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We address issues associated with non-local magnetic boundary conditions for non-spectral
dynamo simulations. We introduce an integro-differential formulation for a domain bounded
by an insulating outer domain. We show how to combine the flexibility of a local discretisation
with a rigorous formulation of magnetic boundary conditions in arbitrary geometries. This
formulation substantiates from mathematical point of view a new method for numerical
solution of magnetohydrodynamic problems with non-local boundary conditions based on
coupling finite volumes and boundary elements. Finally, we discuss practical efficiency of
this new method.
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1. Introduction

Over the last few years numerical dynamo models for the planets and stars have made
impressive progress. The results from spectral models (based on poloidal-toroidal
decomposition and spherical harmonic expansion) have been most impressive
(e.g. Glatzmaier and Roberts 1995, Christensen et al. 1999, Christensen et al. 2001,
Brun et al. 2004). Yet there seems to be a general impression that a new generation
of model is needed to allow further progress (decrease the Ekman number in the
case of the Earth, increase the Reynolds number in the case of the Sun and decrease
the magnetic Prandtl number in both cases). Several groups are now working on the
development of methods based on a local dicretisation of the governing equations
(finite differences, finite-volumes, finite-elements, spectral-elements, . . .). These
developments are in large part motivated by the possibility of local mesh refinement
near sharp structures and by an efficient implementation on massively parallel
computers. These approaches have been widely used in the past for fluid mechanics
problems, yet their application to dynamo problems raises new issues, such as magnetic
boundary conditions. While a proper treatment in the spectral domain is well

*Corresponding author. Email: dormy@phys.ens.fr

Geophysical and Astrophysical Fluid Dynamics

ISSN 0309-1929 print: ISSN 1029-0419 online � 2005 Taylor & Francis

http://www.tandf.co.uk/journals

DOI: 10.1080/03091920500337145



established, implementation of magnetic boundary conditions on such grid methods
raises new issues.

Alternative approaches to resolve such boundary conditions without expansion
into spherical functions have been proposed in Jepps (1975) and Ivanova (1976).
These are discussed and compared by Pavel Hejda (1982). Both approaches are
based on poloidal-toroidal decomposition for the magnetic and velocity fields.
We have recently proposed a numerical algorithm to handle this problem using
primitive variables (Iskakov et al. 2004), and therefore avoiding the associated
increase in differential order. Discussions with other teams incited us to provide a
solid theoretical justification for such an approach. This is the aim of the present
article. We will address here the issue of non-local magnetic boundary conditions
with primitive variables (rather than the standard poloidal-toroidal decomposition).
We substantiate our method from a mathematical point of view.

2. Governing equations

We shall consider here a simple problem of induction in a conducting domain �c

of finite resistivity surounded by an insulating domain �i. The magnetic permeability
is assumed to be uniform in all space (say � ¼ �0).

The magnetic fields in a flow of conducting fluid is governed by the magnetic
induction equation

@B

@t
¼ JTðuTBÞ � JT� JTBð Þ, ð1aÞ

where � is the magnetic diffusivity, in the insulator it is described by

JTB ¼ 0: ð1bÞ

These equations are complemented in both regions by Gauss law

JEB ¼ 0: ð1cÞ

Equations (1a, b) reveal a change from time-dependent to time independent on the
boundary between conducting and non-conducting domains. This raises particular
issues from the numerical point of view. Inside the conducting domain the behavior
of the magnetic field is characterized by a typical diffusion or advection time. On the
other hand the characteristic time in the insulator is vanishing. In this situation in
order to calculate magnetic field at a given point on the boundary one has to use
information about the global behavior of the magnetic field over the whole boundary.
Such boundary conditions are known as global or non-local boundary conditions.

3. Jump conditions for the induction equation

To solve a partial differential equation (PDE) in a bounded domain, one often needs
boundary conditions, which select the solution of physical relevance, and ensure the
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well-posedness of the PDE from the mathematical viewpoint. To assess how many
boundary conditions are needed is not always straightforward, even for basic
equations. Let us simply recall that the following transport equation

@u

@t
þ a

@u

@x
¼ 0, x > 0, and ujt¼0 ¼ u0 t ¼ 0, ð2Þ

requires no boundary condition when a � 0, and one boundary condition (e.g. the value
of u at x¼ 0) when a > 0.

In particular, one has to pay attention to the difference between internal and external
boundaries. On an outer boundary, one generally specifies some variable values, lead-
ing for instance to Dirichlet-type or Neumann-type boundary conditions. In the case of
an internal boundary between two regions 1 and 2, one specifies jump conditions, that
characterize the difference between variable values in regions 1 and 2. ‘‘Generically’’,
the number of these jump conditions is n1 þ n2, where n1 and n2 are the numbers of
outer conditions required for the PDE solution in regions 1 and 2.

As a simple illustration, the parabolic problem

@u

@t
� �1

@2u

@x2
¼ f1, x 2 �ð1, 0Þ, and

@u

@t
� �2

@2u

@x2
¼ f2, x 2 ð0, 1Þ, ð3Þ

modeling the heat diffusion between two regions of different conductivities �1 and �2,
requires a boundary condition on each outer boundary x ¼ f�1g: either the tempera-
ture, the flux, or their combination. Therefore, at the interface fx ¼ 0g, two jump
conditions are needed; natural ones are continuity of temperature, and continuity
of flux.

Let us now focus on the induction equation (1a). Assuming that the magnetic
diffusivity � takes two different values ��, in two regions �� separated by an interface
�, jump conditions should be imposed on �.

By comparison with (3), one could expect 6 jump conditions for the vector-
valued equations (1a). However, such a comparison does not hold. Contrary to the
heat equation, the induction equation alone is not parabolic. Indeed, in ��, the
resistive term

JT
�
��ðJT�Þ

�
¼ ��� r

2 þ �� J JEð Þ: ð4Þ

The second term in the right hand side of (4) prevents this operator from being elliptic.
To cancel this term, one must take into account the divergence free condition (1c).
This provides an additional constraint, which in fact reduces the number of jump
conditions.

This is usually seen through the standard decomposition of B in poloidal and
toroidal components, which reduces equation (1a) to two scalar equations. Therefore
only 2 independent value conditions at the outer boundaries, and 4 independent
jump conditions on the surface of discontinuity are required.

These jump conditions can be directly obtained from (1a). Let us rewrite (1a) using
the electric field E,

@B

@t
¼ �JTE, �JTB ¼ Eþ uTB: ð5a; bÞ
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Assuming that all terms in equation (5a) are integrable over � ¼ �� [�þ, which is
physically expected, (5a) can be integrated over a contour crossing the boundary.
Taking the limit of infinitely small contour length in the normal direction, one con-
cludes that the tangential components of the electric field are continuous at the contact
boundary

½ETn½ �� ¼ 0: ð6Þ

where n is the normal to the surface of discontinuity.
Let us now consider the equation of magnetostatics (5b),

JTB ¼ �0 j, �0 j :¼ ��1 Eþ uTBð Þ: ð7a; bÞ

In the absence of surface density currents, one can again assume all terms in the above
equation to be integrable over �. Proceeding as previously yields another two jump
boundary conditions: the tangential components of the magnetic induction are
continuous

½BTn½ �� ¼ 0: ð8Þ

From a physical point of view, these conditions imply that the energy flux and the
normal current through the boundary are continuous

½ðBTEÞEn½ �� ¼ 0, ½ jEn½ �� ¼ 0: ð9a; bÞ

Conditions (6, 8) are sufficient to fully determine B in �� (Roberts 1967, Jackson
1972). One can rigorously demonstrate this sufficiency by using a variational formula-
tion of (1a). Let w ¼ wðx, tÞ be a smooth vector-valued test function defined on ��R

þ,
where � ¼ � [ @�. Multiplying (5a) by w, and integrating over ½0,T � � ð�� [�þÞ,
one gets

Z T

0

Z
��[�þ

@B

@t
ðx, tÞEwðx, tÞ d3x dtþ

Z T

0

Z
��[�þ

JTEðx, tÞEwðx, tÞ d3x dt ¼ 0, ð10Þ

Integrating by parts, in both space and time yields

�

Z T

0

Z
��[�þ

Bðx, tÞ �
@w

@t
ðx, tÞ d3x dtþ

Z T

0

Z
��[�þ

Eðx, tÞEJTwðx, tÞ d3x dt

þ

Z
��[�þ

Bðx,T ÞEwðx,T Þ d3x�

Z
��[�þ

Bðx, 0ÞEwðx, 0Þ d3x

þ

Z T

0

Z
�

½Eðx, tÞTn½ ��Ewðx, tÞ d3x dt ¼ 0: ð11Þ

To conclude uniqueness, one needs an energy estimate on B. Jump condition (6)
provides such an estimate by cancelling the last integral of (11). Then, due to (8),
there exists a sequence ðwnÞn2N of smooth functions defined on ��R

þ such that

wn����!
n!þ1

B, JTwn����!
n!þ1

JTB, ð12a; bÞ
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in such a way that, taking the limit in (11), yields

0 ¼ 1
2

Z
��[�þ

jBðx,T Þj2 d3x� 1
2

Z
��[�þ

jBðx, 0Þj2 d3x

þ

Z T

0

Z
��[�þ

Eðx, tÞEðJTBðx, tÞÞ d3x dt: ð13Þ

Given this estimate, one can conclude that B is unique. Indeed, assume two solutions B1

and B2 of (1a), (6), (8), with the same initial conditions. Then ~BB ¼ B1 � B2 is still
a solution of (1a), (6), (8), with homogeneous initial conditions ( ~BBðx, 0Þ ¼ 0).

From a mathematical point of view, the energy estimate (13) is

1
2

Z
��[�þ

j ~BBðx,T Þj2 d3xþ

Z T

0

Z
��[�þ

�jJT ~BBj2 d3x dt

¼

Z T

0

Z
��[�þ

uT ~BB
� �

E JT ~BB
� �

d3x dt: ð14Þ

Using Cauchy-Schwarz inequality

1
2

Z
��[�þ

j ~BBðx,T Þj2 d3xþ

Z T

0

Z
��[�þ

�jJT ~BBj2 d3xdt

�

Z T

0

Z
��[�þ

juT ~BBj2 d3xdt

� �1=2 Z T

0

Z
��[�þ

jJT ~BBj2 d3xdt

� �1=2

, ð15Þ

and its immediate consequences

min
x2�
ð�Þ

Z T

0

Z
��[�þ

jJT ~BBj2 d3x dt

�

Z T

0

Z
��[�þ

juT ~BBj2 d3x dt

� �1=2 Z T

0

Z
��[�þ

jJT ~BBj2 d3xdt

� �1=2

, ð16aÞ

Z T

0

Z
��[�þ

jJT ~BBj2 d3x dt

� �1=2

�
1

min
x2�
ð�Þ

Z T

0

Z
��[�þ

juT ~BBj2 d3xdt

� �1=2

, ð16bÞ

one deduces from (15) and (16b)

1
2

Z
��[�þ

j ~BBðx,T Þj2 d3xþ

Z T

0

Z
��[�þ

�jJT ~BBj2 d3x dt

�
1

minx2�ð�Þ

Z T

0

Z
��[�þ

juT ~BBj2 d3x dt �
C

minx2�ð�Þ

Z T

0

Z
��[�þ

j ~BBj2 d3x dt, ð17Þ
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where the constant C depends on u. It then follows from Gronwall’s lemma (e.g.
Reinhard 1989) that ~BB ¼ 0.

4. Jump conditions in the limiting case

Let us now consider jump conditions in the limiting case when one of the domains tends
to be an insulator. Noting �i :¼ �� (resp. �c :¼ �þ) the diffusivity in the insulator
(resp. in the conductor), we investigate the limit �i !þ1.

In the insulator B satisfies (1bc). Since B is both divergence and curl free,

B ¼ �J�, r2� ¼ 0: ð18a; bÞ

Such problems require only one outer condition, one therefore expects 3 jump
conditions on the boundary between the conducting and insulating domains.

To describe the transition from 4 to 3 jump conditions, one can expand magnetic
field on both sides of the boundary, in powers of " ¼ ð�iÞ

�1. Denoting Bc the field in
the conductor and Bi the field in the insulator, one can write

Bc ¼ Bð0Þc þ "B
ð1Þ
c þ "

2Bð2Þc þ � � � , Bi ¼ B
ð0Þ
i þ "B

ð1Þ
i þ "

2B
ð2Þ
i þ � � � : ð19a; bÞ

Substituting these series into equations (1) and into the jump conditions (6, 8),
one obtains at leading order of ":

JTB
ð0Þ
i ¼ 0, JEB

ð0Þ
i ¼ 0, ð20a; bÞ

@Bð0Þc
@t
� �cr

2Bð0Þc � JTðuTBð0Þc Þ ¼ 0, JEBð0Þc ¼ 0: ð20c; dÞ

Since E ¼ "�1JTB� uTB in the insulator, jump condition (6) becomes degenerate

ðJTB
ð0Þ
i ÞTn

��
�
¼ 0Tn, ð21Þ

whereas (8) provides two independent jump conditions

B
ð0Þ
i Tn

��
�
¼ Bð0Þc Tn

��
�
: ð22Þ

Higher order terms reveal the sharp structures necessary to accomodate any departure
from the leading balance.

Note that (21) is redundant with the equation on B
ð0Þ
i , so that we are left with two

scalar jump conditions (22). The third jump condition stems from the divergence-free
condition on Bð0Þc and B

ð0Þ
i : integrating over an infinitely thin penny shaped disk

containing a small surface element yields

B
ð0Þ
i En

��
�
¼ Bð0Þc En

��
�
: ð23Þ
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This provides the three needed conditions

½B�� ¼ 0:½ ð24Þ

5. Integro-differential formulation

5.1. Boundary problem in the conductor

We will treat here the conductor in a differential form. While this is the case in most of
the recent developments, alternative formulations can be proposed (e.g. Stefani et al.
2000, Xu et al. 2004).

Continuity of B accross the boundary allows us to reconnect the solution of the
induction equation in the conductor with the solution of an elliptic problem in the
insulator. On the boundary of the conducting domain @�c equation (5a) can be
used only for the normal component of B since tangental components of JTE are
discontinuous. To supplement this equation, two boundary conditions need to be
provided for the tangential components of B. Since B is continuous on the boundary,
these boundary conditions for the induction equation can be obtained from the elliptic
problem in the insulator. In case of non-local boundary conditions one thus expects
these to be of the form

BTn ¼ FðBEnÞ, x 2 @�c, ð25Þ

where F is some integral operator on the boundary surface.

5.2. Integral formulation in the insulator

In order to solve the exterior problem, we will rely on the integral formulation.
The differential approaches can also be used in this context, with issues associated to
bounding the exterior domain (e.g. Chan et al. 2001, Matsui and Okuda 2005,
Guermond et al. 2003, Alouges 2001).

The form of the integral operator (25) needs to be specified from the solution of
the elliptic problem (18) in the insulating domain. The insulator being unbounded,
an additional statement is needed for the magnetic field at infinity

�! Oðr�2Þ, r!1: ð26Þ

Neumann boundary condition for the elliptic problem (18) are provided by the normal
component of the magnetic field on the boundary @�

@�

@n

����
@�

¼ �Bn, ðBn : @�! RÞ: ð27Þ

It follows from potential theory that the harmonic function � at any point inside the
domain can be represented through the surface integral of its boundary values
(e.g. Bonnet 1995)

�ðxÞ ¼ �

Z
@�

�ðyÞ
@G

@n
ðx, yÞ þ BnðyÞGðx, yÞ

� �
dsðyÞ, x 2 �i, ð28Þ
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where Gðx, yÞ ¼ �1=ð4�jx� yjÞ is the fundamental solution of the Laplace equation
with unit normal n directed into the insulator.

If @� is smooth enough (28) is still valid in the limiting case when x 2 @�. However
a singularity occurs at y ¼ x. To eliminate this singularity, one rewrites (28) as

1þ

Z
@�

@G

@n
ðx, yÞ dsðyÞ

� �
�ðxÞ

¼ �

Z
@�

ð�ðyÞ � �ðxÞÞ
@G

@n
ðx, yÞ þ BnðyÞGðx, yÞ

� �
dsðyÞ, x 2 @�, ð29Þ

or

1
2�ðxÞ ¼ �PV

Z
@�

�ðyÞ
@G

@n
ðx, yÞ þ BnðyÞGðx, yÞ

� �
dsðyÞ, x 2 @�, ð30Þ

where the integral is taken as the Cauchy principal value (noted with PV).
Consequently the tangential components of the magnetic field are

BðxÞTn ¼ �J�ðxÞTn, x 2 @�: ð31Þ

The solutions of integral equations (30, 31) implicitly provide two boundary conditions
(25) for the induction equation. One can thus reformulate the governing equations in
terms of an integro-differential problem

E ¼ �JTB� uTB, JEB ¼ 0, x 2 �c [ @�c,

@B

@t
¼ �JTE, x 2 �c,

@

@t
ðBEnÞ ¼ � ðJTEÞEn, x 2 @�c,

BTn ¼ �J�Tn, x 2 @�c,

�ðxÞ ¼ �2 PV

Z
@�

�ðyÞ
@G

@n
ðx, yÞ þ BnðyÞGðx, yÞ

� �
dsðyÞ, x 2 @�c,

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð32Þ

where �c is the conducting domain and @�c is its boundary with an insulator.

5.3. Formulation in terms of E

For numerical reasons, it can be convenient to rewrite the above system in terms of
the electric fields since it then does not involve the divergence-free constraint (1c)
and simplifies implicit numerical integration of the resulting discrete system.

Let us introduce, for convenience, the vector _BB ¼ @B=@t; then the induction equation
(5a, b) can be written as

@E

@t
¼ �JT _BB�

@

@t
uTBð Þ, _BB ¼ �JTE: ð33a; bÞ
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On the boundary @�c, equation (33b) is satisfied only for the normal component of _BB
(since the tangential components of JTE are discontinuous)

_BBEn ¼ � ðJTEÞEn, x 2 @�c: ð34Þ

To supplement the system (33a, 34) on the boundary, two additional conditions are
needed for the tangential components of _BB. As previously, these are obtained from
the solution of an elliptic problem in the insulator in the form

_BBTn ¼ Fð _BBEnÞ, x 2 @�c, ð35Þ

where F is the same integral operator on the boundary surface as in (25).
An alternative integro-differential formulation can then be introduced in terms of

the electric field

@E

@t
¼ �JT _BB�

@u

@t
TB� uT _BB,

@B

@t
¼ _BB, x 2 �c [ @�c,

_BB ¼ �JTE, x 2 �c,

_BBEn ¼ � ðJTEÞEn, x 2 @�c,

_BBTn ¼ �J�Tn, x 2 @�c,

�ðxÞ ¼ �2 PV

Z
@�

�ðyÞ
@G

@n
ðx, yÞ þ _BnBnðyÞGðx, yÞ

� �
dsðyÞ, x 2 @�c:

8>>>>>>>>>><
>>>>>>>>>>:

ð36Þ

Such formulation allows implicit numerical time-stepping scheme preserving the
divergence of B.

6. Discussion

Equations (36) combine the flexibility of a local discretisation with a rigorous formula-
tion of magnetic boundary conditions next to the insulator in arbitrary geometries. In
Iskakov et al. (2004), we have presented a numerical method which can be interpreted
as a discrete version of this formulation. The method is based on combination of finite
volumes and boundary elements. The last two equations in (36) are handled using the
Boundary Element Method (BEM), i.e. the boundary surface is subdivided into small
elements and each element contains several nodes where the boundary variables and
coordinates are defined. Then the tangental components of the magnetic field on the
boundary are calculated through its normal component by multiplying with the
BEM matrix which represents the integral operator F in (35).

To establish the accuracy of this approach as a test we reproduce the analytical solu-
tion for the decaying dipole field in a sphere. The relative error between the analytical
and numerical values for the dipole decay rate � and for the decaying field solution B

are plotted in figure 1 for decreasing mesh spacing. The graph illustrates second order
accuracy.

To calculate the boundary conditions at N2 points on the bounding surface using the
BEM matrix multiplication, one obviously needs OðN4Þ operations. This is a lot in
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comparison with extending the computational mesh into the insulating domain
and numerically solving the Laplace problem using a fast Poisson solver (which
requires only OðN3Þ operations). A consistent and accurate procedure for extending
the mesh into the insulator can be found for example in Alouges (2001). Here, we
will discuss how the integral approach can be modified to become more practical
and efficient.

The BEM discretization of the last equation in (36) leads to the system of linear
equations

� ~kk ¼
X
k

C k
~kk
�k þ

X
k

Dk
~kk

_BBnk , ð37Þ

or equivalently in matrix form

��� ¼ C ���þD �_BBn
_BBn, ð38Þ

where the coefficients

Ck
~kk
¼ ck

x ~kk � xk

kx ~kk � xkk
3
, Dk

~kk
¼

dk
kx ~kk � xkk

, ð39Þ

describe pairwise interaction between points on the surface in terms of the gravitational
or elecrostatic potential and ck and dk are geometrical factors describing the boundary
elements.

The system (37) is nonsparse and non-symmetric, but has asymptotically limited
condition numbers. For such systems, the generalized conjugate residual algorithm
(GCRA) is known to converge rapidly (Rokhlin 1985). The cost of GCRA is
asymptotically determined by the number of operations required for applying the
matrices C and D to the vector. For N2 points on the surface these operations
can be achieved very efficiently through the fast multipole method (FMM) by OðN2Þ

operations (Greengard and Rokhlin 1997, Cheng et al. 1999). Then the cost of solving
non-local magnetic boundary conditions (last equation in (32) or in (36)) also becomes

0 0.002 0.004 0.006 0.008 0.01
0

0.002

0.004

0.006

0.008

0.01

E1 E2

0 0.005 0.01
0

0.001

0.002

0.003

0.004

0.005

N−2 N−2

Figure 1. Relative error between the analytical and the numerical dipole decay rate E1ðN Þ ¼ j�
2
� �ðN Þj=

j�ðN Þj (left) and relative error between the numerical solution B(N ) and the eigenfunction E in the L2

norm: E2ðN Þ ¼ kE � BðN Þk2=kBðN Þk2 (right) for various mesh sizes.
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OðN2Þ operations provided that the numerical mesh on the boundary is fixed and
recalculation of the coefficients (39) is not required.

Finally, most natural objects (planets, stars and galaxies) investigated in the field of
dynamo modeling correspond to axisymmetric computationnal domains. Under such
circumstances an alternative hybrid approach can be proposed since the elliptic
problem (18) can be transformed in spectral space in the longitudinal direction.
Modes then decouple and only the latitudinal interactions require an integral treatment.
The resulting cost is then reduced from standard OðN4Þ operations down to OðN3Þ

operations.
In conclusion, unless some knowledge of the field in the insulator is needed during

the computation, the integral formulation provides a rigorous way to compute induc-
tion in a bounded domain without using spherical harmonics. Its efficiency can be
strongly increased by using a fast multipole approach (OðN2Þ operations for N2

points on the surface), or simply by taking advantage of the azimuthal symmetry of
the domain (OðN3Þ operations). Gridding methods for the insulator are however to
be preferred if the whole potential field needs to be known during the simulation.
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