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in the exterior of a disk
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Résumé
La méthode des vortex est une approche théorique et numérique cou-

ramment utilisée afin d’implémenter le mouvement d’un fluide parfait, dans
laquelle le tourbillon est approché par une somme de points vortex, de sorte
que les équations d’Euler se réécrivent comme un système d’équations différen-
tielles ordinaires. Une telle méthode est rigoureusement justifiée dans le plan
complet, grâce aux formules explicites de Biot et Savart. Dans un domaine
extérieur, nous remplaçons également le bord imperméable par une collection
de points vortex, générant une circulation autour de l’obstacle. La densité de
ces points est choisie de sorte que le flot demeure tangent au bord sur certains
points intermédiaires aux paires de tourbillons adjacents sur le bord. Dans
ce travail, nous proposons une justification rigoureuse de cette méthode dans
des domaines extérieurs. L’une des principales difficultés mathématiques étant
que le noyau de Biot-Savart définit un opérateur intégral singulier lorsqu’il est
restreint à une courbe. Par souci de simplicité et de clarté, nous traitons seule-
ment le cas du disque unité dans le plan, approché par un maillage de points
uniformément répartis. La version complète et générale de notre travail est
disponible en [1].
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Abstract
The vortex method is a common numerical and theoretical approach used

to implement the motion of an ideal flow, in which the vorticity is approxi-
mated by a sum of point vortices, so that the Euler equations read as a system
of ordinary differential equations. Such a method is well justified in the full
plane, thanks to the explicit representation formulas of Biot and Savart. In
an exterior domain, we also replace the impermeable boundary by a collection
of point vortices generating the circulation around the obstacle. The density
of these point vortices is chosen in order that the flow remains tangent at
midpoints between adjacent vortices. In this work, we provide a rigorous jus-
tification for this method in exterior domains. One of the main mathematical
difficulties being that the Biot-Savart kernel defines a singular integral opera-
tor when restricted to a curve. For simplicity and clarity, we only treat the case
of the unit disk in the plane approximated by a uniformly distributed mesh
of point vortices. The complete and general version of our work is available in
[1].

1. Introduction

Numerical methods describing the evolution of a flow have many practical interests
in engineering and applications. It is therefore important to justify that given meth-
ods provide good approximations of analytic solutions. The goal of this proceeding
is to validate the vortex method in exterior domains for the two-dimensional Euler
equations.

1.1. The Euler equations in exterior domains
The motion of an incompressible ideal fluid filling a domain Ω ⊂ R2 is governed by
the Euler equations:

∂tu+ u · ∇u+∇p = 0 in (0,∞)× Ω,
div u = 0 in [0,∞)× Ω,
u · n = 0 on [0,∞)× ∂Ω,
u(0, ·) = u0 in Ω,

(1.1)

where u = (u1(t, x1, x2), u2(t, x1, x2)) is the velocity, p = p(t, x1, x2) the pressure and
n the unit inward normal vector. There is an impressive literature about the study
of this system, first for physical motivations and second because it provides elegant
mathematical problems at the boundaries of elliptic theory, dynamical systems,
convex geometry and partial differential equations. The richness of these equations
is due to the role of the vorticity:

ω(t, x) := curl u(t, x) = ∂1u2 − ∂2u1.

Indeed, taking the curl of the momentum equation, we note that this quantity
satisfies a transport equation:

∂tω + u · ∇ω = 0 in (0,∞)× Ω. (1.2)
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From this form, we deduce many conservation properties which allow to establish the
wellposedness of the Euler equations in several different settings (standard references
can be found in [6, 13]). Therefore, one of the key steps in the analysis of (1.1)
consists in reconstructing the velocity u from the vorticity ω by solving the following
elliptic problem: 

div u = 0 in Ω,
curl u = ω in Ω,
u · n = 0 on ∂Ω,
u→ 0 as x→∞,

(1.3)

where ω ∈ C0,α
c (Ω), for some 0 < α ≤ 1.

In the case of the full plane Ω = R2, any solution of

div u = 0 in R2, curl u = ω in R2, u→ 0 as x→∞, (1.4)

satisfies
∆u = ∇⊥ω in R2,

which easily yields

u = KR2 [ω] = F−1 iξ
⊥

|ξ|2
Fω.

Here, the superscript ⊥ denotes the rotation by π/2, that is (x1, x2)⊥ = (−x2, x1).
It follows, employing standard results on Fourier multipliers, that KR2 has bounded
extensions from Lp to Ẇ 1,p, for any 1 < p < ∞. Furthermore, writing Φ(x) =
− 1

2π log |x| the fundamental solution of the Laplacian in R2, it holds that (see e.g.
[7])

u = KR2 [ω] = −Φ ∗
(
∇⊥ω

)
= −∇⊥ (Φ ∗ ω) = 1

2π

∫
R2

(x− y)⊥
|x− y|2

ω(y)dy ∈ C1
(
R2
)
.

(1.5)
We refer to [5, p. 249] for a justification of the C1-regularity of KR2 [ω].

When Ω = {x ∈ R2, |x| > 1} is the exterior of the unit disk, there are an infinite
number of solution of (1.3), because of the harmonic vector field:

H(x) = 1
2π

x⊥

|x|2
,

which verifies

divH = 0 in Ω, curlH = 0 in Ω, H · n = 0 on ∂Ω, H → 0 as x→∞.

Thus, in order to reconstruct uniquely the velocity in terms of the vorticity, the
standard idea consists in prescribing the circulation:∮

∂Ω
u · τ ds = γ,

where γ ∈ R and τ := n⊥ is the tangent vector to ∂Ω. This constraint is natural
because Kelvin’s theorem implies then that the circulation of u around an obstacle
is a conserved quantity for the Euler equations. With this additional condition, it
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holds now true that there exists a unique solution u of

div u = 0 in Ω,
curl u = ω in Ω,
u · n = 0 on ∂Ω,
u→ 0 as x→∞,∮
∂Ω u · τ ds = γ,

(1.6)

where ω ∈ C0,α
c (Ω), for some 0 < α ≤ 1, and γ ∈ R (see e.g. [12, Prop. 2.1]).

To solve this elliptic problem, we introduce the Green function with Dirichlet
boundary condition GΩ : Ω× Ω→ R as a function verifying:

GΩ(x, y) = GΩ(y, x) ∀(x, y) ∈ Ω2,

∆xGΩ(x, y) = δ(x− y) ∀(x, y) ∈ Ω2,

GΩ(x, y) = 0 ∀(x, y) ∈ ∂Ω× Ω,

where δ denotes the Dirac function centered at the origin. In the case of the exterior
of the unit disk D := B(0, 1), we have an explicit formula:

GΩ(x, y) = 1
2π ln |x− y|

|x− y∗||y|
,

with the notation y∗ = y
|y|2 , for any y ∈ R2 \ {0}. This expression allows us to write

explicitly the solution of (1.6) (for all details, we refer e.g. to [12]):

u(x) = KΩ[ω](x) + αH(x) :=
∫

Ω
∇⊥xGΩ(x, y)ω(y) dy + αH(x)

= 1
2π

∫
Ω

(
x− y
|x− y|2

− x− y∗

|x− y∗|2
)⊥
ω(y) dy + α

2π
x⊥

|x|2

= 1
2π

∫
R2

(x− y)⊥

|x− y|2

(
ω(y)− 1

|y|4
ω(y∗)

)
dy + α

2π
x⊥

|x|2
∈ C1

(
Ω
)
,

(1.7)

where we have set
α = γ +

∫
Ω
ω(y) dy.

Note that the total mass of the vorticity is also a conserved quantity of incompress-
ible ideal two-dimensional flows.

In conclusion, the Euler equations around the obstacle D can be seen as the
transport of the vorticity (1.2) by the velocity field u defined by (1.7). This property
conveniently allows the use of various mathematical theories. It is therefore crucial
to develop efficient and robust methods to rebuild the velocity field u from the
vorticity ω or an approximation of it. In particular, for the sake of applications, we
are now going to focus on the theoretical and numerical approximation of (1.7).

1.2. The vortex method
In the full plane R2, when the initial vorticity is close to be concentrated at N given
points {x0

i }
N
i=1 ⊂ R2, i.e. ω(t = 0) ∼ ∑N

i=1 γiδx0
i
in some suitable sense, Marchioro and

Pulvirenti [14] have shown that the corresponding solution of the Euler equations in
the full plane has a vorticity which remains close to a combination of Dirac masses
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ω(t) ∼ ∑N
i=1 γiδxi(t) (in some suitable sense) where the centers {xi}Ni=1 verify a system

of ODE’s, called the point vortex system:


ẋi(t) = 1

2π
∑
j 6=i

γj
(xi(t)− xj(t))⊥
|xi(t)− xj(t)|2

,

xi(0) = x0
i .

(1.8)

Here, the point vortex γiδxi(t) moves under the velocity field produced by the other
point vortices.

It turns out that this Lagrangian formulation is much easier to handle numerically
than the Eulerian formulation (1.2). Indeed, standard numerical methods on (1.2)
generate an “inherent numerical viscosity” and some quantities which should be
conserved instead decrease (see e.g. [11, 17]). Actually, smoothing the Biot-Savart
kernel by mollifying x⊥

|x|2 in (1.8) gives a more stable system, called the vortex-blob
method (i.e. approximation of the vorticity by Dirac masses and regularization of the
kernel). The stability and the convergence as N →∞ of the vortex-blob and point
vortex methods have been extensively studied: in [3] for the vortex-blob method
when the initial vorticity is bounded, in [9] for the point vortex method for smooth
initial data and in [16] for both methods and for weak solutions as e.g. a vortex
sheet (see also the textbook [4]).

However, all these works use the explicit formula of the Biot-Savart law in the
full plane (1.5) where the flow (x−xi)⊥

2π|x−xi|2 is identified with KR2 [δxi ]. In an exterior
domain, the Biot-Savart law is much more complicated. A possible approach could
be to use the explicit formula (1.7) in order to adapt the previous vortex methods.
But such an approach would only be useful in the exterior of the disk. Indeed, if
we consider that Ω is the exterior of a compact, simply connected subset of R2, we
can implicitly adapt formula (1.7) thanks to conformal mappings, which has some
theoretical interest, but this approach yields serious practical difficulties, for there
are very few explicit Riemann mappings available.

Our alternative strategy consists in approximating the impermeable boundary of
the exterior domain by a collection of point vortices ∑N

i=1
γNi (t)
N

δxi , where the vortex
positions {xi}Ni=1 are fixed but the density of points {γNi }Ni=1 now evolves with time
and is chosen in order that the resulting velocity field remains tangent at midpoints
on the boundary between the xi’s. Note that this approach appears sometimes in
physics and engineering books (see e.g. [2, 8]).

To this end, we introduce uP the solution of (1.4) in the full plane, which is
explicitly given by (1.5):

uP := KR2 [ω] ∈ C1
(
R2
)
⊂ C1

(
Ω
)
, (1.9)

and the remainder velocity field uR defined by:

uR := u− uP ∈ C0
(
Ω
)
∩ C1 (Ω) . (1.10)
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As ω is compactly supported in Ω we get by the Stokes formula that
∮
∂Ω uP · τ ds =∫

B(0,1) curl uP =
∫
B(0,1) ω = 0. Hence, it is readily seen that uR solves

div uR = 0 in Ω,
curl uR = 0 in Ω,
uR · n = −uP · n on ∂Ω,
uR → 0 as x→∞,∮
∂Ω uR · τ ds = γ.

(1.11)

In particular, uR is harmonic in Ω and therefore it is smooth in Ω, i.e. uR ∈ C∞ (Ω)
(see [7, Corollary 8.11] or [10]).

The vortex method for the exterior domain Ω is essentially an approximation
procedure of uR by point vortices on ∂Ω.

Thus, let now (xN1 , xN2 , . . . , xNN) be the positions of N distinct point vortices on the
boundary ∂Ω. In the case of the disk, ∂Ω = ∂B(0, 1) = {(cos θ, sin θ) ∈ R2 : θ ∈ [0, 2π)},
we consider

0 = θN1 < θN2 < · · · < θNN < 2π such that xNi = (cos θNi , sin θNi ). (1.12)
We further introduce some intermediate points on the boundary, for each i =
1, . . . , N − 1:

θ̃Ni ∈ (θNi , θNi+1), x̃Ni := (cos θ̃Ni , sin θ̃Ni ). (1.13)
The method consists in approximating the solution uR to (1.11) by a suitable flow

uNapp(x) := 1
2π

N∑
j=1

γNj
N

(x− xNj )⊥

|x− xNj |2
= KR2

[ N∑
j=1

γNj
N
δxNj

]
, (1.14)

whose vorticity is precisely made of N point vortices with density
{
γNi
N

}N
i=1

on the
boundary ∂Ω.

It is to be emphasized that this approximation is consistent with and motivated
by the physical idea that the circulation around the obstacle (here, the unit disk
B(0, 1)) is created by a collection of vortices on the boundary of the obstacle, i.e. a
vortex sheet on the boundary.

However, it is a priori not obvious that such a flow uNapp can be made a good
approximation of uR. Nevertheless, note that uNapp already naturally satisfies

div uNapp = 0 in Ω,
curl uNapp = 0 in Ω,
uNapp → 0 as x→∞.

Therefore, the key idea lies in enforcing that the boundary and circulation conditions
be satisfied as N → ∞ by setting γN = (γN1 , . . . , γNN ) ∈ RN to be the solution of
the following system of N linear equations:

1
2π

N∑
j=1

γNj
N

(x̃Ni − xNj )⊥

|x̃Ni − xNj |2
· n(x̃Ni ) = −[uP · n](x̃Ni ), for all i = 1, . . . , N − 1,

N∑
i=1

γNi
N

= γ.

(1.15)

It will be shown later on, under suitable hypotheses on the placement of point
vortices, that the above system always has a solution γN . The fact that uNapp is a

V–6



good approximation of uR is precisely the content of our main theorem below (see
Theorem 1.1). Clearly, it will then follow that u is well approximated by uNapp +
KR2 [ω], which will conclude the rigorous justification of the vortex method for the
boundary of the exterior of a disk. Other more complicated non-smooth exterior
domains are investigated in the full version of our work [1].

Notice that it is now also possible to combine the vortex method for the boundary
of an exterior domain with the aforementioned vortex method in the whole plane in
order to obtain a full and dynamic vortex method for an exterior domain. To this
end, we consider an approximation of the initial vorticity ω0 by a combination of
point vortices∑M

k=1 αkδyk(0). Then, the position yk(t) of each point vortex is let evolve
under the influence of the vector field created by the remaining vortices∑p 6=k αpδyp(t)
(with possible regularization of the kernel) and the fixed vortices on the boundary∑N
i=1

γNi (t)
N

δxNi , where the variable vortex density γNi (t) is computed through (1.15)
where uP is replaced by = KR2 [∑M

k=1 αkδyk(t)].
Finally, it is to be emphasized that the main novelty of this method, when com-

pared to the standard point vortex and vortex-blob methods, is the computation of
γN though (1.15) allowing the construction of an approximate flow KR2 [ω] + uNapp
which only requires the use of the Biot-Savart kernel in the whole plane and does
not resort to (1.7).

1.3. Main result
For simplicity, we only consider in this work the stationary case where the points
{xNi }Ni=1 and {x̃Ni }Ni=1 are uniformly distributed on the unit circle:

θNi = (i− 1)2π
N

and θ̃Ni =
(i− 1

2)2π
N

∀i = 1, . . . , N. (1.16)

Our main result states that the approximate flow uNapp, constructed through the
procedure (1.15), is a good approximation of uR:

Theorem 1.1. Let ω ∈ C0,α
c (Ω) (with 0 < α ≤ 1) and γ ∈ R be given. For any

N ≥ 2, we consider the uniformly distributed mesh (1.16) and uP defined in (1.9).
Then, the system (1.15) admits a unique solution γN ∈ RN . Moreover, for any

closed set K ⊂ Ω there exists a constant C = C(K) independent of N such that

‖uR − uNapp‖L∞(K) ≤
C

N2 ,

where uNapp is given by (1.14) in terms of γN and uR is the continuous flow (1.10).

Notice that in this particular case of the unit disk, we also have an explicit formula
for uR thanks to (1.7):

uR(x) = − 1
2π

∫
Ω

(x− y∗)⊥
|x− y∗|2

ω(y) dy + α

2π
x⊥

|x|2

= − 1
2π

∫
B(0,1)

(x− y)⊥
|x− y|2

1
|y|4

ω(y∗) dy + α

2π
x⊥

|x|2
.

(1.17)

Numerically, we indeed verify that the system (1.15) is always invertible, and that
the L∞-norm, on any compact set K, of the difference of uNapp (given in (1.14))
with uR (given in (1.17)) decreases as 1/N2, which is exactly the rate obtained in
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Theorem 1.1. This rate is therefore optimal, at least from the numerical viewpoint.
It would be interesting to obtain a rigorous proof of optimality.

The remainder of this article is composed of four parts. In the following section,
we establish important representation formulas for the solution of (1.11), which
will be used in the proof of our main theorem, and we show the link between our
problem and the circular Hilbert transform. Then, in Section 3, we prove that the
linear system (1.15) is invertible. In Section 4, we establish that (uR − uNapp) · n|∂Ω
converges to zero in a weak sense. Finally, in the last section, we deduce that such
a weak convergence implies the conclusion of Theorem 1.1.

Thus, the goal of this article is to give a first and simpler poof of validity of the
vortex method when restricted to the particular case of the disk where the points
{xNi , x̃Ni }Ni=1 are uniformly distributed. The full general case of an arbitrary exterior
domain and more generally distributed meshes is treated in [1]. Therein, we also
consider the time dependence of the flow and non-zero velocities at infinity.

Remark. Removing the harmonic part x⊥/|x|2 and the circulation condition in (1.6)
and (1.11), the main result can be readily adapted to describe an ideal fluid inside
the unit disk (see [1] for more details).

2. Boundary vortex sheets and the circular Hilbert trans-
form

We present now two distinct representation formulas – other than (1.17) – for the
solution uR of (1.11), which will be crucial for the justification of Theorem 1.1 and
whose understanding will shed light on the approximation of uR by point vortices
on the boundary ∂Ω.

Recall that we are considering some given vorticity ω ∈ C0,α
c (Ω), with 0 < α ≤ 1,

and γ ∈ R, and wish to construct a velocity field uR ∈ C0
(
Ω
)
∩ C1 (Ω) solving

(1.11).
We show now that it is possible to express the solution to (1.11) as a vortex sheet

on the boundary ∂Ω, which, again, is consistent with the physical idea that the flow
around an obstacle is produced by a boundary layer of vortices.

More precisely, we claim that uR can be expressed as a boundary vortex sheet:

v(x) =KR2 [gδ∂Ω] = 1
2π

∫
∂Ω

(x− y)⊥
|x− y|2

g(y)dy

=− 1
2π

∫
∂Ω

(x− y) · τ(y)
|x− y|2

n(y)g(y)dy

+ 1
2π

∫
∂Ω

(x− y) · n(y)
|x− y|2

τ(y)g(y)dy ∈ C∞
(
R2 \ ∂Ω

)
,

(2.1)

for some suitable g ∈ C0,α (∂Ω), with 0 < α ≤ 1. Notice that (1.14) is essentially a
discretization of (2.1).

Indeed, the theory of single and double layer potentials (or of Cauchy integrals,
see [15]) instructs us that, for a smooth boundary ∂Ω and for any g ∈ C0,α (∂Ω),
the flow defined by (2.1) is continuous up to the boundary ∂Ω (see [15, Chap. 2, §
16]), that is v ∈ C

(
Ω
)
∪ C (Ωc), and that the limiting values of v on ∂Ω are given
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by (see [15, Chap. 2, § 17])

lim
x→x0∈∂Ω
x∈Ω∪Ωc

1
2π

∫
∂Ω

(x− y) · τ(y)
|x− y|2

n(y)g(y)dy = 1
2π

∫
∂Ω

(x0 − y) · τ(y)
|x0 − y|2

n(y)g(y)dy,

lim
x→x0∈∂Ω

x∈Ω

1
2π

∫
∂Ω

(x− y) · n(y)
|x− y|2

τ(y)g(y)dy = 1
2π

∫
∂Ω

(x0 − y) · n(y)
|x0 − y|2

τ(y)g(y)dy

+ 1
2τ(x0)g(x0),

lim
x→x0∈∂Ω
x∈Ωc

1
2π

∫
∂Ω

(x− y) · n(y)
|x− y|2

τ(y)g(y)dy = 1
2π

∫
∂Ω

(x0 − y) · n(y)
|x0 − y|2

τ(y)g(y)dy

− 1
2τ(x0)g(x0),

where the integral in the right-hand side of the first equation above is defined in the
sense of Cauchy’s principal value (note that, in the remaining equations, all integrals
are defined in the usual sense).

Hence, we deduce that

lim
x→x0∈∂Ω

x∈Ω

v(x) = 1
2π

∫
∂Ω

(x0 − y)⊥
|x0 − y|2

g(y)dy + 1
2τ(x0)g(x0),

and

lim
x→x0∈∂Ω
x∈Ωc

v(x) = 1
2π

∫
∂Ω

(x0 − y)⊥
|x0 − y|2

g(y)dy − 1
2τ(x0)g(x0),

where, again, the integrals in the right-hand sides above are defined in the sense of
Cauchy’s principal value.

Therefore, we conclude that the flow v(x) given by (2.1) defines the unique solution
uR(x) ∈ C0

(
Ω
)
∩ C1 (Ω) of (1.11) if and only if g ∈ C0,α (∂Ω) satisfies

1
2π

∫
∂Ω

(x− y)⊥
|x− y|2

· n(x)g(y)dy = uR · n(x) = −uP · n(x), for every x ∈ ∂Ω, (2.2)

and ∫
∂Ω
g(x)dx =

∫
∂Ω

(
1

2π

∫
∂Ω

(x− y)⊥
|x− y|2

g(y)dy + 1
2τ(x)g(x)

)
· τ(x)dx

−
∫
∂Ω

(
1

2π

∫
∂Ω

(x− y)⊥
|x− y|2

g(y)dy − 1
2τ(x)g(x)

)
· τ(x)dx

=
∫
∂Ω
uR · τ(x)dx−

∫
Ωc

curl v(x)dx = γ.

(2.3)

Again, we insist on the fact that the representation formula (2.1) for the solution
of system (1.11) only involves the usual Biot-Savart kernel in the whole plane.

The existence of such a density g ∈ C0,α (∂Ω) satisfying conditions (2.2) and (2.3)
for any suitable given data is nontrivial, which we address now in the case of the
unit disk only.
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To this end, note that the singularity of the Biot-Savart kernel satisfies, for all
x, y ∈ ∂B(0, 1), that

(x− y)⊥

|x− y|2
· n(x) = −y

⊥ · x
|x− y|2

=
− cos

(
π
2 + φ− θ

)
4 sin2

(
φ−θ

2

) = sin (φ− θ)
4 sin2

(
φ−θ

2

) = −1
2 cot

(
θ − φ

2

)
,

(2.4)
where x = (cos θ, sin θ) and y = (cosφ, sinφ), which is nothing but the kernel of the
circular Hilbert transform.

Therefore, system (2.2)-(2.3) can be recast as∫ 2π

0
cot

(
θ − φ

2

)
g(φ)dφ = f(θ), for every θ ∈ [0, 2π],∫ 2π

0
g(φ)dφ = γ,

(2.5)

where the 2π-periodic function g ∈ C0,α([0, 2π]), for some 0 < α ≤ 1, is the unknown
and the 2π-periodic function f : R→ R is defined by

f(θ) = 4π[uP · n](cos θ, sin θ) ∈ C∞ ([0, 2π]) . (2.6)
As uP is smooth and divergence free, we note by the Stokes formula that∫ 2π

0
f = 0. (2.7)

Clearly, solving system (2.5) amounts to inverting the circular Hilbert transform

Hg(θ) =
∫ 2π

0
cot

(
θ − φ

2

)
g(φ)dφ = −i

∑
k∈Z

sign(k)ĝ(k)eikθ,

which is a well-known involution on the space of zero-mean periodic functions in
L2([0, 2π]), that is to say

H2g(θ) = −4π2
(
g(θ)− 1

2π

∫ 2π

0
g(φ)dφ

)
, for all g ∈ L2([0, 2π]). (2.8)

It therefore follows that the solution to (2.5) (or, equivalently, to (2.2)-(2.3)) is given
by

g(θ) = −1
4π2Hf(θ) + γ

2π = −1
π
H[uP · n](θ) + γ

2π ∈ C
∞ ([0, 2π]) ,

and is smooth, for f is smooth, whereby, in view of (2.1), we obtain the following
representation formula on the exterior of a disk:

uR(x) = − 1
2π2

∫
∂B(0,1)

(x− y)⊥
|x− y|2

H[uP · n](y)dy + γ

4π2

∫
∂B(0,1)

(x− y)⊥
|x− y|2

dy.

In particular, we deduce, by comparing the above identity with (1.17) and by unique-
ness of solutions to system (1.11), that it holds

1
2π

∫
∂B(0,1)

(x− y)⊥
|x− y|2

dy = x⊥

|x|2
, for every x ∈ Ω. (2.9)

Thus, we finally conclude that

uR(x) = − 1
2π2

∫
∂B(0,1)

(x− y)⊥
|x− y|2

H[uP · n](y)dy + γ

2π
x⊥

|x|2
. (2.10)
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It turns out that there is yet another convenient representation formula for the
flow uR, which is a variant of the boundary vortex sheet (2.1).

More precisely, we claim now that in the exterior of a disk, uR can also be ex-
pressed as:

w(x) = 1
2π

∫
∂Ω

x− y
|x− y|2

h(y)dy + γ

2π
x⊥

|x|2

= 1
2π

∫
∂Ω

(x− y) · n(y)
|x− y|2

n(y)h(y) dy + 1
2π

∫
∂Ω

(x− y) · τ(y)
|x− y|2

τ(y)h(y) dy

+ γ

2π
x⊥

|x|2
∈ C∞

(
R2 \ ∂Ω

)
,

(2.11)

for some suitable h ∈ C0,α (∂Ω), with 0 < α ≤ 1.
As before, the theory of single and double layer potentials instructs us that, for a

smooth boundary ∂Ω and for any h ∈ C0,α (∂Ω), the flow w is continuous up to the
boundary ∂Ω, that is w ∈ C

(
Ω
)
∪ C (Ωc), and that the limiting values of w on ∂Ω

are given by

lim
x→x0∈∂Ω
x∈Ω∪Ωc

1
2π

∫
∂Ω

(x− y) · τ(y)
|x− y|2

τ(y)h(y) dy = 1
2π

∫
∂Ω

(x0 − y) · τ(y)
|x0 − y|2

τ(y)h(y) dy,

lim
x→x0∈∂Ω

x∈Ω

1
2π

∫
∂Ω

(x− y) · n(y)
|x− y|2

n(y)h(y) dy = 1
2π

∫
∂Ω

(x0 − y) · n(y)
|x0 − y|2

n(y)h(y) dy

+ 1
2n(x0)h(x0),

lim
x→x0∈∂Ω
x∈Ωc

1
2π

∫
∂Ω

(x− y) · n(y)
|x− y|2

n(y)h(y) dy = 1
2π

∫
∂Ω

(x0 − y) · n(y)
|x0 − y|2

n(y)h(y) dy

− 1
2n(x0)h(x0),

where the integral in the right-hand side of the first equation above is defined in the
sense of Cauchy’s principal value (note that, in the remaining equations, all integrals
are defined in the usual sense).

Hence, we deduce that

lim
x→x0∈∂Ω

x∈Ω

w(x) = 1
2π

∫
∂Ω

x0 − y
|x0 − y|2

h(y)dy + 1
2n(x0)h(x0) + γ

2π
x⊥0
|x0|2

,

and
lim

x→x0∈∂Ω
x∈Ωc

w(x) = 1
2π

∫
∂Ω

x0 − y
|x0 − y|2

h(y)dy − 1
2n(x0)h(x0) + γ

2π
x⊥0
|x0|2

,

where, again, the integrals in the right-hand sides above are defined in the sense of
Cauchy’s principal value.

Therefore, we conclude that the flow w(x) given by (2.11) defines the unique
solution uR(x) ∈ C0

(
Ω
)
∩ C1 (Ω) of (1.11) if and only if h ∈ C0,α (∂Ω) satisfies

1
2π

∫
∂Ω

x− y
|x− y|2

· n(x)h(y)dy + 1
2h(x) = uR · n(x) = −uP · n(x), for every x ∈ ∂Ω,

(2.12)
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and∫
∂Ω
h(x)dx =

∫
∂Ω

(
1

2π

∫
∂Ω

x− y
|x− y|2

h(y)dy + 1
2n(x)h(x) + γ

2π
x⊥

|x|2

)
· n(x)dx

−
∫
∂Ω

(
1

2π

∫
∂Ω

x− y
|x− y|2

h(y)dy − 1
2n(x)h(x) + γ

2π
x⊥

|x|2

)
· n(x)dx

=
∫
∂Ω
uR · n(x)dx−

∫
Ωc

divw(x)dx = −
∫
∂Ω
uP · n(x)dx = 0.

(2.13)
Note that the circulation condition∫

∂Ω
uR · τ(x)dx =

∫
∂Ω

(
1

2π

∫
∂Ω

x− y
|x− y|2

h(y)dy + 1
2n(x)h(x) + γ

2π
x⊥

|x|2

)
· τ(x)dx

=
∫
∂Ω

(
1

2π

∫
∂Ω

x− y
|x− y|2

h(y)dy − 1
2n(x)h(x)

)
· τ(x)dx+ γ

=
∫

Ωc
curl

(
1

2π

∫
∂Ω

x− y
|x− y|2

h(y)dy
)
dx+ γ = γ,

is automatically satisfied.
The existence of such a density h ∈ C0,α (∂Ω) satisfying conditions (2.12) and

(2.13) for any suitable given data is nontrivial, which we address now in the case of
the unit disk only.

To this end, note that the singularity of the Biot-Savart kernel satisfies, for all
x, y ∈ ∂B(0, 1), that

x− y
|x− y|2

· n(x) = 1− y · x
|x− y|2

= 1− cos (φ− θ)
4 sin2

(
φ−θ

2

) = 1
2 ,

where x = (cos θ, sin θ) and y = (cosφ, sinφ).
Therefore, it is readily seen that system (2.12)-(2.13) is uniquely solved by

h(θ) = −2uP · n(θ) ∈ C∞ ([0, 2π]) ,
whereby, in view of (2.11), we obtain the following representation formula on the
exterior of a disk:

uR(x) = − 1
π

∫
∂B(0,1)

x− y
|x− y|2

(uP · n)(y)dy + γ

2π
x⊥

|x|2
. (2.14)

It then follows, by comparing (2.14) with (2.10) and by uniqueness of solutions
to system (1.11), that∫
∂B(0,1)

x− y
|x− y|2

(uP ·n)(y)dy = 1
2π

∫
∂B(0,1)

(x− y)⊥
|x− y|2

H[uP ·n](y)dy, for every x ∈ Ω,

whence we infer that, replacing uP ·n byHϕ in view of the arbitrariness of zero-mean
boundary data in (1.11) and using the inversion of the Hilbert transform (2.8),∫

∂B(0,1)

x− y
|x− y|2

Hϕ(y)dy = 1
2π

∫
∂B(0,1)

(x− y)⊥
|x− y|2

H2ϕ(y)dy

= −2π
∫
∂B(0,1)

(x− y)⊥
|x− y|2

(
ϕ(y)− 1

2π

∫
∂B(0,1)

ϕ(z)dz
)
dy,

for every x ∈ Ω.
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Hence, for y = (cosφ, sinφ) ∈ ∂B(0, 1) and x ∈ Ω, we have by (2.9):∫ 2π

0

∫ 2π

0

x− y
|x− y|2

cot
(
φ− θ

2

)
ϕ(θ)dθdφ = −2π

∫ 2π

0

(x− y)⊥
|x− y|2

ϕ(φ)dφ

+ 2π x
⊥

|x|2
∫
∂B(0,1)

ϕ(z)dz,
∫ 2π

0

∫ 2π

0

x− z
|x− z|2

cot
(
θ − φ

2

)
ϕ(φ)dφdθ = −2π

∫ 2π

0

(x− y)⊥
|x− y|2

ϕ(φ)dφ

+ 2π x
⊥

|x|2
∫ 2π

0
ϕ(φ)dφ,

where z = (cos θ, sin θ). Finally, by the arbitrariness of ϕ, we conclude

1
2π

∫
∂B(0,1)

x− z
|x− z|2

cot
(
φ− θ

2

)
dz = (x− y)⊥

|x− y|2
− x⊥

|x|2
, (2.15)

for every x ∈ Ω and y ∈ ∂B(0, 1), which will be useful later on. Once again, we
insist on the fact that the above integral is defined is the sense of Cauchy’s principal
value.

Remark. As explained in the introduction, our goal is to justify that uNapp (1.14) is
a good discretization of the formulation (2.10). In fact, it would be easier, at least
numerically, to discretize (2.14) which would give us a direct approximation of uR
without inverting large matrices (related to the computation of the inverse Hilbert
transform H−1; see Section 3).

For more general geometries of Ω, we prove in [1] that there also exist densities g
and h satisfying the above conditions (2.2), (2.3), (2.12) and (2.13). However, (2.14)
does not hold anymore and so, the processes to get g or h involve similar difficulties.

3. Solving system (1.15) and the discrete circular Hilbert
transform

Using (2.4) and considering the angles {θNi } and {θ̃Ni } associated to {xNi } and {x̃Ni }
(see (1.12)-(1.13)), the system (1.15) of N equations can be recast as

1
N

N∑
j=1

γNj cot
(
θ̃Ni − θNj

2

)
= f(θ̃Ni ), for all i = 1, . . . , N − 1,

1
N

N∑
i=1

γNi = γ,

(3.1)

where γN = (γN1 , . . . , γNN ) ∈ RN is the unknown and f is defined in (2.6). Loosely
speaking, solving system (3.1) amounts to inverting a discrete Hilbert transform on
the circle. Indeed, (3.1) clearly is a discretization of (2.5).

From now on, we will also conveniently denote the matrices:

AN−1,N :=
(

cot
(
θ̃Ni − θNj

2

))
1≤i≤N−1,1≤j≤N

andAN :=
(

cot
(
θ̃Ni − θNj

2

))
1≤i,j≤N

,
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and we will make use of the following notations for z ∈ RN :

‖z‖`p :=
( 1
N

N∑
i=1
|zi|p

)1/p
, for any p ∈ [1,∞),

‖z‖`∞ := max
i=1,...,N

|zi|,

〈z〉 := 1
N

N∑
i=1

zi.

Note that, with this normalization of the norms, we have:
‖z‖`p ≤ ‖z‖`q , for any 1 ≤ p ≤ q ≤ ∞.

Finally, for the uniformly distributed mesh (1.16), notice that, by odd symmetry
of the cotangent function,∑

1≤j≤N
cot

(
θ̃Ni − θNj

2

)
= 0, and

∑
1≤j≤N

cot
(
θ̃Nj − θNi

2

)
= 0, (3.2)

for each i = 1, . . . , N . In fact, it can be shown (see [1]) that the only possible mesh
satisfying (3.2) and θN1 = 0 is necessarily given by (1.16).
Remark. These cancellations will be used several times in the following proofs and

are related with the continuous version
∫ 2π

0
cot

(
φ− θ

2

)
dθ = 0. As the oddness of

the cotangent function plays a crucial role to define the Cauchy’s principale value,
the symmetry of the points (θNi , θ̃Ni ) is important to get a suitable discretization of
the Hilbert transform.

The first result in this section is a precise `2-estimate on AN for the uniformly
distributed mesh (1.16).

Proposition 3.1. Consider the uniformly distributed mesh (θN1 , . . . , θNN ), (θ̃N1 , . . . , θ̃NN ) ∈
[0, 2π)N defined by (1.16).
Then, for any z ∈ RN , we have that

‖z − 〈z〉1‖`2 = 1
N
‖ANz‖`2 ,

where 1 = (1, . . . , 1) ∈ RN .

Proof. First, we compute

N‖ANz‖2
`2 =

∑
1≤k≤N

∣∣∣∣ ∑
1≤j≤N

cot
(
θ̃Nk − θNj

2

)
zj

∣∣∣∣2

=
∑

1≤k≤N

∑
1≤i,j≤N

cot
(
θ̃Nk − θNi

2

)
cot

(
θ̃Nk − θNj

2

)
zizj

=− 1
2

∑
1≤i,j≤N

(zi − zj)2 ∑
1≤k≤N

cot
(
θ̃Nk − θNi

2

)
cot

(
θ̃Nk − θNj

2

)

+
∑

1≤i,k≤N
|zi|2 cot

(
θ̃Nk − θNi

2

) ∑
1≤j≤N

cot
(
θ̃Nk − θNj

2

)
.

Note that the last sum in the right-hand side is equal to zero by (3.2).
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As for the remaining term above, we use the following elementary relation, valid
for any a, b such that a, b, a− b /∈ πZ:

cot a cot b = cot(b− a)[cot a− cot b]− 1,
to write

N‖ANz‖2
`2 =− 1

2
∑

1≤i 6=j≤N
(zi − zj)2 cot

(
θNi − θNj

2

) ∑
1≤k≤N

[
cot

(
θ̃Nk − θNi

2

)
− cot

(
θ̃Nk − θNj

2

) ]

+ N

2
∑

1≤i 6=j≤N
(zi − zj)2

=N2
∑

1≤i,j≤N
(zi − zj)2,

where we have also used (3.2).
Finally, the last sum is easily recast as

N

2
∑

1≤i,j≤N
(zi − zj)2 = N

∑
1≤i,j≤N

(zi − 〈z〉)2 −N
∑

1≤i,j≤N
(zi − 〈z〉)(zj − 〈z〉)

= N2 ∑
1≤i≤N

(zi − 〈z〉)2 = N3‖z − 〈z〉1‖2
`2 .

We have therefore obtained that
N‖ANz‖2

`2 = N3‖z − 〈z〉1‖2
`2 ,

which ends the proof of the proposition. �

The preceding proposition allows us to get the existence and the uniqueness of
the solution to (3.1).

Corollary 3.2. Consider the uniformly distributed mesh (θN1 , . . . , θNN ), (θ̃N1 , . . . , θ̃NN ) ∈
[0, 2π)N defined by (1.16).
Then, for any v ∈ RN−1 and γ ∈ R, the following problem:

z ∈ RN ,
1
N
AN−1,Nz = v, 〈z〉 = γ, (3.3)

has a unique solution. Moreover, this solution satisfies:

‖z‖`1 ≤ ‖z‖`2 ≤ ‖v‖`2 + |γ|+
√
N |〈v〉| ≤ ‖v‖`∞ + |γ|+

√
N |〈v〉| . (3.4)

Proof. Let us define
Φ : RN → RN+1

z 7→
(

1
N
ANz
〈z〉

)
,

which is an injective linear mapping (see Proposition 3.1). Therefore, Φ is bijective
from RN onto Im Φ.

Moreover, noting that, for any z ∈ RN , we have

〈ANz〉 = 1
N

N∑
j=1

zj
N∑
i=1

cot
(
θ̃Ni − θNj

2

)
= 0,
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by (3.2), and that dim (Im Φ) = N , we conclude

Im Φ =
{
u ∈ RN+1 :

N∑
i=1

ui = 0
}
.

Now, let v ∈ RN−1 and γ ∈ R be fixed. There exists a unique vN such that v
vN
γ

 ∈ Im Φ, namely vN = −∑N−1
i=1 vi. With this vN , we then deduce the existence

of z ∈ RN such that Φ(z) =

 v
vN
γ

. In particular z is a solution to (3.3) and, by

Proposition 3.1, it holds that

‖z − γ1‖`2 = ‖z − 〈z〉1‖`2 = 1
N
‖ANz‖`2 =

( 1
N

N∑
i=1
|vi|2

)1/2

=
( 1
N

N−1∑
i=1
|vi|2 + 1

N

∣∣∣∣N−1∑
i=1

vi

∣∣∣∣2)1/2
.

As ‖z‖`2 − |γ| ≤ ‖z − γ1‖`2 and( 1
N

N−1∑
i=1
|vi|2 + 1

N

∣∣∣∣N−1∑
i=1

vi

∣∣∣∣2)1/2
≤
( 1
N

N−1∑
i=1
|vi|2

)1/2
+ 1√

N

∣∣∣∣N−1∑
i=1

vi

∣∣∣∣
=
√
N − 1
N
‖v‖`2 + N − 1√

N
|〈v〉| ,

we conclude that
‖z‖`2 ≤ ‖v‖`2 + |γ|+

√
N |〈v〉| .

Finally, concerning the uniqueness of a solution to (3.3), let us consider z and z̃

two solutions of (3.3). Then, Φ(z− z̃) =

0RN−1

x
0

 (for some x ∈ R) belongs to Im Φ

if only if x = 0. By injectivity of Φ, we conclude that necessarily z = z̃, thereby
completing the proof of the corollary. �

4. Weak convergence of the discrete circular Hilbert trans-
form

The results in this section will serve to show that (uR − uNapp) · n|∂Ω vanishes in a
weak sense.

The following elementary lemma is a reminder about standard estimates on the
rate of convergence of Riemann sums.
Lemma 4.1. Consider the uniformly distributed mesh (θN1 , . . . , θNN ), (θ̃N1 , . . . , θ̃NN ) ∈
[0, 2π)N defined by (1.16) and let g be a smooth periodic function.

Then, for any 0 < α ≤ 1 and k = 0, 1,∣∣∣∣∣
∫ 2π

0
g(θ)dθ − 2π

N

N∑
i=1

g(θ̃Ni )
∣∣∣∣∣ ≤ C

Nk+α‖g‖Ck,α ,

for some independent constant C > 0.
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Proof. First, a standard estimate yields, setting θNN+1 = 2π,

∣∣∣∣∣
∫ 2π

0
g(θ)dθ − 2π

N

N∑
i=1

g(θ̃Ni )
∣∣∣∣∣ =

∣∣∣∣∣
N∑
i=1

(∫ θNi+1

θNi

g(θ)dθ − 2π
N
g(θ̃Ni )

)∣∣∣∣∣
≤

N∑
i=1

∣∣∣∣∣
∫ θNi+1

θNi

(
g(θ)− g(θ̃Ni )

)
dθ
∣∣∣∣∣

≤ (2π)1+α

Nα
sup

x,y∈[0,2π]

|g(x)− g(y)|
|x− y|α

≤ (2π)1+α

Nα
‖g‖C0,α ,

which establishes the lemma when k = 0.
For the case k = 1, recalling θ̃Ni = θNi +θNi+1

2 , one finds that

∣∣∣∣∣
∫ 2π

0
g(θ)dθ − 2π

N

N∑
i=1

g(θ̃Ni )
∣∣∣∣∣ ≤

N∑
i=1

∣∣∣∣∣
∫ θNi+1

θNi

(
g(θ)− g(θ̃Ni )

)
dθ
∣∣∣∣∣

= π

N

N∑
i=1

∣∣∣∣∫ 1

0

(
g
(
θ̃Ni + π

N
t
)

+ g
(
θ̃Ni −

π

N
t
)
− 2g(θ̃Ni )

)
dt
∣∣∣∣

= π2

N2

N∑
i=1

∣∣∣∣∫ 1

0

∫ 1

0
t
(
g′
(
θ̃Ni + π

N
st
)
− g′

(
θ̃Ni −

π

N
st
))

dtds
∣∣∣∣

≤ π2+α

N1+α sup
x,y∈[0,2π]

|g′(x)− g′(y)|
|x− y|α

≤ π2+α

N1+α ‖g‖C1,α ,

which concludes the proof of the lemma. �

Proposition 4.2. Consider the uniformly distributed mesh (θN1 , . . . , θNN ), (θ̃N1 , . . . , θ̃NN ) ∈
[0, 2π)N defined by (1.16) and, according to Corollary 3.2, consider the solution γN =
(γN1 , . . . , γNN ) ∈ RN to the system (3.1) for some periodic function f ∈ Ck,α ([0, 2π]),
where k = 0, 1, 0 < α ≤ 1 and k + α ≥ 1

2 , with zero mean value (2.7) and some
γ ∈ R. We define the approximation

fNapp(θ) := 1
N

N∑
j=1

γNj cot
(
θ − θNj

2

)
. (4.1)

Then, for any periodic test function ϕ ∈ Ck+1,α ([0, 2π]),

∣∣∣∣∫ 2π

0
(fNapp − f)ϕ

∣∣∣∣ ≤ C

Nk+α (‖f‖Ck,α + |γ|) ‖ϕ‖Ck+1,α ,

where the singular integrals are defined in the sense of Cauchy’s principal value.
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Proof. Let ϕ ∈ C∞ ([0, 2π]) be a periodic test function. Then, we decompose∫ 2π

0
(fNapp − f)ϕ =

(∫ 2π

0
fNappϕ−

2π
N

N∑
i=1

fNapp(θ̃Ni )ϕ(θ̃Ni )
)

−
(∫ 2π

0
fϕ− 2π

N

N∑
i=1

f(θ̃Ni )ϕ(θ̃Ni )
)

+ 2π
N

N−1∑
i=1

(
fNapp(θ̃Ni )− f(θ̃Ni )

)
ϕ(θ̃Ni )

+ 2π
N

(
fNapp(θ̃NN )− f(θ̃NN )

)
ϕ(θ̃NN )

= : D1 +D2 +D3 +D4.

It is readily seen that D3 is null, for fNapp(θ̃Ni ) = f(θ̃Ni ), for all i = 1, . . . , N − 1, by
construction (see (3.1)).

Next, note that D2 is the error of approximation of the integral
∫ 2π

0 fϕ by its
Riemann sum. Therefore, a direct application of Lemma 4.1 yields

|D2| ≤
C

Nk+α ‖fϕ‖Ck,α ≤
C

Nk+α ‖f‖Ck,α ‖ϕ‖Ck,α . (4.2)

As for the term D1, it is first rewritten, exploiting the symmetry of the cotangent
function (see (3.2)), as

D1 =
∫ 2π

0
fNappϕ−

2π
N

N∑
i=1

fNapp(θ̃Ni )ϕ(θ̃Ni )

= 1
N

N∑
j=1

γNj

∫ 2π

0
cot

(
θ − θNj

2

)
ϕ(θ) dθ − 2π

N2

N∑
i,j=1

γNj cot
(
θ̃Ni − θNj

2

)
ϕ(θ̃Ni )

= 1
N

N∑
j=1

γNj

∫ 2π

0
cot

(
θ − θNj

2

)(
ϕ(θ)− ϕ(θNj )

)
dθ

− 2π
N2

N∑
i,j=1

γNj cot
(
θ̃Ni − θNj

2

)(
ϕ(θ̃Ni )− ϕ(θNj )

)

=
∫ 2π

0
F (θ)dθ − 2π

N

N∑
i=1

F (θ̃Ni ),

where

F (θ) = 1
N

N∑
j=1

γNj cot
(
θ − θNj

2

)(
ϕ(θ)− ϕ(θNj )

)
.

Note that the integrand θ 7→ cot
(
θ−θNj

2

)
(ϕ(θ)− ϕ(θNj )) above is now regular, thus

assuring that the Riemann sums converge. It therefore follows from Lemma 4.1 that

|D1| ≤
C

Nk+α ‖F‖Ck,α ≤
C

Nk+α

∥∥∥γN∥∥∥
`1
‖x cotx‖Ck,α([0,π2 ]) ‖ϕ

′‖Ck,α

≤ C

Nk+α

∥∥∥γN∥∥∥
`1
‖ϕ‖Ck+1,α .
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Then, further utilizing estimate (3.4), Lemma 4.1, that k+α ≥ 1
2 and the fact that

f has zero mean value (2.7), we infer

|D1| ≤
C

Nk+α

(
‖f‖L∞ + |γ|+

√
N

∣∣∣∣∣ 1
N − 1

N−1∑
i=1

f(θ̃Ni )
∣∣∣∣∣
)
‖ϕ‖Ck+1,α

≤ C

Nk+α

(
‖f‖L∞ + |γ|+

√
N

∣∣∣∣∣
∫ 2π

0
f(θ)dθ − 2π

N

N∑
i=1

f(θ̃Ni )
∣∣∣∣∣
)
‖ϕ‖Ck+1,α

≤ C

Nk+α (‖f‖Ck,α + |γ|) ‖ϕ‖Ck+1,α .

(4.3)

Finally, regarding D4, recalling that, by (3.1) and (3.2),

N−1∑
i=1

f(θ̃Ni ) = 1
N

N∑
j=1

γNj

N−1∑
i=1

cot
(
θ̃Ni − θNj

2

)
= − 1

N

N∑
j=1

γNj cot
(
θ̃NN − θNj

2

)
= −fNapp(θ̃NN ),

we find

D4 = 2π
N

(
fNapp(θ̃NN )− f(θ̃NN )

)
ϕ(θ̃NN ) = −2π

N

N∑
i=1

f(θ̃Ni )ϕ(θ̃NN )

=
(∫ 2π

0
f(θ)dθ − 2π

N

N∑
i=1

f(θ̃Ni )
)
ϕ(θ̃NN ).

Hence, utilizing Lemma (4.1) again,

|D4| ≤
C

Nk+α‖f‖Ck,α ‖ϕ‖L∞ . (4.4)

On the whole, since D3 = 0, combining (4.2), (4.3) and (4.4), we deduce that
∣∣∣∣∫ 2π

0
(fNapp − f)ϕ

∣∣∣∣ ≤ C

Nk+α (‖f‖Ck,α + |γ|) ‖ϕ‖Ck+1,α ,

which concludes the proof of the proposition. �

5. Proof of Theorem 1.1

We proceed now to the demonstration of our main result – Theorem 1.1 – on the
approximation of the boundary of an exterior domain by point vortices.

First, for given ω ∈ C0,α
c and γ ∈ R, recall that the full plane flow uP ∈ C1

(
Ω
)
is

obtained from (1.9) and that the 2π-periodic function f ∈ C∞ ([0, 2π]), which has
zero mean value (2.7), is defined by (2.6). Therefore, with this given f , according
to Corollary 3.2, we find a unique solution γN ∈ RN of (3.1).

Next, the approximate flow uNapp is introduced by (1.14), which verifies by (2.4):

uNapp(x) · n(x) = − 1
4πf

N
app(θ),
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where x = (cos θ, sin θ) ∈ ∂B(0, 1) and fNapp is defined by (4.1). Utilizing identity
(2.15) to rewrite the discrete Biot-Savart kernel of uNapp, we find that

uNapp(x) = 1
2π

N∑
j=1

γNj
N

(
1

2π

∫
∂B(0,1)

x− z
|x− z|2

cot
(
θ̃Nj − θ

2

)
dz + x⊥

|x|2

)

= −1
4π2

∫
∂B(0,1)

x− z
|x− z|2

fNapp(z)dz + γ

2π
x⊥

|x|2
, on Ω.

Furthermore, recall that, according to (2.14), the remainder flow uR can be ex-
pressed as

uR(x) = − 1
4π2

∫
∂B(0,1)

x− y
|x− y|2

f(y)dy + γ

2π
x⊥

|x|2
, on Ω,

whereby (
uR − uNapp

)
(x) = 1

4π2

∫
∂B(0,1)

x− y
|x− y|2

(
fNapp − f

)
(y)dy, on Ω.

Therefore, in view of Proposition 4.2, we deduce that, for any fixed x ∈ Ω,∣∣∣(uR − uNapp

)
(x)
∣∣∣ ≤ C

N2

∥∥∥∥∥ x− y
|x− y|2

∥∥∥∥∥
C3
y

≤ C

N2 sup
y∈∂B(0,1)

(
1

|x− y|
+ 1
|x− y|4

)
,

where the constant C > 0 only depends on ω and γ. It follows that, for any closed
set K ⊂ Ω,

‖uR − uNapp‖L∞(K) ≤
C

N2 ,

which concludes the proof of the theorem. �
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