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We report banded zonal structures in numerical simulations of weakly nonlinear rapidly rotating

convection. A quasigeostrophic model of convection is used to demonstrate how, in the presence of

Ekman pumping, banded structures can develop immediately above the onset of convection, and in

the absence of developed turbulence. We argue that these bands necessarily correspond to a regime

in which both Ekman pumping and bulk viscosity equally affect the zonal flow and that their width

scales with the Ekman number E as E1/4. © 2006 American Institute of Physics.
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We investigate the respective role of two dissipation

mechanisms, bulk viscosity and Ekman friction, acting on

weakly nonlinear rapidly rotating convection. To make the

problem tractable in a parameter regime of small Ekman

numbers �low viscosity�, we use a simplified approach rely-

ing on a z-integrated set of equations �known as quasigeo-

strophic convection, or � convection
1�. In a previous inves-

tigation using a similar approach,
2

we have shown, in the

presence of bulk viscosity only, that as the Ekman number is

decreased toward realistic values �which are presently out of

reach of fully three-dimensional modeling� the zonal flow

becomes increasingly important near the onset of convection.

We have shown that, from an asymptotic point of view, the

zonal flow is strong enough to suppress convective motions

on a quasiperiodic basis and to yield relaxation oscillations

immediately above the onset.
2

In all studies of quasigeostrophic or fully three-

dimensional convection, when only bulk viscosity is re-

tained, the zonal flow near onset takes the form of a large

“S” structure in the radius, with two counter-rotating bands

�retrograde near the axis and prograde near the equator�. As

the Rayleigh number is further increased above critical, the

number of bands slowly increases.
3

Recently, Jones et al.
4

investigated the effect of dissipa-

tion in the viscous boundary layers. They used a two-

dimensional rotating annulus model with mixed mechanical

boundary conditions. Their model is strongly nonlinear and

relies on a prescribed radial variation of the stream function.

Introducing the effect of Ekman pumping, they were able to

achieve a significantly higher number of bands �up to six on

the � plan� for a given Rayleigh number. The role of Ekman

pumping in producing these jets still needs to be clarified, as

well as the resulting balance between dissipation mecha-

nisms. This turbulent approach differs from the weakly non-

linear investigation presented here.

The zonal flow is driven by nonlinearities. Independent

of which dissipation mechanism affects the axisymmetric

component of the flow, its radial profile exhibits prograde

and retrograde velocities. It is the shearing action of the

zonal flow on the convective columns which yields the ki-

netic energy saturation. The zonal flow has to produce a

strong enough shear to saturate the growth of convective

motions. If only bulk viscosity is retained in the zonal flow

equation, this shear will be achieved while minimizing the

second derivative of the zonal velocity in the same time.

Close to the onset, this yields a large-scale profile for the

zonal flow. Retaining only Ekman pumping in the equation

of the zonal flow, the shear is achieved while minimizing the

amplitude of the zonal flow. To achieve a smaller amplitude

while maintaining the shear, it is necessary to oscillate on a

smaller scale. This yields a banded structure. The combined

effect of both dissipations �bulk viscosity and Ekman pump-

ing� is described later in the paper and provides a banded

zonal flow as well, but of larger scale.

We consider motions driven by buoyancy in a rotating

spherical shell with a uniform distribution of internal heat

sources. The rotation rate is �, � is the kinematic diffusivity

of the fluid, � is its thermal diffusivity, and � its coefficient

of thermal expansion. The gravity field is assumed to be

purely radial and corresponds to a self-gravitating fluid:

g=−gr. We further introduce �, the deviation from the basic

temperature profile of pure conduction �Ts=T0− �̃r2 /2�, and

−�̃r, the temperature gradient in the absence of convection.

Setting the unit of time to ro
2 /�, the unit of length L to the

outer sphere radius ro, and the unit of temperature to �̃ro
2� /�,

we introduce the following dimensionless parameters:

E =
�

2�ro
2
, Ra =

��̃gro
6

��
, Pr =

�

�
,

namely the Ekman number, the Rayleigh number, and the

Prandtl number, respectively. The Prandtl number is set to
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unity for all simulations reported here. The aspect ratio ri /ro

is fixed to 0.2. This small inner core leaves enough room for

bands to develop outside the tangent cylinder.

Dissipative mechanisms in a rapidly rotating flow con-

stitute a subtle issue. From a formal point of view, viscous

dissipation affects the flow in two ways. First comes the bulk

effects of viscous dissipation. Because of the very low Ek-

man number values associated with rapid rotation, this term

only becomes significant at small scale. Dimensional analy-

sis reveals scales such as O�LE1/3� for z-aligned structures,

such as vertical shear layers or convection near the onset.
1,5,6

However, viscosity is also essential near boundaries, where

very sharp O�LE1/2� layers develop. These layers actively

affect the mainstream flow through Ekman pumping. This

yields an additional dissipative term on the mainstream equa-

tions, known as Ekman friction or Ekman pumping.
7

This

term will equally affect all scales of the mainstream flow. Its

amplitude is controlled only by the Ekman number and the

flow velocity. As a result, Ekman pumping will provide the

dominant dissipation mechanism on the large-scale main-

stream flow, for which the effects of bulk viscosity are van-

ishingly small.

We will investigate convection very close to the onset,

and adopt �as in Ref. 2� a z-integrated weakly nonlinear for-

malism. The resulting domain consists of the gap between

two concentric circles on which the velocity vanishes. Due to

the computing domain geometry �which is not simply con-

nected�, we consider separately the mean zonal flow u0 and

all the nonaxisymmetric modes �see Ref. 8 for a discussion

of this issue�. In the weakly nonlinear approach, only one of

the nonaxisymmetric modes is retained and expressed in the

form of a stream function �=��s�eim�, m�R �see Ref. 2 for

more details�. The mode m is set to its critical value at the

onset of convection, computed for each particular value of

the Ekman number. The vorticity of the flow is then given by

	=−
�+ez ·�Ù �u0e��. The resulting set of equations is

Pr� ��

�t
+ �u · ���� = 
� +

��

��
, �1a�

E� �

�t

� − �u · ��	� = E
2� +

1

1 − s2

��

��
+ Ra E

��

��
,

�1b�

�1c�
The linear theory for the onset of convection in a rotat-

ing sphere indicates that convection develops at the onset on

a horizontal length scale O�E1/3�, both in the radial �s� and

azimuthal ��� direction.
9

On such length scale, the bulk vis-

cosity acting on the nonaxisymmetric velocity can be esti-

mated to scale as E�E−2/3=E1/3, whereas the Ekman pump-

ing will scale as E1/2. For this reason, an asymptotically valid

approximation is to retain only bulk viscosity as dissipating

term in �1b�, here in the form of a bi-Laplacian on �. On

such small length scales, the Ekman pumping term is asymp-

totically negligible compared to bulk viscosity. Indeed, Ek-

man pumping only provides an O�E1/6� correction term on

the critical parameters for the onset.
10

Two dissipation terms are retained instead for the axi-

symmetric flow described by Eq. �1c�: the bulk viscosity

�marked “B-V”� and the Ekman pumping term �marked

“E-P”�. The axisymmetric flow is obviously large scale in

the � direction: O�L�. Its scaling in the radial s direction

however remains to be determined. None of these dissipating

terms can therefore be ruled out on the basis of a simple

scaling argument. Note that we follow here an approach in-

troduced by Jones et al.,
4

although our model is simplified by

coupling two modes only and dropping the effect of pumping

on the small scales �. System �1� can be solved using ex-

plicit mode coupling in the spectral domain. This weakly

nonlinear approach is severely truncated in � by only retain-

ing two azimuthal modes, but its simplicity allows a much

wider variation in parameters than the full modeling.

We will present results of numerical simulations retain-

ing either the B-V term, or the E-P term, or both, in order to

assess the role of the various dissipating processes �bulk vis-

cosity or Ekman pumping, respectively�.
We first verified that the introduction of Ekman pumping

did not affect the qualitative result reported in Ref. 2, i.e.,

relaxation oscillations occur increasingly close to the onset

of convection as E is decreased. Indeed, most of the flows we

will investigate here are time dependent. We will now focus

our attention on the effect of Ekman pumping on the zonal

flow structure. Let us first consider the zonal flow at fixed

Ekman number �here E=10−6� and with increasing Rayleigh

numbers �from 1.1 to 5 times critical�. The corresponding

results �zonal flows as functions of the radius� are displayed

in Fig. 1�a�.
First, in the presence of bulk viscosity only �the B-V

term�, the expected behavior �“S”-shaped zonal flow and

slow increase in the number of bands with the Rayleigh

number� is reproduced with this simplified model �see the

left column of Fig. 1�a��. When, on the other hand, Ekman

pumping provides the only dissipating term on the zonal flow

�corresponding to a large-scale assumption on this flow�, a

large number of bands is produced in the system �see the

central column of Fig. 1�a�, and 1�b��. The bands become

more numerous as the Rayleigh number is increased, here

reaching up to seven bands for . It is however important to

ponder at this stage the radial scaling of the bands produced

with this model. Equation �1c� now involves no regularizing

term in radius. As a result, the radial scale of u0 will be

directly provided by the energy input term, i.e., by �. It

follows that near the onset u0 will then scale radially as �,

i.e., O�E1/3
L�. One should also notice that banded solutions

obtained in the presence of the E-P term generally have

lower peak velocities than the large structures obtained with

the B-V term only �see also the rms values�. This strengthens

the proposed physical interpretation, by which the level of

shear necessary to saturate convection is achieved through a

smooth large-scale �and therefore large-amplitude� profile in

the case of bulk viscosity only, and through a small-

amplitude �and therefore small-scale� profile in the presence

of Ekman pumping.
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The O�E1/3
L� radial length scale appearing in the zonal

flow u0 invalidates the large-scale assumption made by ne-

glecting bulk viscosity in �1c�. At such small length scales,

bulk viscosity becomes dominant. We have therefore per-

formed a third simulation retaining both the B-V and the

E-P terms in �1c�. The effect of bulk viscosity in increasing

the radial length scale is evident in Fig. 1�a�. Bulk viscosity

will enlarge the width of zonal bands, as it did in the first

case �retaining its effect only�. In this case, however, it will

only act to enlarge these structures until it becomes compa-

rable to the Ekman pumping. One can easily estimate the

transition scale above which Ekman pumping dominates and

FIG. 1. �a� Zonal wind profiles vs r /ro for E=10−6, and increasing Rayleigh numbers, from top to bottom: Ra=1.1�Rac, Ra=2�Rac, and Ra=5�Rac. The

column on the left corresponds to simulations with bulk viscosity only, the middle column to simulations retaining Ekman pumping only, and the right column

to simulations combining both effects. The rms value �in space and time� for the zonal �U� and nonaxisymmetric ��� components of the flow is indicated in

each graph. �b� Equatorial stream function of the flow for E=10−6 and Ra=2�Rac retaining Ekman pumping only.

FIG. 2. �a� Zonal wind profiles vs r /ro at Rayleigh number twice critical �Ra=2�Rac�, for decreasing Ekman numbers, from top to bottom: E=10−5, E

=10−6, and E=10−7 �column arrangement follows that of Fig. 1�a��. �b� Zonal wind profiles vs r /ro for Ekman numbers: E=10−5, E=10−6, and E=10−7. The

Rayleigh number is only 10% above critical �Ra=1.1�Rac�. These simulations retain the Ekman pumping term �E-P� as the only dissipation term on the

zonal flow, in order to highlight the increase in the number of bands observed just above the onset with decreasing Ekman numbers.
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below which bulk dissipation takes over. Comparing the bulk

dissipation at a scale � estimated by E�
−2U �where U is a

measure of the zonal flow velocity� to the Ekman pumping

estimated by E1/2U reveals that the transition scale is �

�O�LE1/4�. Any smaller scale will be predominantly af-

fected by bulk viscosity; any larger scale predominantly

senses Ekman friction.

To illustrate the Ekman dependence in our simulations,

we now present results obtained for a Rayleigh number twice

critical, varying the Ekman number from 10−5 to 10−7 �see

Fig. 2�a��. This wide amplitude of variation is only made

possible by the model’s simplicity. Despite the use of inten-

sive computing, smaller values of E are at present not attain-

able.

Figure 2�a� clearly demonstrates the faster increase in

the number of bands, when the E-P term only is retained,

than in the presence of both the E-P and B-V terms. The

distinction between the E1/3 and the E1/4 scaling is however

difficult to establish at these values of E. A rigorous distinc-

tion between these scalings would require the computation of

even smaller values of the Ekman number �these scalings

only differ by a factor of E1/12�.
The increasingly important role given to the zonal flow

near the onset as the Ekman number is decreased �as identi-

fied in Ref. 2� led us to investigate the variation in the

banded structure near the onset with decreasing Ekman num-

ber. Indeed, the number of bands increases with decreasing

Ekman numbers even very near the onset. This effect is high-

lighted by Fig. 2�b� at a Rayleigh number 10% above criti-

cal. Because of the moderate values of E that can be

achieved �although significantly lower than can be achieved

with full 3D modeling�, we represent here the simulation

with the E-P term only �for which bands are narrower�. The

effect is then more visible near the onset because of the steep

E1/3 scaling. The number of bands as well as the zonal flow

amplitude increase with decreasing Ekman numbers. Direct

comparison of Fig. 2�a� with Fig. 2�b� suggests that the Ek-

man number controls the jet width, whereas the Rayleigh

number determines the width of the region influenced by the

zonal shear �i.e., the envelope of the banded structure�. This

property of convergence toward the onset validates the

weakly nonlinear approach.

The mechanisms for banded structure formation reported

here exist in the weakly nonlinear regime. As such, they

contrast with the description of zonal winds associated with

turbulent effects �e.g., Rhines
11�. It is to be stressed that J.

Rotvig �private communication� also derives an E1/4 scaling

of the bands, but in the strongly nonlinear regime, deriving

this result from Rhines’ scaling. Despite the simplicity of our

model, the banded structure inevitably suggests an applica-

tion to the zonal flows observed in giant planets. Deep con-

vection models producing bands in the sphere are limited so

far to a moderate number of bands per hemisphere.
3,13–18

Investigation of decaying turbulence in a full sphere
18

has

allowed more importance to be given to nonlinearities and

also revealed the presence of a banded structure. The pos-

sible deep origin of bands in giant planets therefore remains

a much debated topic. The model we investigate is very sim-

plified and well justified only near the onset of convection.

Besides, it cannot capture the complicated structure of these

planets. The only conclusion that can be drawn from our

simple model in that respect is that, while turbulence is

clearly present in giant planets, it does not appear to be a

necessary ingredient to form banded structures. Our simple

weakly nonlinear model, retaining the interactions between

two modes only, shows that provided Ekman pumping is

included, bands can be obtained in rapidly rotating convec-

tion �i.e., in the limit of small Ekman numbers� immediately

above the onset of convection.
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