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A quasi-geostrophic, orb, model of nonlinear thermal convection in rapidly rotating spherical fluid
shells is investigated. We study time dependent instabilities for a range of Rayleigh number and
Ekman number with a Prandtl number set to the unity. Above the onset of convection, increasing the
Rayleigh number for a given Ekman number, we reproduce the sequence of bifurcations described
by Busse@Phys. Fluids14, 1301~2002!# for the three-dimensional case: A first transition results in
vacillating flow; a second transition gives rise to chaotic oscillations in time and localized
convection in space; then a third leads to quasi-periodic relaxation oscillations. This study shows
that the quasigeostrophic model encompasses the desired bifurcation sequence. It allows the
investigation of a range of Ekman numbers unavailable to three-dimensional models with present
computing resources. Decreasing the Ekman number, we unexpectedly found that all three
transitions occur for marginally supercritical Rayleigh number. The range of Rayleigh number for
which the amplitude of convection is steady vanishes in the asymptotic limit of small Ekman
numbers. This effect could significantly alter the nature of the instability characterizing the onset of
convection in particular whether it is a supercritical or subcritical bifurcation. ©2004 American
Institute of Physics. @DOI: 10.1063/1.1703530#

I. INTRODUCTION

Convection in rotating spherical fluid shells is an impor-
tant problem when seeking to understand of magnetic field
generation by self-excited dynamo action in planetary interi-
ors. While this hydrodynamic problem is considerably sim-
pler than the full magnetohydrodynamic scenario, the rapid
rotation of these natural objects means realistic modeling is
still challenging, even close to the onset. The full description
of the linear instability has only been obtained recently,1 elu-
cidating the issue of the variation of phase velocity with the
radius~phase mixing or Taylor diffusion! raised earlier2 con-
cerning the local treatment of the instability.3 However, sev-
eral important issues remain unresolved. In particular, the
effects of nonlinearities are expected to counteract phase
mixing, and yield a subcritical bifurcation,2 while numerical
simulations have always produced supercritical
bifurcations.4,5

To study convection in rapidly rotating systems, Busse3

introduced an annulus model. This model took into account
the dominant role of rotation~Taylor–Proudmann theorem!
to reduce the problem from three dimensions to two, and
used the small gap approximation to further simplify the
model. Or and Busse6,7 modified this two-dimensional ap-
proach by introducing parabolic boundaries and thus phase
mixing. They studied vacillating oscillations which appear
when the Rayleigh number is increased for a fixed and mod-
erate Ekman number. Chen and Zhang,9 with a two-
dimensional model similar to Refs. 6 and 7 but in a finite gap

configuration, studied vacillating and chaotic oscillations
varying the aspect ratio.

Yano demonstrated analytically10 that the phase mixing
issue can be resolved in a modified version of the cylindrical
Busse annulus3 taking into account the curvature of the
boundaries which are essential to phase mixing. Using this
configuration he resolved the linear instability problem.

In the light of this earlier work, we propose to use a
simplified two-dimensionnal numerical model to study the
possible existence of a subcritical bifurcation for the onset of
convection. We first describe the sequence of bifurcations
which occurs in the nonlinear domain and compare it with
the one investigated by Busse and Grote8 with a fully three-
dimensional model in a spherical geometry. Our model is
based on the quasi-geostrophic approximation and has
spherical boundaries. It is used to obtain insight on the full
three-dimensional problem. Since the quasi-geostrophic
model is reduced to two dimensions it involves a less de-
manding numerical integration, and thus allows a larger pa-
rameter space survey.

After presenting the quasi-geostrophic model in Sec. II,
linear results are detailed in Sec. III A and the results of
nonlinear convection are presented in Sec. III B. This is fol-
lowed by a discussion in Sec. IV.

II. QUASI-GEOSTROPHIC MODEL

We consider motions driven by buoyancy in a rotating
spherical shell~i.e., the domain between two concentric
spheres! with a uniform distribution of internal heat sources.
The rotation rate isV, n is the kinematic diffusivity,k is the
thermal diffusivity, anda the coefficient of thermal expan-
sion. The gravity field is assumed to be2gr which corre-
sponds to a self-gravitating sphere. We introduceu as the

a!Present address: CNRS/UMR8550, Departement de Physique, Ecole Nor-
male Superieure, 24 rue Lhomond, 75231 Paris Cedex 05, France; elec-
tronic mail: dormy@lps.ens.fr
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deviation from the basic temperature profile of pure conduc-
tion: Ts5T02b̃r2/2. The temperature gradient in the ab-
sence of convection is thus2b̃r.

We define the unit of time to bero
2/n, the unit of length

being the outer sphere radiusro , and the unit of temperature
b̃ro

2n/k. We introduced the following dimensionless param-
eters:

E5

n

2Vro
2 , Ra5

abgro
6

nk
, Pr5

n

k
, ~1!

namely the Ekman number, Rayleigh number, and Prandtl
number. The equations of motions~Navier–Stokes! and con-
tinuity under the Boussinesq approximation are then

]u

]t
52~u"“ !u1Raur2“P1Du2E21~ez∧u!, ~2!

¹•u50. ~3!

While the temperature perturbation equation is

]u

]t
52~u"“ !u1Pr21~u"r1Du !. ~4!

Introducing the axial component of vorticity asz, and
taking thez-component of the curl of~2!, one obtains after
averaging inz and neglectingz]zuz
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] ū
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where z̄5 (1/2H) *
2H
H z dz (H being the half height of a

convection column!. Following on the cylindrical model of
Busse3 and thus neglecting thez variations of the horizontal
component of the velocity, the flow is now assumed to be
quasi-geostrophic. Using cylindrical coordinates, this corre-
sponds to approximating bothus anduw with functions that
are independent ofz, and thusz̄5z, while thez variation of
uz obviously cannot be neglected. This implies that the nec-
essary dependance ofuz on z is approximated by a linear
variation to satisfy the continuity equation. This approxima-
tion can clearly not be fully justified in the case of curved
boundaries. It is, however, found to yield remarkably precise
results in good agreements with experiments~e.g., Ref. 11!.
Using the nonpenetration condition at the boundaries,~5!
becomes

]z

]t
52~u"“ !z2Ra

] ū

]w
1Dz2E21

s

12s2 us . ~6!

Note that this equation, once linearized, is nothing more than
Eq. ~4.5! in Ref. 3. This includes the last term which is
equivalent to theb-plane effect used in meteorology. It ac-
counts for the effect of vortex tube stretching~and shorten-
ing! as one moves toward~away! the axis of rotation. This
equation can be expressed in terms of stream function (u
51/s ]wces2]scew), under the assumption of small vertical
variations. Vanishing normal velocity implies thatc is con-
stant on each boundary, and becausec is defined to an arbi-
trary constant, it can be set to zero in the case of a simply
connected domain. This is however not the case for our shell

geometry. For this reason, and to avoid driving a zonal flow
by an erroneous mean pressure gradient~see Ref. 12 for
discussion!, we write a separate equation for thef-averaged
zonal velocity ~henceforth denoted by a 0 subscript!. All
other modes are expressed in terms of the stream functionc.
Taking thez average of equation~4! and neglecting the terms
uz]zu andzuz, one obtains the resulting system of equations:
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The temperature perturbation vanishes at each boundary,

u50, ~8!

while the velocity satisfies either no-slip or stress-free
boundary conditions, respectively,

c5

]c

]s
5u050 ~9!

and

c5

]
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s
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]s D5

]

]s S u0
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The Prandtl number is here set to unity, and the aspect ratio
ro /r i is fixed to 0.35 for geophysical relevance. This system
corresponds to a modification of the one introduced by
Busse3 for a cylindrical annulus and was also used with a
different heating mode, and very far from onset by Aubert
et al.11 A similar approach has been used by Or and Busse,6,7

and Chen and Zhang9 where they used the annulus model3

with a first order Taylor expansion of the boundary, but with
a finite gap for Ref. 9. They have investigated vacillating
oscillations6,7,9 and chaotic convection.9 Chen and Zhang9

have also studied the effect of varying the aspect ratio for a
given Ekman number.

The set of equations~7! was discretized in Fourier
modes in the azimuthal direction, and with a finite differ-
ences method on stretched grids in the radial direction. Dif-
fusion terms, as well as the Coriolis term, were time stepped
with a Crank–Nicholson scheme. The nonlinearity and cou-
pling terms were computed with a second order Adams–
Bashford scheme. We used two different approaches for
evaluating these terms. The first approach consisted in evalu-
ating these terms in physical space using a fast Fourier trans-
form, the second consisted of evaluating explicit mode cou-
pling in the spectral space, and was restricted to two modes
only, the modem50 and the critical modemc . Our numeri-
cal code was successfully benchmarked against the indepen-
dently written code of Aubertet al.11
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III. ONSET OF CONVECTION AND NONLINEAR
REGIME

A. Linear results

To study the onset of convection, we timestep the linear-
ized system~for which the azimuthal modesm are decou-
pled! until we reach an exponentially growing solution. The
critical parameters are obtained through linear interpolation
of the growth rate very near the onset~see Ref. 13 for further
discussions of this approach!. It is to be noted that our linear
results are also relevant for a full sphere providedE is small
enough~see Ref. 13 for a discussion of the role of the inner
core on the onset of convection!, this will, however, not be
the case in the nonlinear regime because the zonal flow oc-
cupies the full domain and is thus affected by the inner body.
The onset of convection occurs through a Hopf bifurcation.3

The imaginary part of the eigenvalue corresponds to the drift
rate of the thermal Rossby waves. The critical parameters
~unstable modemc , Rayleigh numberRac , and drift rate
vc) obtained for our model for both sets of boundary condi-
tions ~no-slip and stress-free! are reported in Table I. These
results validate the classical asymptotic scalings3,14 mc

}E21/3, Rac}E24/3, andvc}E22/3. We have also checked
that the resulting eigenfunctions qualitatively follow the the-
oretical description of Joneset al.1 ~i.e., a Gaussian envelope
of scaling E1/6 with oscillations of the real and imaginary
part of the eigenfunction scaling asE1/3), thus demonstrating
that phase mixing also occurs for this reduced system, and
that the linear solution discussed here is best described in
terms of global instability.

B. Nonlinear behavior

1. Fully nonlinear results

Let us first describe the sequence of bifurcations ob-
tained with our two-dimensional model using the fast Fourier
transform algorithm. Busse and Grote8,15,16 describe, with
fully three-dimensional simulations and stress free boundary
conditions, the consecutive transitions which occur as the
Rayleigh number is increased above the onset of convection
for a given Ekman number (E51024 in their case!. The first
step in the series of transitions is referred to as vacillating

oscillations~see Ref. 17 for three-dimensional problems, and
Refs. 18 and 19 for two-dimensional cylindrical models!. It
corresponds to a sinusoidal oscillation in time of the kinetic
energy. The azimuthal periodicity of the pattern is conserved,
but an oscillation of the shape of the convective region de-
velops. Busse16 has noticed, by plotting the Nusselt number
as a function of Rayleigh number, that the energy dissipation
is enhanced through this bifurcation. Several modes become
unstable as the Rayleigh number increases. Figure 1 presents
oscillations of the kinetic energy, obtained with the quasigeo-
strophic model for such a parameter regime. This instability
is observed with both no-slip and stress-free boundary con-
ditions. The precise value of the control parameter for which
this transition occurs depends on the boundary conditions
~just as the critical parameters of Table I!. The parameters
used for Fig. 1 correspond to the lowest values of the Ray-

FIG. 1. Time oscillations of the kinetic energy forE51025, Pr51, and
Ra51.43Rac , with no-slip boundary conditions~top graph!, and Ra
51.343Rac , with stress-free boundary conditions~bottom graph!. This
parameter regime corresponds to vacillating oscillations. The energy of the
sum of all nonaxisymmetric modes (Ek8) is represented by a dashed line,
and the energy of modem50 (Ek0) by a solid line. The unit of time is the
viscous time scale.

TABLE I. Critical parameters for the onset of convection in the quasi-geostrophic model (Pr51).

E mc Rac vc mcE1/3 RacE4/3 vcE2/3

No-Slip
1024 7 6.024•105 272.48 0.325 2.80 0.587
1025 13 1.091•107 1179.2 0.280 2.35 0.547
1026 23 2.206•108 4967.8 0.230 2.20 0.497
1027 56 4.690•109 24571 0.260 2.18 0.529
1028 122 9.958•1010 114185 0.263 2.15 0.530

Stress-free
1024 7 5.961•105 268.50 0.325 2.77 0.578
1025 12 1.086•107 1134.4 0.258 2.34 0.526
1026 22 2.215•108 4856.4 0.220 2.21 0.485
1027 56 4.690•109 24573 0.260 2.18 0.529
1028 122 9.914•1010 113510 0.263 2.14 0.527

1605Phys. Fluids, Vol. 16, No. 5, May 2004 Time dependent b-convection



leigh number for which a time dependent amplitude was ob-
served. The kinetic energy,Ek, of the horizontal flow has
been calculated as the integral over the domain of (us

2

1uw
2), the velocity being expressed in units ofn/ro . This

can be separated in two contributions, the energy of the mean
zonal flow,Ek0 , which is the integral ofū0 , and the nonaxi-
symetric energy,Ek8, which is the integral of ((1/s]wc)2

1(]sc)2). The sequence of bifurcations obtained with this
model compares extremely well with the earlier three-
dimensional results of Busseet al., although the actual val-
ues of the parameters for transitions to occur necessarily dif-
fer in this reduced model from the full three-dimensional
numerical simulations.8,15,16 When increasing the Rayleigh
number, period doubling occurs, as in the three-dimensional
study of Ref. 8.

Chen et al. have investigated the sequence of bifurca-
tions described by8,15,16 with their two-dimensional model
using no-slip boundary conditions. They have reproduced the
first two steps of this sequence, i.e., the vacillating oscilla-
tions and chaotic oscillations however they report no indica-
tion of the relaxation oscillations, which is consistent with
our simulations for a comparable parameter regime. They
have investigated the details of the successive transitions in
between these bifurcations. They report up to nine transitions
which are characterized by enlarging the spatial scale of the
convection. We have obtained similar results with our largest
Ekman number, but the details of the transition scenario are
highly dependent of the Ekman number. A similar enlarging
of the spatial scale~i.e., decrease in the dominant wavenum-
ber m) has been observed in our simulations for large
enough values of the Ekman number.

Increasing the Rayleigh number further, the azimuthal

periodicity of the solution is conserved, but the zonal flow
increases in magnitude and strongly shears the convective
region. This tends to split the convective cells into a inner
and outer ring.

As in Refs. 8, 15, and 16, with a further increase in
Rayleigh number, a new bifurcation occurs which is charac-
terized by chaotic oscillations in time of the kinetic energy of
the system~see Fig. 2!. The azimuthal periodicity of the
pattern is no longer preserved and the shearing action of the
zonal flow becomes so strong that the convection structures
tend to concentrate in a reduced part of the shell. This local-
ized convection is illustrated on Fig. 3.

At higher Rayleigh number, a new transition occurs in
the form of quasi-periodic relaxation oscillations in time of
the kinetic energy, as pointed out by Groteet al.15 with their
three-dimensional model. Spatial periodicity is, however, not
recovered. This quasi-periodic relaxation~fairly similar to
that observed in zero Prandtl number convection20! is due to
the presence of a strong zonal shear.21 As the shear becomes
dominant, the convection decays. Eventually, the zonal flow
is not sustained anymore, and is suppressed by viscous dis-
sipation. Convection can then restart, and this process re-
peats almost periodically. The same transition is reproduced
with our two dimensional model~see Fig. 4!. The effect of
boundary conditions is particularly important for this transi-
tion as it strongly affects the period of the relaxation oscil-
lations. As convection is suppressed, the mean zonal flow
decays by diffusion. It is well known that no-slip boundary
conditions will lead to a faster decrease than stress-free
~since the zonal flow then vanishes at the boudaries!. This is
here characterized by a much shorter period of oscillation
with no-slip boundary conditions~see also Fig. 8!. The pe-
riod becomes less regular as the Rayleigh number is in-
creased. The energy of the nonaxisymetric modes varies over
a range of modes in a time dependent manner.

FIG. 2. Time dependent oscillations of the kinetic energy forE51025,
Pr51, and Ra523Rac , with no-slip boundary conditions~top graph!,
and Ra51.63Rac , with stress-free boundary conditions~bottom graph!.
This parameter regime corresponds to a chaotic time dependence, periodic-
ity is lost. The energy of sum of all nonaxisymmetric mode (Ek8) is repre-
sented by a dashed line, and the energy of modem50 (Ek0) by a solid line.
The unit of time is the viscous time scale.

FIG. 3. Isovalues ofc for E51025, Ra523Rac , Pr51, with no-slip
boundary conditions. This graph corresponds to chaotic oscillations, the azi-
muthal periodicity of the pattern is no longer preserved. Patterns of convec-
tion are localized by the shearing action of the zonal flow.
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2. Explicit mode coupling results

We have also produced a sequence of bifurcations with a
less demanding numerical approach which employs an ex-
plicit mode coupling in the spectral domain. This weakly
nonlinear model was severely truncated by only computing
two modes~the critical mode and the modem50). Vacillat-
ing oscillations are represented on Fig. 5 with no-slip bound-
ary conditions, they appear for a range of Rayleigh number
extremely close to that found using much higher spectral
resolution and the fast Fourier transform algorithm. This ap-
proximation is classical, and well justified for the investiga-
tion of nonlinearities very close to the onset. As one applies
this approximation further away from the critical value of the
Rayleigh number, it becomes less strongly justified, and can
only yield qualitative information on the dynamics. For ex-
ample, while the time dependence is very well reproduced by

this model on Fig. 5, comparison with Fig. 1 reveals that the
energies differ by a factor of two. This only high-lights the
limitations of this very severely truncated model in providing
more quantitative informations on the full dynamics.

FIG. 6. Isovalues ofc for vacillating oscillations forE51025, Ra51.45
3Rac , andPr51 ~solid line for positive values ofc, dashed for negative!,
with no-slip boundary conditions and explicit mode coupling. The graphs
are equally spaced in time~from left to right and top to bottom!. The time
interval between consequetive graphs is 1023 U.T. These six graphs cover a
full period of the vacillation process.

FIG. 7. Time oscillations of the kinetic energy forE51025,
Ra52.53Rac , and Pr51, with no-slip boundary conditions and explicit
mode coupling. This parameter regime corresponds to relaxation oscilla-
tions. The energy of critical mode (Ek8) is represented by a dashed line, and
the energy of modem50 (Ek0) by a solid line. The unit of time is the
viscous time scale.

FIG. 4. Time oscillations of the kinetic energy forE51025, Pr51, and
Ra533Rac , with no-slip boundary conditions~top graph!, and
Ra52.63Rac , with stress-free boundary conditions~bottom graph!. This
parameter regime corresponds to relaxation oscillations. The energy of sum
of nonaxisymmetric (Ek8) mode is represented by a dashed line and the
energy of modem50 ~scaled by 0.5 for top graph! by a solid line. The unit
of time is the viscous time scale.

FIG. 5. Time oscillations of the kinetic energy forE51025,
Ra51.413Rac , andPr51, with no-slip boundary conditions and explicit
mode coupling. This parameter regime corresponds to vacillating oscilla-
tions. The energy of critical mode (Ek8) is represented by a dashed line~it
has been scaled by 0.4 for this graph!, and the energy of modem50 (Ek0)
with solid line. The unit of time is the viscous time scale.
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The shearing action of the zonal flow is also well cap-
tured by this mode coupling approach~see, for example, Fig.
6! showing that all relevant physical ingredients remain
present.

Chaotic oscillations and localized convection cannot,
however, be reproduced with this approach since they require
more complicated mode interactions. Relaxation oscillations
are on the other hand obtained with this two-modes approach
~e.g., Fig. 7 with no-slip boundary conditions!. The threshold
for this instability is, however, strongly affected by the se-
vere truncation of such models. We will rely on this less
demanding approach in the following sections.

3. Low Ekman number limit

The main advantage of the two-dimensional approach is
that it enables us to investigate a wider range of parameters
~the computing time is considerably reduced compared to
three-dimensional simulations!. We have investigated the on-
set of these solutions with time dependant behavior of the
energy for decreasing Ekman numbers within the explicit
mode coupling approach, with Prandtl number still set to the
unity. Unexpectedly, this onset becomes closer to the onset
of convection as the Ekman number is decreased. This ap-
plies to the entire sequence of bifurcations described previ-

ously. The onset for all of these time dependent instabilities
converges towards the critical parameters for the onset of
convection as the Ekman number decreases. Thus the range
of Rayleigh number for which the convection is steady in
amplitude vanishes for asymptotically small values of the
Ekman number.

The values of the Rayleigh number for which the first
solutions with time dependent energies are found are pre-
sented for both no-slip and stress-free boundary conditions in
Table II. While the values reported in the table correspond to
the first observation of a time dependent energy, for the low-
est Ekman number, we directly obtained, for both sets of
boundary conditions, the relaxation oscillations at a value of
the Rayleigh number only 1% above critical.

Our results are expressed in terms ofRa/Rac , so that
they are independent of the definition used for the Rayleigh
number~even modified definitions such asRaE).

IV. DISCUSSION

In the graphs of Fig. 8, we show that for a given Ekman
number the period of time oscillations of the kinetic energy
decreases with increasing Rayleigh number. The growth rate
increases as the Rayleigh number is pushed away from its
critical value thus convection can recover before the zonal
shear fully vanishes, resulting in a shortening of the relax-
ation oscillation period~see Fig. 8!. As noted in Sec. III B 1,
the zonal flow being much less constrained by stress-free
boundary conditions, than no-slip boundary conditions, it de-
creases on a longer time scale, and the frequency of the
relaxation oscillations at a given Rayleigh number is thus
higher with the no-slip boundary conditions~see Fig. 8!.

For all the investigated values of the Ekman number, we
obtained only supercritical bifurcations for the onset of con-
vection. Soward2 demonstrated that for the original three-

TABLE II. Critical parameters for the onset of vacillating flows~obtained
with the explicit mode coupling method!.

E 1025 1026 1027

No-Slip
(Rac2

/Rac)21 0.41 0.25 0.01

Stress-free
(Rac2

/Rac)21 0.44 0.29 0.01

FIG. 8. Time oscillations of the kinetic energy forE51027, Pr51, on the left columnRa51.013Rac , and on the right columnRa51.23Rac . Results
with no-slip boundary conditions are represented on the top graphs, and stress-free boundary conditions on the bottom graphs. This parameter regime yields
relaxation oscillations. The energy of critical mode (Ek8) is represented by a dashed line, and the energy of modem50 (Ek0) by a solid line. The unit of
time is the viscous time scale. Note that the range of time represented differs between both sets of boundary conditions.
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dimensional~3D! problem, with rigid boundary conditions,
the nonlinear effects would drive a zonal shear which could
counter-act phase mixing and yield a subcritical bifurcation
for the onset of convection. Like Chenet al.,9 we have not
observed any subcritical bifurcations despite the lower val-
ues of the Ekman number we have investigated. It is to be
noted that the main nonlinearity invoked in Ref. 2 is the
thermal wind, which is absent from ourz-integrated simula-
tions. The zonal flow in our simulations is driven by the
Reynolds stress only. Furthermore the Ekman suction at the
top and bottom of the columns was taken into account in
Ref. 2, while neglected here. Despite the simplifications, the
observation that the energy of convection can become time
dependent extremely near the onset is an advance in our
knowledge of the effects of the zonal flow of the asymptotic
nature of the bifurcation associated with the onset of convec-
tion.

Relaxation oscillations in time evolve on typical time
scales of fractions of the viscous diffusion time~decreasing
fractions with increasing Rayleigh numbers!. Similar relax-
ation oscillations but at much higher Rayleigh number and in
a magnetohydrodynamic flow could suppress the convection
in the Earth core~through the strong zonal shear! on a quasi-
periodic basis. It is tempting to speculate, that relaxation
oscillations modified by magnetic effects, could be related to
the geomagnetic reversals occurring on Earth with a typical
time scale of 100 kyr. This time scale, short compared to the
viscous time scale, does not naturally appear from dimen-
sional analysis. Relaxation oscillations are a good candidate
to provide such time scales. A mechanism reducing the
strength of convection would be compatible with the de-
crease in the geomagnetic field intensity observed between
reversals.22 Such relaxation oscillations in the magnetohy-
drodynamic regime, would clearly deserve further study.
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