−1/2 ϑc = 21/23−3/4. (6.20a,b)

On substitution into (6.15a,b) and (6.6c), they determine

Kc = 3−3/4, Υc = 31/4, −iΞc =Kc +Υc = 4 · 3−3/4. (6.20c−e)

With (6.9)–(6.11) they yield

(mπ)−1kc =Kc/ϑc = 2−1/2 + 0.707, (6.21a)
ωc = 2ϑcΥc = 23/2

· 3−1/2 + 1.633, (6.21b)
−mπcgc = 2ϑ2

c = 4 · 3−3/2 + 0.770, (6.21c)
cpc =−(Υc/Kc)cgc =−3cgc, (6.21d)

c′gc = 0. (6.21e)

Differentiation of (6.13), noting that c′gc = 0, yields the additional result

(k3
c/ωc)c′′gc = (cgc/cpc)

2
[1− (cgc/cpc)] = 4/27 (6.21f )

used in (6.23b) below.
We conclude that the wave-like stationary phase solutions (6.16) (k± real) only exist

on increasing x (equivalently ϑ) from zero, at fixed t, for x< xc(t) (ϑ < ϑc), where

xc(t)=−cgct + 0.245t/m. (6.22)

As x ↑ xc(t), the saddle points k+ and k+ coalesce, each of the corresponding wave
modes χ̃±m blend to form the wave sin(kcx + ωct) modulated spatially by an Airy
function,

χ̃m(x, t)=−
cgc

ωc

2
∆c(t)

Ai
(

x− xc(t)
∆c(t)

)
sin(kcx+ωct) (6.23a)
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(see, e.g. Chester, Friedman & Ursell 1957) for O(∆c(t))= |x− xc(t)| � xc(t), where
the relation

kc∆c(t)= kc(
1
2 c′′gct)

1/3
= 25/6

· 3−7/6t1/3(� 1) (6.23b)

follows from (6.21b,d, f ). On crossing the straight line x = xc(t) (ϑ = ϑc) in
the x-t plane, the solution decays on the length scale ∆c(t), whose ratio to the
half-wavelength π/kc is kc∆c(t)/π = 25/6

· 3−7/6π−1t1/3. At t = 27, say, the ratio is
roughly 0.5, i.e. ∆c(t) < π/kc. Although with such a small power of t involved we
can hardly claim to be in an asymptotic regime, the rate of predicted collapse is
plausibly consistent with the evaporation rate visible in figures 6–8. There is also
possible evidence of the region of collapse slowly thickening with time to the left of
the line x= xc(t) in figure 9, compatible with the power law ∆c(t)∝ t1/3. On further
increase of x > xc(t), the exponential decay continues. Eventually, for ϑ � 1, χ̃m is
given by (C 2) of appendix C, formulae valid for all t> 0.

6.3. Comparison with the full cylindrical results of § 4.1
Wave activity is limited to the region 0< x< xc(t) behind the front x= xc(t) identified
by the vanishing of the group velocity derivative c′gc(= 0) (6.21e). The property
xc(t)∝m−1 (see (6.22)) is significant because it shows that the m= 1 mode penetrates
furthest to the left. This feature was apparent in our full cylindrical analytic results
for E ↓ 0 reported in § 4.1.1, as evinced by the contours of the individual Fourier
mode χwave

m (r, z, t) (4.3) in figure 8, from which we postulated x1(t)= 2x2(t). Despite
the limitation of our Cartesian approximation to x = ` − r = O(1), it is remarkable
how well the formula x = xc(t), predicts the front location (i.e. xm(t) ≈ [xc(t)]m) for
both m = 1 and 2 as evinced by figure 9(a,b). This is particularly noteworthy in
figure 9(a), where r1(t) = ` − x1(t) is as small as roughly 2 at t = 30. Furthermore,
the asymptotic property (6.21a) indicates that the half-wavelength π/kc ∝ m−1 also
decreases with m, a trend again confirmed by comparing panels (a) with (c) and (b)
with (d) of figure 8.

A more exacting measure of the validity of the asymptotic formulae (6.21) is to test
the group and phase velocities at the front x = xc(t), given by (6.21c,d), against the
analytic χwave

m (r, z, t) results determined in the full cylindrical geometry of § 4.1.1, also
in the E ↓ 0 limit. To that end, we recall that figure 9 provides space–time contour
plots of χwave

m (r, z, t) at fixed z = zm (chosen to maximise χwave
m , i.e. z1 = 0.5, z2 =

0.25) in the r–t plane. Reassuringly the extent of wave activity is bounded by the
asymptotically predicted line `− r= xc(t), although with the caveat of front broadening
discussed in § 6.2.2. As the maximum amplitude of the wave (i.e. crests) moves at the
local phase velocity cp, the tangent to its track has slope 1/cp. For that reason we plot
the line t= r/cpc and see that this property is indeed met at the front x= xc(t), where
the line is reasonably parallel to the wave crest tracks evinced by the orientation of the
coloured patches at x= xc(t). The evolution of χwave

m (r, z, t) is followed in figure 9(a,b)
up until t = 30. Later, however, the m = 1 wave front reaches the axis at t = taxis ≈

40, after which it is reflected, leading to less well ordered pulsating structures for
t ' 40. The m = 2 wave is reflected at t ≈ 80 and so on. We add that the E ↓ 0
comparisons concerning the phase and group velocities continue to apply in the E�
1 limit discussed in § 4.1.2. Indeed, figure 10 clearly shows that the front x = xc(t)
continues to bound the triggered wave activity, while the local phase velocity cp line
remains parallel to the wave crests on the front.

The above discussion reiterates much § 4.1, which describes results derived for the
full cylinder, 0 6 r < `. Here, we have provided an asymptotic explanation based on
the Cartesian approximation x= `− r=O(1), `� 1.
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7. Concluding remarks

The primary feature of any spin-down process is the evolution of the azimuthal
QG-flow v on the spin-down time scale, visible for our problem in the DNS (E=10−3)
results for E−1/2vDNS reported in figures 3 and 4 panels (a,d,g). The meridional flow,
characterised by the streamfunction rχ and smaller by a factor E1/2, needed to provide
the vortex line compression needed for spin-down, is apparent in the same panels
of figures 1 and 2 for E−1/2χDNS. Like the QG meridional flow, all components of
the superimposed MF-inertial waves are O(E1/2). Consequently they are visible in
figures 1 and 2 for E−1/2χDNS but not in figures 3 and 4 for E−1/2vDNS, where they
are overwhelmed by the dominant QG-part. Being a manifestation of the transient
Ekman layer, as discussed in § 1 (previously identified by Greenspan & Howard 1963),
the MF-waves decay algebraically (∝ t−1/2) with time. Outside an expanding boundary
layer, width ∆(t)= (Et)1/2 (see (1.17b,d)), the horizontal components of the MF-waves
are z-independent (see (1.17c)), and in that respect are similar in character to the
QG-flow.

The aforementioned characteristics are found in the unbounded layer `→∞. Our
objective here has been to identify the extra inertial waves triggered by a boundary
at r= ` large but finite. Like the MF-waves, they are visible in the E−1/2χDNS contour
plots of figures 1 and 2, but are not clearly identified until consideration of the
filtered DNS (FNS) (3.5) and (3.7b) in panels (b,e,h) of figures 1–4, in which the
QG-contribution has been removed.

Since the extra inertial waves are only clearly visible in the DNS when `� 1 (for
us `= 10), we considered an analytic solution in § 2 aimed at application to that large
` case. There we simply determined the response to the QG-trigger −uQG(`, t) (1.20a),
which reflects the failure of the unbounded QG-flow solution to meet the impermeable
boundary condition at r = `. So, although our filtered DNS (FNS) still contains the
MF-flow uMF(r, t), we have ignored its contribution −uMF(`, t)=−u(`, t)+ uQG(`, t)
(1.20b) to the full trigger, arguing that, as it decays like t−1/2, its influence on the
triggered waves is likely to be small. This point of view appears to be vindicated
by the fact that, when our QG-triggered waves are combined with the MF-waves, the
results capture the essential ingredients of the FNS solution, a measure of the full
(DNS) solution. For detailed comparison, it is necessary to include the additional MF-
trigger which we will do elsewhere. The reason for not including it here is that it adds
technical complications which obscure our understanding of the principle mechanisms
that we have been able to identify in this paper.

In addition to Ekman damping, inertial waves of short length scale suffer significant
internal viscous dissipation. Both those damping mechanisms tend to hide much of the
fine scale inertial wave activity in our DNS/FNS/IW contour plots of figures 1–4 and
5(a) for E=10−3. Nevertheless figure 5(b,c,e) shows that, at E=10−5 and smaller, fine
scale structures are visible, suggesting that we ought to filter out damping completely
and consider analytically the solutions in the zero Ekman number limit, as we do
in §§ 4–6. The resulting triggered waves, illustrated in figures 5(d), 6 and 7, reveal
very detailed structure near the r = ` boundary, previously hinted at by figures 1–4
panels (c, f,i). To explain the origins of that structure, we considered analytically the
rectangular Cartesian limit, appropriate to x = ` − r = O(1) (` � 1) in § 4.2. Two
complimentary approaches were adopted.

On the one hand, in § 5, we employed the method of images, which revealed the
nature of the wave generation, particularly as it pertained to small x. The considerable
wave interference from the infinite set of images leads to simpler structures at large x.
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So, on the other hand, in § 6, we considered individual z-Fourier m-modes. For
given wavenumber k, their energy travels at the group velocity −cg(> 0) and is
focussed at the distance x=−cgt from the trigger. At given (x, t), that identifies two
dominant wave (k±, ω±: cg±, see (6.14)) packets. Our investigation of front transition
for each m-mode, particularly m = 1, in § 6.2.2 has mathematical and physical
parallels with that for the famous Kelvin ship wave pattern (http://dlmf.nist.gov/36.13;
Abramowitz & Stegun 2010). There, two ±-waves like our (6.16) coalesce at the
wake half-angle sin−1 1

3 + 19.47◦; cf. ϑc (6.7a). Ursell (1960) shows that the transition
to evanescence across the 19.47◦-line (cf. our line x/t=−cgc = 2ϑ2

c /(mπ) (6.21c)) is
described by his equation (4.12); its leading-order term compares with (6.23a). Indeed
figures 2–4 of Ursell (1960) bear a striking resemblance to our figure 9: panels (a)
m= 1, (b) m= 2. For us, as the fastest moving m= 1 mode, having the longest length
scale (see figure 8), suffers relatively little internal dissipation, it decays slowly and
remains the dominant visible feature in the DNS (or more clearly in the filtered
DNS, figure 10) as time proceeds. Of even greater significance is the fact that larger
m-modes propagate a shorter distance from r = ` and are far less evident except
sufficiently close to r= `.

Possible applications of this study include tropical cyclones in the atmosphere,
which are characterised by an aspect ratio close to 10 (approximately 10 km in
height and a few 100 km in radius) as well as a moderate turbulent Ekman number,
owing to the fact they develop close to the equator (see also Oruba et al. 2018).

We did consider the wave motion triggered in containers with O(1) aspect ratio
(particularly ` = 1), but for them the inertial wave activity showed little structure
and decayed rapidly. There was some evidence of fan-like behaviour near the corner
[r, z] = [`, 1], but none of the other travelling wave or frontal behaviour. That is
unsurprising because waves are reflected promptly at the axis with no time available
to create the coherent travelling structures like those reported in this paper. As a result
of the almost immediate reflection, there is considerable wave interference leading to
incoherence, ever increasing complexity and cancellation.
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Appendix A. A Fourier–Bessel series
We derive the Fourier–Bessel series for J1(mπqr) (q=const.). According to § 18.1,

equations (3), (4) of Watson (1966) it is

J1(mπqr)=
2
`2

∞∑
n=1

[J0( jn)]
−2

[∫ `

0
rJ1(mπqr)J1( jnr/`) dr

]
J1( jnr/`), (A 1a)

where jn denotes the nth zero (> 0) of J1(x) with the consequence that

J2( jn)= J0( jn)= J′1( jn). (A 1b)
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With Dm defined by (2.8e) and qmn = jn/(mπ`) (2.11d), the identities

DmJ1(mπqr)=−(q2
+ 1)(mπ)2J1(mπqr), (A 2a)

DmJ1( jnr/`)=−(q2
mn + 1)(mπ)2J1( jnr/`) (A 2b)

follow. Their use in a routine integration by parts leads to

−(q2
mn − q2)(mπ)2

∫ `

0
rJ1(mπqr)J1( jnr/`) dr

=

∫ `

0
r[J1(mπqr)DmJ1( jnr/`)− J1( jnr/`)DmJ1(mπqr)] dr

= jnJ1(mπq`)J0( jn). (A 2c)

Substitution into (A 1a) determines

J1(mπqr)
J1(mπq`)

=−

∞∑
n=1

2q2
mn

q2
mn − q2

J1( jnr/`)
jnJ0( jn)

on 0 6 r< `. (A 3)

The representation fails at r= `, where J1( jn)= 0 and each term vanishes.

Appendix B. The z= 0 values of [ŭ, v̆]bl and [u, v]ms

On z= 0, since [ŭms, v̆ms− v̆G] = 0 (see (5.6b)), it follows from (5.6a) that [ŭ, v̆]bl=

[u− ŭms, v − v̆ms] = [ŭ, v̆ − v̆G]. Substitution of the values given by (5.4) yields

(πx)
[

ŭbl
v̆bl

]
z=0

=

[
ubl
vbl

]
z=0

=

[
J0(2t)

2
∫
∞

t J0(2τ) dτ

]
≈

1
√

πt

[
cos(2t−π/4)
− sin(2t−π/4)

]
(B 1)

for t� 1.
To estimate whether or not [ŭ, v̆]bl is significant, we compare it to the value of
[u, v]ms at z= 0. Substitution of (5.6b) into (5.8), and noting that v̆ms(x, 0, t)= v̆G(x)=
−(πx)−1, determines[

ums
vms − v̆G

]
z=0

=

[
−

1
2

t

]
+

2
πx

∞∑
l=1

[
xl|zl| sin(2xlt)
−1+ |zl| cos(2xlt)

]
, (B 2a)

where

[xl, zl] = [x, 2l]/$l, $l =
√

x2 + (2l)2 (B 2b,c)

and, as in (5.9a), we have appealed to the symmetry in z. By arguments similar
to those used to derive (5.9b), we may show that (B 2a) has the alternative
representation[

ums
vms − v̆G

]
z=0

=
2
πx

[
∞∑

l=1

−

∫
∞

0
dl

] [
xl|zl| sin(2xlt)
−1+ |zl| cos(2xlt)

]
+

[
〈ums〉

〈vms〉

]
. (B 2d)

The former term, namely the integral–sum difference, avoids secular behaviour with
good convergence because [xl, zl] → [0, 1] when l � x. Indeed, only terms with
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l=O(x) contribute to the integral–sum difference, which therefore must be no larger
than O(x) and upon multiplying by 2/(πx) becomes O(1). On the other hand, the
latter term, namely the mean contribution [〈ums〉, 〈vms〉], is O(t−1) (see (5.10)) and
therefore negligible. That leaves only the O(1) first term, so giving the estimate
[u, v]ms =O(1) on z= 0.

In summary, the relative sizes of [u, v]ms and [ŭbl, v̆bl] = [ubl, vbl] on z= 0 are[
ums
vms

]
z=0

=O(1) �

[
ŭbl
v̆bl

]
z=0

=O(x−1t−1/2) �

[
〈ums〉

〈vms〉

]
=O(t−1) (B 3)

for ∆bl = xt−1/2
� 1.

Appendix C. The case ϑ� 1 : large |p| asymptotics
The essential idea in considering the limit

ϑ� 1 ⇐⇒ mπx� 2t (C 1)

is that the contour path C of the LT-inversion integral (6.1d) may be chosen
advantageously to be restricted to |p|� 1, on which s≈ 1+ 2p−2. This approximation
leads to the similarity solution

χ̃m ≈ exp(−mπx)F(Π), where Π = X/ϑ1/3
=mπx/ϑ4/3 (C 2a,b)

and, upon setting p= 2ϑ2/3P,

F(Π)=
1

2πi

∮
C

exp[(− 1
2 P−2

+ P)Π ]
P

dP= 1+
∞∑

k=1

(−1)k
(Π 3/2)k

(2k)!k!
(C 2c)

an entire function (cf. the power series expansion (http://dlmf.nist.gov/10.2.E2) for the
Bessel function J0). For large Π , a steepest descent evaluation of the integral in (C 2c)
over the saddle points at P= 1± i

√
3/2 yields the dominant contribution

F(Π)≈
(

2
3πΠ

)1/2

exp
(

3
4
Π

)
sin
(

33/2

4
Π −

2π

3

)
for Π� 1. (C 3)

The initial t= 0 solution valid for all x> 0 is given by

χ̃m ≈ exp(−mπx)F(0)= exp(−mπx). (C 4)

From this point of view, we may regard the factor F(Π) in (C 2a) as an amplitude
modulation of the primary structure exp(−mπx). Substitution of the large Π
asymptotic result (C 3) into (C 2a) determines

χ̃m ≈

(
2

3πΠ

)1/2

exp
[
−mπx

(
1−

3
4ϑ4/3

)]
sin
(

33/2

4
Π −

2π

3

)
, (C 5a)

provided that

Π = (2t)2/3(mπx)1/3� 1 ⇐⇒ mπx� (2t)−2. (C 5b)
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So, in view of (C 1), the asymptotic result (C 5a) only applies, at fixed x, for a limited
period of time,

mπx� 2t� (mπx)−1/2, (C 5c)

a domain that only exists for mπx� 1. So although the amplitude modulation F(Π)
increases with Π , its influence in relative importance decreases, as identified by the
factor ϑ−4/3 in the exponential of (C 5a).
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