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Deuxieme partie

Activités d’encadrement

Encadrement du Stage de DEA de Vincent Morin

DEA Dynamique des Fluides et Transferts
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Nous avons développé durant ce stage une approche introduite par Philippe
Cardin et Julien Aubert (L.G.I.T., Grenoble) & deux dimensions pour la convection
dans une sphere en rotation rapide. L’originalité de notre travail a consisté a appli-
quer cette approche pour la convection prés du seuil. Nous avons pu explorer des
valeurs du nombre d’Ekman inaccessibles en trois dimensions, tant dans le domaine
linéaire que dans le domaine non-linéaire. Ces nouveaux résultats ont permis de
mettre & jour de nouvelles difficultés numériques, comme celle liée & une tres grande
vitesse de phase w (supérieure & 10°) qui gene la convergence numérique. En effet
les études numériques précédentes n’avaient pas pu atteindre de telles valeurs du
nombre d’Ekman et n’avaient donc pas été confrontées a ce probléme. Aucune bifur-
cation sous-critique n’a été observée, mais des oscillations périodiques en temps de
I’énergie, inattendues aussi pres du seuil, viennent mettre en péril 'existence méme
de celle-ci. Ces oscillations n’étaient pas prévues par la théorie et I'impact de leur
existence, sur la possibilité d’obtenir une courbe de bifurcation sous-critique, reste
a déterminer. Nous allons poursuivre ce travail en essayant d’explorer de nouvelles
valeurs (encore plus petites) du nombre d’Ekman, et d’effectuer un échantillonnage
plus précis en nombre de Rayleigh prés du seuil, un article est en préparation.
Vincent Morin va poursuivre en these a 'L.P.G.P.

Encadrement du Stage de DEA de Anis Bsaissa

DEA Méthodes Numériques pour les Modeéles des Milieux Continus
Ecole Normale Supérieure de Cachan.

17 mai 2002 - fin septembre 2002.

Pour pouvoir étudier numériquement le probleme de la dynamo cinématique
dans la sphere, on utilise généralement I’approche spectrale. L’usage d’un champ
de vitesse discontinu, demande de pouvoir résoudre ces quations avec une méthode
de type volumes finis. Cette approche souléve au moins deux questions majeures :
la construction d’un schéma permettant de conserver V - B = 0 pour tout temps
(ce qui n’est pas trivial lorsque I’on discrétise les équations) et la construction de
conditions aux limites propres pour la raccordement & un champ potentiel.

Ce stage a intégré une partie pratique (réalisation d’un mailleur et résolution
par volumes finis d’une équation parabolique scalaire) et une réflexion théorique sur
I'implémentation des conditions aux limites. Il est actuellement en fin de rédaction.
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Troisieme partie
Résumé

De nombreux modeles numériques de dynamo ont récemment été proposés. Ces
modeles concernent des régimes de parametres extrémement éloignés de ce que ’'on
connait des caractéristiques du noyau liquide terrestre. Utilisant des approximations
diverses, ils donnent des résultats souvent extrémement différents entre eux bien
qu’ils semblent produire, en surface, des champs magnétiques comparables & celui
de notre planete. Il faut donc travailler & la réalisation de modeles numériques plus
proches des équilibres significatifs de la Terre.

Le noyau liquide terrestre est caractérisé par une tres faible viscosité et un
équilibre dominant entre deux forces majeures: les forces magnétiques (force de La-
place) et les effets de la rotation (force de Coriolis). Mon objectif est de parvenir &
la description de l’action dynamo (génération auto-excitée de champ magnétique)
pour cet équilibre. Les modeles actuellement disponibles souffrent tous d’une valeur
tres largement surestimée de la viscosité. Il a été montré (Roberts, Academic Press,
1978) que dans le régime asymptotique des faibles viscosités, la séquence de bifur-
cation lorsque le parametre de controle (le nombre de Rayleigh) croit est décrite
par trois branches successives. La premiere bifurcation est naturellement la bifur-
cation convective (sans champ magnétique), cette bifurcation serait sous-critique
(Soward, Geophys. Astrophys. Fluid Dyn., 9, 1977). Si le nombre de Rayleigh est
encore augmenté les mouvements deviennent assez vigoureux pour entretenir un
champ magnétique (bifurcation dynamo). Ce champ est alors faible, c’est-a-dire
que son intensité est fixée par les forces visqueuses. Si le nombre de Rayleigh est
encore suffisamment augmenté cette branche disparait et la solution dynamo “sau-
te” via une croissance rapide du champ (“runnaway growth”) sur une branche &
champ fort. Cette branche est caractérisée par un équilibre magnétostrophique et
correspondrait au mécanisme en jeu dans le noyau de notre planéte. La solution sur
cette branche doit différer significativement de celle sur la branche & champ faible.
Ainsi, une fois sur cette branche, ’action dynamo peut étre maintenue méme si le
nombre de Rayleigh est diminué en dessous de sa premiere valeur critique (corres-
pondant 3 I'instabilité convective). Ce scénario théorique n’a bien sur de sens que si
la viscosité est tres faible (quasiment négligeable) et il n’a jamais pu étre vérifié sur
les études numériques. Fort de ces considérations théoriques, mon objectif est de
décrire ’action dynamo dans le régime magnétostrophique applicable au probleme
géophysique. L’approche utilisée consiste a étudier des problemes de complexité
croissante en s’assurant a chaque étape que le comportement asymptotique a été
atteint.

Nous avons mis en évidence (voir Dormy, Jault, Cardin, 1998) ’existence d’une
nouvelle structure correspondant & une couche de cisaillement en super-rotation.
Nous avons depuis obtenu avec le professeur Andrew Soward (Département de
Mathématiques, Université d’Exeter, Grande-Bretagne) la description mathématique
de ce nouvel équilibre “magnéto-visqueux” (Dormy, Jault, Soward, 2001). L’étude
asymptotique a mené a un systeme couplé d’équations différentielles (& deux di-
mensions) qui n’a pas pu étre résolu analytiquement. La résolution numérique des
équations du systéme discret correspondant a été obtenue (sur le Cray du C.C.R.
Jussieu). L’accord avec les simulations est & présent excellent.

Devant la récente abondance des modeles numériques de dynamos publiés (voir
Dormy et al. 2000), le professeur Ulrich Christensen de 1'Université de Gottingen
en Allemagne a proposé de coordonner un “benchmark” international autour de
cas tests afin de vérifier la validité des différents codes existants. Les chercheurs
frangais sur ce domaine (& Paris et & Grenoble) n’avaient pas souhaité présenter



de modeles numériques de géodynamo (essentiellement car nous pensons, pour les
raisons exposées ci-dessus, que ces régimes de parametres ne sont pas appropriées a
Pétude de la dynamo terrestre). Nous avons cependant voulu saisir cette occasion de
valider notre code sphérique. Les modifications nécessaires ont donc été apportées au
programme avec l'aide de Julien Aubert (qui a effectué sa these & Grenoble). Nous
avons reproduit avec succes les résultats demandés pour ce Benchmark (Christensen
et al. 2001).

L’interaction avec les observations paléomagnétiques, archéomagnétiques et géo-
magnétiques est tres importante pour ’étude de ces problémes. Les connaissances
sur le champ magnétique terrestre et sa variabilité temporelle ont considérablement
progressé ces dernieres années. J’ai efectué avec Jean-Pierre Valet et Vincent Cour-
tillot un travail de revue sur les connaissances observationnelles du champ magnétique
terrestre ainsi que sur les modeles numériques existants (Dormy et al., 2000).

La collaboration avec les équipes de mathématiques appliquées francaises (Em-
manuel Grenier, a présent & I’U.M.P.A. E.N.S.-Lyon et Benoit Desjardins & présent
C.E.A./D.LF.) se sont renforcées par 'obtention d’une ACI jeunes chercheurs (dont
j’assure la co-direction pour la Géophysique avec Emmanuel Grenier pour les Mathé-
matiques). Nos travaux en commun ont donné lieu & deux publications sur les
critéres de stabilité puis d’instabilité des couches limites & la frontiere noyau-manteau.
Une troisieme étude utilisant les modeles de champ construit sur les observations
est en cours. Nos collaborations s’élargissent actuellement aux outils numériques
pour la modélisation de la géodynamo.



Quatrieme partie
Exposé synthétique

Je présente dans cet exposé synthétique ’aspect de mes recherches concernant les
couches limites et couches de cisaillement dans des écoulements fluides en rotation
et en magnétohydrodynamique. Cela ne représente qu’une partie de mes recherches
(U'intégralité des articles publiés depuis cing ans est inclue en fin de document),
mais permet d’illustrer "approche utilisée qui repose sur une interaction forte entre
les modeles numériques et les études théoriques, menées en collaboration avec des
mathématiciens (Pr. Andrew Soward en Grande-Bretagne, Pr. Emmanuel Grenier
a Lyon et Dr. Benoit Desjardins & Paris).

1 Etudes laminaires

Je commence cet exposé par la dérivation tres classique des couches limites
d’Ekman et de Hartmann. Puis je présente la couche mixte Ekman-Hartmann in-
fluencée 4 la fois par la rotation et par le champ magnétique. Enfin j’insisterai sur
les singularités introduites par la géométrie sphérique sur ces couches.

1.1 Couches limites
1.1.1 Couche d’Ekman

Alafin du X [ Xxieme Fridtjof Nansen observe lors d’une expédition polaire que les
icebergs dérivent dans I’océan & 90° des vents dominants... Cela mena son étudiant
Vagn Ekman & développer une théorie des courants de surface prenant en compte
la rotation de la Terre...

Décomposons la vitesse en un écoulement moyen et un correcteur de couche
limite u = U, + u'. Par commodité, on peut introduire la notation complexe
V = u;, +iuy, (ou z est la direction normale au bord). En négligeant les varia-
tions horizontales (tangentes au bord) devant les variations verticales (normales)
et faisant I’hypotheése que le gradient de pression ne varie pas a travers la couche
limite, on obtient ’équation de V':

Ed..V=iV. )

Le nombre d’Ekman E doit ici étre construit en ne tenant compte que de la
composante de  normale au bord (comme les variations horizontales sont négligées,
Peffet des composantes horizontales de Q s’annule pour la construction du profil).

1l est alors naturel de mettre & 1’échelle les longueurs dans la direction normale
au bord z = A\, avec A\ =+V2E:

(=V2Ez,

Péquation (1) se re-écrit alors
OV _aiy @)
oz ’

dont la solution décroissant & I’infini est naturellement
Vo e~ ¢+ (3)

c’est le profil de spirale d’Ekman.
A la surface des océans, c’est la contrainte qui est imposée, elle s’oriente a la
base du profil d’Ekman comme —(1 +i)e~¢ (4D alors que le transport intégré sur



I’ensemble de la couche s’écrit — ( 1ii) e <+ Doy I’angle de 90° rapporté par

Nansen.

Dans le cas ou le déplacement est imposé au bord (par exemple & la surface
du noyau liquide terrestre, si 'on néglige les effets magnétiques), en introduisant
Vo =Uyg +1Uyy , 0n a

V= —V,e 0t (4)

En utilisant I'incompressibilité du fluide
1
8zu+6yv+x(9<w:0. (5)
On écrit alors (sans faire ’hypothese d’un Q normal)
1
1 0w = | 82Uoz 08 ¢+ 0 Uoy sin ¢ = 8,Uoq sin { + 9, Usy cos ¢ e=¢  (6)

~" ~~ ~~

(a) (®) © ®)

Apres intégration, les termes (b)&(c) donnent
n-(VAU,), (7
qui est completé quand Q n’est pas normal au bord (car 9,U, # 0 ) par (a) & (d):
n-[VALAU,). 8)
On a donc d’une maniere g’nérale un terme de pompage
[w] =An-VARnAU,+sign(n-Q)U,] . 9)

1.1.2 Couche de Hartmann

En procédant comme précédemment et en introduisant le nombre de Hartmann
M et en décomposant B = B, + B et B =B}, +iB, , il vient

0..V+Ma.B=0,
(10)
0,.B+ M, V=0.
Posons & présent A =9,V ,
9., A= M?A. (11)
Posons z = A(, avec A = M1
A=A, (12)
D’ou
Aoxce©. (13)

C’est le profil exponentiel des couches de Hartmann.

1.1.3 Couche d’Ekman-Hartmann

En procédant comme nous venons de le faire et en étudiant I’équation du cor-
recteur de couche limite, il vient

~E0..V +iV=A09.B,
(14)

0.V+0..B =0,

10



ou A est le nombre d’Elsasser. En différentiant la premiere équation et en substi-
tuant, il vient

—Ed*V +id,V+A0.V=0. (15)
Posons comme précédement A = 3,V
E?A=(A+i) A. (16)

Effectuons & présent la mise & 1’échelle z = A, (o A, la taille de la couche limite
n’est pas encore connue).

EA=XN(A+i) A, (17)

dont la solution est sous la forme A o e ¢ 1+ , il vient

2
1—X2+2iX:%(A+i). (18)
Comme , .
— 2_ — —_
(1~ tan 2) tant =2 tan (19)

on peut poser X = tan %, avec tanT = A~' . D’ou

T 1
t —:\/A2—|— A= 20
3 A+ VA2 +1 (20)

A:,/2Etang. (21)

Le profil d’Ekman-Hartmann s’écrit donc

On a alors

—e—¢ [= v s T
u=e [ Uocos(gtanz) Vosm(Ctanz)},

v=e~¢ [Uo sin(( tan %) — V, cos(C tan g)] .

On note au passage les comportements limites. Pour A — 0, on a tan7 —

oo et tan(7/2) — 1, on retrouve donc le profil d’Ekman. Pour A — o0, on a
tan(7/2) — 0 et on retrouve donc le profil de Hartmann.

1.1.4 Singularités équatoriales

Considérons tout d’abord la singularité équatoriale de la couche d’Ekman. La
structure précise de cette singularité n’est pas connue analytiquement. Une solution
numérique semble envisageable (voir perspectives). En revanche les mises & 1’échelle
de cette couche peuvent facilement étre obtenus analytiquement.

En écrivant (sous ’hypotheése axi-symmétrique)

u:sQ¢+V/\%¢

et en prenant le rotationel des équations de Navier-Stokes,

o0N oty
— x FE—.
52 = Bt (23)
Le double rotationnel permet d’écrire
a9 0%y o'
——— x F—.
9295 7 Bst (24)

11



F1G. 1: Relation géométrique : p = 2>

0 . .
Comme w x ——, en intégrant la seconde équation, on obtient

0s
N OBw
ow 9%Q

Ce qui implique directement que 1’échelle horizontale p associée a une échelle
verticale z s’écrit
p~ (B2)'/3. (27)

On note immédiadement que pour une échelle verticale z ~ O(1) , on retrouve
la mise & I’échelle usuelle en E/3 .
De plus la géométrie sphérique impose (voir figure 1) :

p=72 (28)
(Il s’agit simplement du premier terme du dévelopement de Taylor). Donc
22 ~ (Ez)1/3 ,

253 ~ B3 (29)
(30)
@

Vérifions & présent la reconnection propre entre la couche d’Ekman réguliere et
cette singularité. Comme nous ’avons vu, la couche d’Ekman réguliére se met a
I’échelle comme

Ce qui donne finalement

et

op ~ (E/8)Y/2, (32)

ot 6 est la latitude (i.e. § = 7/2 — ). B
Par conséquent, une mise & ’échelle en 8 ~ E/5 implique

6E‘ ~ (E1—1/5)1/2 ,

12



Fi1G. 2: Mise a l’échelle pour la singularité de la couche d’Ekman.

op ~E*% ~p.

Ce qui est bien I’épaisseur de la singularité (voir figure 2).

(33)

Considérons a présent la singularité de la couche de Hartmann, en exploitant

comme précédemment les équations de Navier-Stokes, on écrit
(Bo - V)b x vAu,
L’équation d’induction, quant & elle, permet d’écrire
(Bo - V)u xnAb.
Ainsi, comme B est vertical & ’équateur (pour un champ dipolaire)

ob  0%u
M5 X852

ou 0%

Ce qui entraine naturellement

p~ (M_lz)1/2 .

Utilisons comme précedemment ’argument géométrique (28), on obtient

22 ~ (M_1 z)l/2

o]

exploitant & nouveau la relation géométrique, on écrit

=]
13

et donc

(34)

(35)



Fi1G. 3: Mise a Uéchelle pour la singularité de la couche de Hartmann.

Nous pouvons, comme précédemment vérifier la reconnection & la couche de
Hartmann réguliere. Celle-ci se met & 1’échelle comme

Spr ~ MY (42)
Donc, 6 ~ M~1/3 implique
S ~ M—1+1/3 ,
Sy ~M723 ~ p, (43)

Ce qui est bien I’épaisseur de la singularité (voir figure 3).

Considérons enfin la couche mixte, dite d’Ekman-Hartmann (significative des
équilibres opérant dans le noyau liquide terrestre). En suivant la couche réguliere
a mesure que l'on s’approche de I’équateur, la couche réguliere d’Ekman s’élargit
comme

op ~ (E/9)Y2. (44)

La couche réguliére de Hartmann, quand & elle s’élargit comme
Sur ~ M7 (45)
Elles sont donc toutes deux de taille comparable (g ~ dar) lorsque
O~M?2E1=A"1. (46)

Quand @ devient inférieur & cette valeur, la taille de la couche de Hartmann aug-
mente plus rapidement que celle de la couche d’Ekman. La couche mixte dégénere
donc en couche d’Ekman simple.

En notant que cette valeur (6 ~ A~! ~ O(1)) est plus grande pour la Terre que
M~1/3 ou EY/5, cela justifie 'usage d’une couche d’Ekman réguliére au voisinage
de la singularité.

En conséquence, la couche mixte d’Ekman-Hartmann pour des parametres réalistes
pour la Géophysique est bien définie jusqu’a des latitudes de ’ordre de

6~ FEY5~1073, (47)

ou elle devient singuliere.

14



1.2 Couches de cisaillement

Méme pour de tres faibles valeurs de la viscosité, les effets visqueux ne sont pas
toujours négligeables loin des bords. Lorsqu’un cisaillement visqueux apparait loin
des bords on parle de “couche de cisaillement”. Je présente ici deux exemples de
telles couches, dans le cas en rotation et dans le cas magnétohydro-dynamique.

1.2.1 Couche de Stewartson

Considérons le probleme de Couette sphérique dans un référentiel en rotation.
Supposons que la sphere interne tourne plus vite (1 + €)Q que la sphére externe ().
On se place dans le référentiel de la sphere externe, et on fixe l'unité de temps de
sorte que la spheére interne ait une vitesse angulaire unitaire dans ce référentiel. Ce
probléme a été décrit analytiquement par I. Proudman (Journal of Fluid Mechanics,
1, 505, 1956) et par K. Stewartson (Journal of Fluid Mechanics, 26, 131, 1966) pour
les couches de cisaillement.

Si la vitesse a ’extérieur du cylindre tangent est naturellement nulle dans ce
référentiel, la vitesse & l'intérieur de ce cylindre est moins triviale & déterminer
(c’est le travail de Proudman).

En notant T le haut d’une colonne fluide et B le bas de la méme colonne de
hauteur h, on note que pour une coquille de rapport d’aspect «

cosfr=+/1—(s/a)?,

(48)
cosfp=+/1—s2.
La couche d’Ekman impose & la frontiére inférieure
E1/2g2
29p = ———(1-9 49
et a la frontiere supérieure
F1/242
2 = —=0 50
vr \Vcos T (50)
En égalant ¢ = ¢¥r = ¢, il vient a 'intérieur du cylindre tangent
1_ g2)1/4
1—0= (1-s) (51)
(1 =)+ (1 - (s/a)?)1/t
et > /B
E
2 = — - (52)

(1= s/t + (1= (s/a))t/4"

Notons que 2 — 1 quand s — 1, ce qui induit donc une singularité de volume
pour cette solution. Ce comportement de synchronisation avec la sphere interne a
été reproduit pour la premiere fois numériquement dans Dormy et al. 1998.

Cette singularité au cylindre tangent est accommodée par la viscosité sous la
forme de trois couches imbriquées (on appelle abusivement I’ensemble de ces trois
couches la “couche de Stewartson”).

Les deux premieres de ces trois couches sont dites quasi-géostrophique. Elles
respectent la géostrophie de: Q = Q(p) ot s — 1 = p . Pour 4, on écrit

¢ = %g(p)qu(p) + %W(P)- (53)

En moyennant selon z la composant azimutale de Navier-Stokes, on a

E3,,Q = —%(le —¥B) (54)
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F1G. 4: La structure imbriguée de la couche de Stewartson.

A Textérieur du cylindre tangent, on a donc
E8,,Q < EY*Q, (55)

qui donne donc une couche en E'/* . A Dintérieur du cylindre tangent, effet de
pente & la sphere interne est dominant, on a

1/2

E0,,Q? x —7(_/))1/4

1-9)), (56)

qui donne donc une couche en E%/7 .
A travers la couche en E'/%, Q(s) croit de 0 & 1 — A au cylindre tangent (ol1 A

est petit). Donc sur le cylindre tangent
dQ
— = O(E~Y4).
2 = O )

A travers la couche en E?/7 ) reste proche de 'unité avec

dQ/ds

= O(E~2/T).
g - 0E)
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Donc, en invoquant la continuité de Q et celle de d2/ds
A= O(E(2/7)7(1/4)) — O(EI/ZB) .

Cette puissance d’Ekman est extrémement petite... Malgré les petites valeurs
du nombre d’Ekman atteintes pour les simulations numériques les plus poussées
présentées ci-avant (E = 10~%), on atteint seulement sur le cylindre tangent Q ~
0.55. En fait, méme pour le noyau liquide terrestre (E = 1071%) A ne serait pas
vraiment petit !

Une troisieme couche enfin est nécessaire pour réconcillier ’ensemble des dérivées,
celle-ci est agéostrophique. Les équations pour cette structure sont

{—2az¢:Eapr ,

) (57)
20.Q =E0,¢.
La mise & Péchelle correspondante E'/3 pour une échelle verticale d’ordre 1 a déja
été introduite précédemment.
Ces diférentes mises a 1’échelle ainsi que leur caractere quasi-géostrophique ou

agéostrophique ont pu étre vérifiées sur les résultats numériques (Dormy et al.,
1998).

1.2.2 Couche en super-rotation
Considérons a présent le probleme de Couette MHD dans un référentiel au repos.
On impose un champ dipolaire axial

B0=V/\§¢, (58)

avec A = s%/2r3 . A = Ag définit la ligne de champ tangente & 1’équateur.

La rotation lente de la graine ) induit un faible champ magnétique azimutal
By = RuB,.

La composante ¢ des équations de la magnétohydrodynamique linéarisées (petit
Ryr) s’écrit

leBo-v (sB) + A(sQ)=0,
5 (59)
sB,-VQ + AB =0.

Dans la limite des grands nombres de Hartmann (forts champs imposés), en
négligeant les effets visqueux, la force de Laplace doit s’annuler :

JAB, ~0 (60)

ot ) = s !VsB A ¢ . En négligeant la diffusion ohmique, le champ magnétique est
gelé dans le fluide (e.g. Moffatt, Magnetic field Generation in electrically conducting
fluids, 1978), ce qui implique

N~ F(A), sB~—r’M~1G(A). (61)
1l est alors commode d’introduire les variables d’Alfvén
Vi=sQ+t MB
qui satisfont

B, VVi+ M7'AVLy = s7'B, V. (62)
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Quand r — 7, (sphere externe), la continuité de Vi & travers la couche de
Hartmann entraine

sQ+ MB — 0. (63)
Quand 7 — r; (sphere interne), la continuité de V_ & travers la couche de Hartmann
entraine
MB MB; 1 1
— + (0-B), (64)
) S; 1 | By |
dou 2 —1.

La solution hors couches limites et couches de cisaillement (en prenant en compte
la symétrie par rapport au plan de 1’équateur) est

F(A)=1 saufen A= Ag, (65)
AlAg dans la région polaire

G(4) = (66)
0 dans la région équatoriale

La ligne de champ tangente a 1’équateur joue donc ici un role tres similaire &
celui joué par le cylindre tangent dans le probleme hydrodynamique en rotation.
Les courants électriques induits sont discontinus de part et d’autre de cette ligne et
il est donc nécessaire de réintroduire les diffusivités pour résoudre cette singularité.

L’équation (62) peut-étre utilisée pour caractériser la couche de cisaillement qui
y est associée. C’est ce que nous avons fait (en collaboration avec le Professeur
Andrew Soward et Dominique Jault) dans Dormy et al. 2001.

Cette couche de cisaillement a une propriété remarquable: la vitesse angulaire
y dépasse d’environ 50% la vitesse de la sphere interne (moteur des mouvements).

Malheureusement, les équations associés & cette couche ne peuvent étre résolues
analytiquement que dans la limite r; — r, . Ces équations asymptotiques peuvent
toutefois étre résolues numériquement dans le cas général. La figure 5 présente
une comparaison entre le calcul complet en géométrie sphérique et la résolution du
probléme asymptotique (on peut se reporter & I’article en fin de rapport pour plus
de détails). La figure 6 présente une coupe a travers la solution, qui permet une
confrontation plus fine.

2 Etudes non-lineaires

Si les vitesses en jeu dans ces écoulements sont trop importantes, les non-
linéarités intrinseques doivent étre réintroduites et celles-ci peuvent déstabiliser les
couches. On mesure ces vitesses a ’aide d’un nombre de Reynolds, dit “de couche
limite” car la longueur caractéristique y est celle du cisaillement visqueux.

2.1 Stabilité non-linéaire de la couche d’Ekman-Hartmann

La premiere approche consiste a démontrer la stabilité non-linéaire. Cette tech-
nique mathématique repose sur une estimation d’energie et permet de montrer qu’en
dessous d’une valeur critique des parametres de controle (ici le nombre de Reynolds
de couche limite) une solution perturbée ne voit pas son énergie s’éloigner au cours
du temps de la solution non-perturbée.

Par souci de simplicité, le raisonnement est ici mené sur la couche d’Ekman
pure:

e@u+u-Vu)+Vp—EAu+eg xu=0,

V-u =0, u,— =0,
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F1G. 5: Représentation de la solution du probléme de Couette MHD. L’approche
asymptotique en haut (de gauche & droite Q,sB,Vy,V_) puis la résolution du
probléme complet pour un nombre de Hartmann de 10* (mémes quantités).
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F1G. 6: Coupes a travers la solution (asymptotique et numérique compléte) dans
le plan équatorial. La seconde figure a été corrigée pour tenir compte du décalage

apporté par la singularité équatoriale de la couche de Hartmann (voir Dormy, Jault,
Soward, 2001).
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oll
E1/2

E~g® =0, = _
€ B .

Dans lintérieur, loin du bord (le terme en § correspond & la succion d’Ekman)
opul™ + - Vui™ + pui™ + Vp =0,
V_uznt — 07 uznt R n|z=0 — 0

La stabilité non-linéaire peut-étre démontrée dans le sens suivant

sup [ fu(t) - w™ P < € [ ju(0) - )

t>0

L’idée principale de la démonstration réside dans "asymptotique formelle :

N
) z
u~uynN = Zﬁk (u;c"t(t7$7y72') + ukBL (t7w7y’ E1/2)) )
k=0

Une solution approchée satisfait
e(Opuy +un - Vuy) + Vpy — EAuy +e X uy = O(EN'H),

V‘llN = 0, ulezo =0.

L’étape suivante consiste a estimer ’énergie de la différence v =u — up:
L E [wve s [vowew Vun)| +
- —_— — A% v-{ua- u—uy - u .
dt 2 € - N N

BL (_* 2
SCiglg zZu (El/z)‘/|Vv| +...

< CEY?sup [u™| / |Vv|? +...

D’olu 'on peut déduire le critere de stabilité

e sup |ut € , U\
ReEkman = % = E sup |ulnt|E1/2 = 7 S Rec, (67)
ou A dénote la taille de la couche d’Ekman.
D’une maniere générale, on obtient
UBL|_[BL
Repp = % < ReBL. (68)

Pour le cas Ekman-Hartmann, ’équation loin du bord est

™ +ul - Vul + ful™ + Vp =0,

Vit =0, uint. n;—o =0,
avec
8 2F
g2 tan(7/2)
T 1
tan

2 A+vitA
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F1G. 7: Representation du critére de stabilité non-linéaire.

On montre que la couche est stable si

€
Us||—= < Re,(A,0), 69
I II\/E < Re,(A,0) (69)
car, alors
A A
sup/ (|u(t) —u,? + %W(t) — bs|2) < / (|u(0) —u,|? + %b(o) - bs|2) .
>0

Cette expression est illustrée figure 7 (voir Desjardin, Dormy, Grenier, 1999 pour la
dérivation détaillée de cette estimation).

Cette technique n’a pas permis d’établir la stabilité non-linéaire de la couche
d’Ekman-Hartmann sur I’ensemble de la frontiére noyau-manteau pour le régime de
parametres significatif du noyau terrestre.

2.2 Premiére instabilité de la couche d’Ekman-Hartmann

Puisque la stabilité non-linéaire n’a pu étre établie partout pres de la frontiere
noyau-manteau, il est intéressant de chercher & démontrer ’existance d’instabilités.

Pour cela, étudions le systéme linéarisé (2 est dans la direction e et B, dans la
direction e')

E A
;(Btu+U-Vu+u-VU)—FAu+%:X(V/\b)xe’—exu
A
+¥((VABO)xb+(VAb)xB0),
By ob+U- b B,-b-VU-B _ly N+ L Ab
T(t + -Vb+u-VB,—-b-VU — O'VU)—X /\(uxe)+v ,
Vau=0, V-b=0. (70)
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\e = e;

e’ =€,

FiGc. 8: Géometrie pour l’étude locale. L’axe de rotation et le champ magnétique
imposé font respectivement un angle 6 et ¢ avec la normale au bord. Nous cher-
chons une solution en onde plane progressive pour une vitesse loin du bord Ug,.
Ces quantités font respectivement un angle § et 6 + v avec le plan (,B,).

Nous cherchons des solutions sous la forme d’ondes progressives

f(z) explia(y’ — ct)).

La définition des angles est précisée sur la figure 8. Nous minimisons alors Re; en
fonction des parameétres a, 7, 6.

Dans le cas 8 = 0 et en 'absence d’effets magnétohydrodynamiques, Lilly (1966)
a montré que la couche d’Ekman devenait instable & de telles perturbations pour des
nombres de Reynolds de couche limite Re, = €1/2/E suppérieurs & 54.16. Gilman
(1971) a étendu ce résultat & la couche d’Ekman-Hartmann toujours horizontale
(i-e. aux poles) et & montré dans ce cas la stabilité linéaire pour le noyau liquide
terrestre.

En développant les équations pour la perturbation (voir Desjardins et al., 2001),
on note que toute la dépendance angulaire du systeme se résume en deux pa-
rametres:

& =tané sind

et
& =tan sind.

Notons que ces deux parametres s’annulent dans le cas § = v = 0. Ainsi, alors que
la construction des profils laminaires ne repose que sur les composantes normales
des Q et B,, l'instabilité est fondamentalement influencée par leurs composantes
horizontales.

Naturellement, seul le premier de ces parametres, £, a du sens dans le cas non
magnétique. Pour cette raison Leibovich et Lele (1985), dans leur généralisation de
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Fi1G. 9: Nombre de Reynolds de couche limite au-dela duquel une instabilité est
obtenue. Une estimation du nombre de Reynolds de couche limite pour la frontiére
noyau-manteau est également représentée pour comparaison.

Pétude de Lilly (instabilité de la couche d’Ekman) au cas sphérique, cherchent la
valeur de £* qui minimise le critere d’instabilité. Pour de petites valeurs de 6 (i.e.
assez pres des pdles), £ = £* ne peut pas étre réalisé et 6 = m/2 est nécessaire pour
maintenir £ aussi proche que possible de £*. Une fois qu’une co-latitude critique est
atteinte (0* = atan(£*) ~ 63.8°), £ et donc le nombre de Reynolds critique peuvent
étre maintenus constants (§ = £*) en variant § suivant

s oo [ €
6 = 61 = asin (tanO) .

1l convient de noter qu’une modification de § en 7 — § n’affecte pas £, on a donc
une seconde branche solution

6:7T—(51.

Dans le cas magnétohydrodynamique, I’introduction de £ ne permet plus de
maintenir le nombre Reynolds critique constant (voir figure 9). Cependant, les deux
branches de solutions continuent d’exister (voir figure 10), car la symétrie § — 7 — 4
n’affecte ni &, ni £'.

L’étude démontre qu’une instabilité de couche limite peut exister & la frontiere
noyau-manteau dans une large bande autour de I’équateur (f < 45°). Le réle possible
de ces instabilités sur la géodynamo reste a étudier.
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Fi1G. 10: L’angle 6 de linstabilité par rapport ¢ ep par rapport d la co-latitude 6.
L’instabilité se développe dans la direction de ey prés du pole. Une fois passée
une co-latitude critique (qui diminue avec A) deuz branches solutions apparaissent.
L’instabilité s’aligne avec ey pres de l’équateur.
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Cinquieme partie
Perspectives

L’étude de l’origine du champ magnétique terrestre connait depuis quelques
années un développement rapide suite aux premieres simulations de dynamo auto-
excitées dans une sphére en rotation rapide (Zhang et Busse, Geophys. Astro-
phys. Fluid Dyn., 1988 ; Glatzmaier et Roberts, Nature, 1995). De multiples études
numériques produisent & présent des modeles de dynamo dipolaires axiales. Cepen-
dant tous ces modeles fonctionnent dans des régimes de parametres trés éloignés
de celui significatif du noyau liquide terrestre. Toutes ces dynamos reposent sur
des effets mettant en oeuvre des forces visqueuses trés largement surévaluées. Le
nombre d’Ekman (mesurant l’effet des forces visqueuses par rapport aux effets de
rotation) y est surestimé d’un coefficient dépassant le milliard. Les écoulements as-
sociés a ces équilibres “magnéto-visqueux” sont apparemment beaucoup moins effi-
caces pour la génération de champ magnétique que ceux correspondant a I’équilibre
“magnétostrophique” (i.e. entre forces magnétiques et effets de rotation) attendu
dans la Terre. En effet, pour pouvoir étudier ’effet dynamo, toutes les études pu-
bliées ont été obligées de sous-estimer la diffusivité magnétique (terme destruc-
teur du champ magnétique) d’un coefficient supérieur au million. Il a été démontré
(Christensen et coll., Geophys. J. Int., 1999) que ce coefficient est bien relié & er-
reur introduite sur le nombre d’Ekman. Il est donc raisonnable de penser que la
géométrie des solutions numériques de dynamo obtenues & ce jour ainsi que leurs
modes de fonctionnement different grandement de ceux en oeuvre & lintérieur de
notre planete. Nous avons publié un article de revue (Dormy, Valet et Courtillot,
2000) qui met en évidence ces difficultés.

Pour prendre part au progres dans cette voie, j’envisage de poursuivre les études
simplifiées avec une forte interaction entre simulations numériques et approches
analytiques. J’expose ci-dessous quelques un de ces projets, ainsi qu’un projet a plus
long terme consistant & développer un nouvel outil numérique pour ce probleme.

Singularité de la couche d’Ekman

Si la singularité de la couche de Hartmann en M~1/3, M —2/3 peut étre résolue
analytiquement (e.g. Dormy, Jault, Soward, 2001), il n’en est pas de méme de la
singularité équatoriale de la couche d’Ekman. Nous travaillons actuellement, le pro-
fesseur Andrew Soward et moi & la résolution numérique du probléme asymptotique
associé.

Convection au seuil dans une coquille sphérique

Nous avons pu étudier numériquement la convection au seuil et montrer que le
comportement asymptotique ne pouvait étre atteint que pour de tres faibles valeurs
du nombre d’Ekman (travail effectué avec Dominique Jault et Philippe Cardin).
Nous nous attachons actuellement & I’étude de la structure radiale au seuil pour
différents problemes. Les calculs effectués ont permis des progres (en collaboration
avec le Professeur Andrew Soward et le Professeur Christopher Jones (tous deux
de 1'Université d’Exeter en Grande-Bretagne). Nous avons obtenu une description
asymptotique correcte pour le mode de convection en chauffage différentiel, pour
lequel la sphere interne, c’est-a-dire la graine, influence la convection contrairement
au probleme classique en chauffage uniforme dans une sphere pleine. Nous avons
également obtenu les termes de correction a ’ordre dominant pour des conditions
aux limites en surface libre (sans stress) comme pour des conditions de non glisse-
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ment. Celles-ci sont actuellement en cours de validation. Un article pour Journal of
Fluid Mechanics présentant ces résultats est en préparation.

Non-linearites sur la convection

J’ai également commencé 1’étude du régime non-linéaire pour les équations
intégrées selon I’axe de rotation (quasi-géostrophique) en chauffage uniforme (stage
de DEA de Vincent Morin). Pour ce régime des désaccords persistent entre les
simulations numériques et les études asymptotiques (portant sur le caractere sous-
critique de la bifurcation convective). Ces désaccords pourraient étre dus simple-
ment & 'utilisation de parametres trop élevés pour étre représentatifs d’un régime
asymptotique.

Approche numérique pour le régime magnétostrophique

Les codes numériques développés pour étudier la géodynamo utilisent dans leur
quasi-totalité une approche spectrale. Cette approche a permis de réels progres, mais
on en atteint actuellement les limites. Les tres faibles valeurs de viscosités qu’il faut
considérer autorisent la présence de couches de cisaillement tres fines. Si ’on néglige
les effets visqueux devant les effets de rotation, on peut méme voir apparaitre des
singularités de volumes dans la solution. La présence de ces cisaillements nécessite
une résolution spectrale globalement élevée. Une méthode de raffinement local serait
évidemment plus adaptée. Le probleme de l'effet dynamo est fortement non-linéaire,
la, méthode usuelle d’estimation des non-linéarités repose sur une collocation qui
est trés coliteuse avec les méthodes d’harmoniques sphériques (difficulté liée a la
transformée de Legendre). Enfin les méthodes spectrales se prétent trés mal & la
parallélisation par décomposition de domaine. Pour toutes ces raisons, il est essentiel
de travailler & la construction de méthodes locales et adaptatives. La méthode des
volumes finis est extrémement prometteuse. Cette méthode permet sous certaines
conditions (Balsara, J. Comput. Phys., 174, 614, 2001) de maintenir le caractere
solénoidal du champ magnétique (en vérifiant lors de la construction numérique des
opérateurs que la divergence d’un rotationel s’annule exactement).

1l est évident lorsque ’on considere le régime de parametres pertinent qu’il s’agit
d’un systéme raide. Il a été démontré théoriquement que la limite £ — 0 est sin-
guliere pour I'écoulement MHD et que le champ magnétique doit alors satisfaire
une contrainte supplémentaire (la contrainte de Taylor: intégrale nulle de la com-
posante angulaire de la force de Laplace sur un cylindre géostrophique). Les diffi-
cultés théoriques pour la construction de cette nouvelle approche sont nombreuses:
équation hyperbolique pour le transport thermique, méthodes numériques stables
dans les régimes de rotation rapide, conditions aux limites magnétiques (raccor-
dement & un champ potentiel), paramétrisation des effets liés aux couches limites
visqueuses (couches limites actives), méthode numérique satisfaisant la contrainte
de Taylor. Pour m’engager dans cette voie, je dispose du code numérique a trois di-
mensions reposant sur une approche spectrale. Ce code a été validé lors d’un récent
benchmark international. Cet outil sera tres utile lors du dévelop-pement de I’ap-
proche proposée puisqu’il permettra la validation de chaque étape du développement.
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Abstract

Motion is generated in a rotating spherical shell, by a slight differential rotation of the inner core. We show how the
numerical solution tends, with decreasing Ekman number, to the asymptotic limit of Proudman [J. Fluid Mech. 1 (1956)
505-516]. Starting from geophysically large values, we show that the main qualitative features of the asymptotic solution
show up only when the Ekman number is decreased below 1075, Then, we impose a dipolar and force-free magnetic field
with internal sources. Both the inner core and the liquid shell are electrically conducting. The first effect of the Lorentz
force is to smooth out the change in angular velocity at the tangent cylinder. As the Elsasser number is further increased,
the Proudman—Taylor constraint is violated, Ekman layers are changed into Hartmann type layers, shear at the inner sphere
boundary vanishes, and the flow tends to a bulk rotation together with the inner sphere. Unexpectedly, for increasing
strength of the field, there is a super-rotation (the angular velocity does not reach a maximum at the inner core boundary
but in the interior of the fluid) localized in an equatorial torus. At a given field strength, the amplitude of this phenomenon
depends on the Ekman number and tends to vanish in the magnetostrophic limit. 1998 Elsevier Science B.V. All rights
reserved.

Keywords: dynamos; Earth; magnetic field; induction; models

1. Introduction short scales. We hope that the study of some sim-
plified problems will shed light on the numerical

As we try to model the Earth’s dynamo, we face difficulties associated with the limit of small Ekman
successive difficulties. In particular, the kinematic numbers. We present here a study of such a prob-
viscosity of the fluid is very low and this lets other lem, axisymmetric, where all motions are generated
forces dominate viscous diffusion except on very by differentially rotating boundaries in the presence

of an imposed magnetic field. We will study the

steady solution for a wide range of parameters, and
W@ponding author. Present address: 1.G.PP. University of try tQ mf.er Condus.'ons on the asympiotic limit. T_he
California, L os Angeles, CA 90024-1567, USA. solution involves ni ce examples of boundz_ary and in-
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For one part (in the absence of a magnetic field),
the motivation of this work is to use our three-
dimensiona convection code on a simple problem,
easier to solve, and for which the asymptotic solu-
tion is well understood after the work of Proudman
[1] and Stewartson [2]. This allows us to test the
performances and the limitations of our approach.
This problem, though much easier then 3D MHD
convection (it is axisymmetric, no heat equation con-
sidered), is nevertheless attractive since it possesses
a non-trivial solution in the asymptotic limit of van-
ishing viscosity. Moreover, this problem presents a
singularity at the cylinder tangent to the inner core
which is amagjor difficulty for a spherical numerical
code to deal with. In this respect, we complete the
previous numerical study of Hollerbach [3] restricted
to larger Ekman values.

On the other hand, the problem has not been
studied before in the presence of a magnetic field
and with a conducting inner core. Hopefully, this
numerical study may guide future analytical works.
Kleeorin et al. [4] have adready studied analytically
a similar problem, but for an insulating inner core.
This makes an important difference but they have
been nevertheless able to compare some features of
their solution with our numerical findings.

Finaly, recent claims of a discovery of a differ-
ential rotation of the Earth’s inner core [5,6] adds, if
necessary, further motivation to understand better the
flow between dlightly differentially rotating spheres,
and the effects of an imposed magnetic field on this
flow.

2. Modelling

An incompressible fluid of kinematic viscosity v,
density p, magnetic diffusivity n, magnetic perme-
ability o, is enclosed between two spheres. The
inner solid body is rotating slightly faster than the
outer sphere (Fig. 1). Their rotation rates are, respec-
tively, (1 + £)£2 and £2. The equations are written in
the rotating frame where the outer sphereis at rest.

Using the outer sphere radius r, as length scale,
the period of angular rotation of theinner sphere with
respect to the outer one [¢£2])~ as unit of time, and
the maximum amplitude of the imposed magnetic
field By at the outer sphere to scale magnetic field B,

31

Q=1

—l =
Q(+e)|

Fig. 1. The geometry of the problem is represented here in
a meridiona plane. The flow is driven by a dight differential
rotation between the inner and the outer spheres, and remains
axisymmetric.

the momentum equation and the induction equation
write:

ou
s(ﬁjtuVu):—VnJrEAu—Zz/\u

+APEsX(VAB)A B

V.u =0
oB
— =V A(uADB)
ot
+ PolEs~tAB
V-B =0 )

Where z is the unit vector paralel to the axis of
rotation, and the centrifugal acceleration is included
in 7. The geometry is fully determined by the ratio
Fi /¥, Which has been kept constant and equal to 0.35
throughout this study. The outer boundary (r = 1)
is insulating and rigid (u = 0). The inner core has
been taken as either insulating or conducting, with
the same conductivity as the fluid and u = se,
where (8, ¢, z) denote cylindrical coordinates. The
dimensionless parameters are the Ekman number E,
the Elsasser number A, and the magnetic Prandtl
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number Py,
BZ
E=— A=—2, P,=" )
£2r§ Lpun n

Four dimensionless numbers, ¢, E, A, Py, arethus
necessary to describe the problem.

The computer code is written in such a way that
we can investigate the effects of the nonlinear terms
uVu and V A (u A B). However, these terms play
no part in the solution when ¢ is smal enough
(¢ < EY3), With ¢ large enough, 3D instabilities
are expected [7,8]. This study focuses on the linear
solution. Then, the induced perturbation b to the
force-free imposed field can be scaled such that:

B = By + (¢P,E™H)b ©)
and the system (Eq. 1) reduces to:

ou

85 =—-Vrn+EAu—-2zZAu

+ AV Ab) A By
V-.u =0
_,0b
ePhE E:VA(u/\BO)—FAb
V-b =0 4

Two parameters only (E, A) fully determine
steady state solutions. We have not investigated tran-
sient solutions and we have found (covering a large
range of parameters E, A) that, within this frame
(axisymmetric fieldsand ¢ « 1), the solution always
settles down to a steady state.

3. Numerical model

Vector fields are decomposed into poloidal and
toroida parts:

U=V AN Arup) +V Aru
1

= —— VUyy N € uze 5
Fsing pol ¢+ (A0 ()

b=VA(VArb)+Vnarh
1

= rsno pr0| N ey + b¢e¢ (6)
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Applyingr-Vaandr -V A VAtoEg4,weget
the set of scalar equations:

0
eﬁ Loy = EALu +2(ZAT - V)t — 2QUp

+ Ar -V A[(V A D) A By
E%LzAup = EL,A%Up+2(ZAF - V) Al
+2Quy — Ar -V AV
A[(V A b) A By
Pm 0

Efﬁhb[ = AL +r1 -V A[V A (U A Bp)]

Py 0
SFmaLgbpzALgbp—f—r‘V/\(U/\BO) (7)

where L, isthe Beltrami operator

d d
L, = —r>— —F2A
JdFr OF

1 9 1 92
=95 " 55597 ®
sinf 96  sin“f d¢p
and Q (introduced in Raoberts [9]) is the operator
defined as:

Q=2z-V—31(L,z-V+2z-VLy) 9)

The scalar u, u,, by, b, are decomposed as:

X=>" %Y (10)
!

where xy(r) is sampled at discrete points. The cross
products with By terms are computed in the physical
space on Gauss collocation points, and are re-inte-
grated in the spectral space. Vertical discretization
is achieved using a Finite Difference scheme on a
non-uniform grid stretched in the vicinity of the
boundaries. It required 3000 shells to resolve the
structures corresponding to an Ekman number of
10-8. Eq. 7 istime stepped until the solution changes
very little. Time integration is performed using a
Crank—Nicholson scheme for diffusion terms, and an
Adams—Bashforth scheme for other terms. Hence,
the calculation of the diffusion term in each of Eq. 7
requires a product and an inversion of either 3- or
5-banded diagonal matrix at each time step.
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4. Solution in the non-magnetic case

In afirst step, we study how the solution in the
non-magnetic case depends on the Ekman number E
and we recover the asymptotic solution of Proudman
and Stewartson [1,2].

4.1. Ekman layers

The numerical study of Ekman layers raises im-
portant problems that can be partly aleviated by
using aradial grid, which is stretched in the vicinity
of the two boundaries. It is essential to determine
how many points are heeded to resolve these viscous
layers properly. Another difficulty is due to the steep
gradient of the solution in these layers. Spurious os-
cillations often arise in the vicinity of shear layers;
it is difficult to ensure that they are kept small, that
they do not spoil the solution (they do not blow up),
and that they do disappear in the steady state regime
after time integration of transient states. Around ten
points, in the layer, are found to be needed (if reg-
ularly spaced) to resolve the structure correctly with
our finite difference scheme. When only three points
are used, the structure of the layer is not properly
solved, the calculated suction is erroneous, and this
has important consequences on the main flow com-
puted outside the layer, as can be seen on Fig. 2.

4.2. The Proudman—Sewartson solution

The problem we consider is strongly dominated
by rotation. In the limit of small viscosity, all mo-
tions in the interior should satisfy the Proudman—
Taylor theorem (vertically invariant flow):

1
u=uy(s)e; + gVupd (8) N ey (11)

The cylindrical surface that touches the inner
sphere (the axis being the axis of rotation) will
be referred to as the tangent cylinder. Outside the
tangent cylinder, the asymptotic stateisrigid rotation
with the same angular vel ocity as the outer sphere:

Uy(8) = Upy(8) =0 (12

Inside the tangent cylinder the angular velocity of
geostrophic cylindersin the asymptotic regimeis de-
termined by the Proudman constraint in the volume
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and by Ekman pumping at the boundaries [1]:
s(1—s?)¥/4
(L= +[1 - (s/r)7*

u,(s) = (13)

El/2g2
2{(1—sHV4 +[1— (s/r)2Y4)
where the notations of Proudman are related to ours
by:

Y = lpo, & =8Uy (15)

The resulting cylindrical shear layer was investi-
gated by Stewartson [2] who proved that it does not
exert a control on the interior flow. This layer allows
the flow to recirculate from one Ekman layer to the
other and aso accommodates the jump in azimuthal
velocity. Stewartson showed that the shear layer can
be divided into three nested layers. In the two outer
layers, the z-dependence of u, may be neglected and
interior viscous stresses on the cylinders balance vis-
cous stresses on the boundaries. As a consequence,
Uy depends on z, as can be seen from the ¢ com-
ponent of the momentum equation. For 8 > F;, the
width of the layer is O(EY*) and both u, and uy
decrease exponentially to zero. For s < F;, the width
of the layer is O(E?7”) and the s-dependence of the
solution is given by Bessel and Gamma functions.
The remaining discontinuity in Wy IS removed in
the inner layer of width O(EY3). This layer is fully
ageostrophic. Stewartson’s analysisiswell illustrated
by the numerical study.

Upol (8) = (14)

4.3. Numerical study

The solutions are calculated for different Ekman
numbers. As the Ekman number is decreased, the
singularity on the tangent cylinder develops, and
more and more harmonics are required to represent
the associated fields. Harmonics up to degree 1300
were needed to compute the solution for E = 1078,
If one was to use fewer harmonics, thiswould lead to
oscillations comparable to Gibbs phenomenon (see
Morse and Feshbach [11]).

The results published by Hollerbach [3], for Ek-
man numbers Ey > 1075 are reproduced (Fig. 3).
We note that his Ekman number Ey is related to ours
by:

Ey = 2.37E (16)
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0-05 T T T T T T

Fig. 2. Ekman spirals. Ug/r versus u,/r for different number of grid points. § = /12, E = 1075, These results compare very well with
the linear theory [10].

ud:/s Upol 'U.¢/S Upol

E=10"°

ug/s Ugol ug/s Upol

E=10"" = 1™
Fig. 3. Meridional section of angular velocity and upo for decreasing values of the Ekman number. First two figures compare very well

with fig. 3 of [3]. The qualitative asymptotic behavior of flow synchronization with the inner core rotation close to s = 0.35 can be
observed only on the two last figures.

We have recovered the interior geostrophic solu- observed only when E < 107 (see Fig. 4). We have
tion found by Proudman [1]. The meridiona flow showed Uy /s and Uy asafunction of zand r whereas
scales as O(EY?). The asymptotic behaviour of flow we are, of course, interested by the (s,z)-structure
synchronization with the inner core rotation, as the of the solution; numerical convenience dictated our
tangent cylinder is approached, can be qualitatively choice.

34
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Fig. 4. Comparison with the Proudman solution. Angular velocity ug/s and poloidal scalar upsEY? versus s at r = 0.7 for different
Ekman numbers. The Proudman solution is shown with a thin solid line. The angular velocity solutions for E > 10~ do not show the

qualitative behavior of the asymptotic limit.
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=
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Fig. 5. Comparison with the Stewartson asymptotics. Angular velocity u,/s and poloidal field upyEY? versus s for different radius r.
The inner ageostrophic layer of width E*/3 iswell distinguished from the outer layers where the azimuthal flow is geostrophic.

We can also study the departure from the Proud-
man solution in the cylindrical shear layer. Fig. 5
illustrates well the three nested layers. The inner
layer of width O(EY3), where u, is ageostrophic, is
well defined and is clearly embedded in the outer
shear layers, where u, is z-independent but uyy de-
pends on z. The transport of fluid takes place at small
z inside the tangent cylinder and at large z outside
the tangent cylinder (see dso Fig. 3). We have calcu-
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lated the rate of exponential decrease of u, and g
with s for (8 > 1) (Table 1). The agreement with
the EY/4 scaling of Stewartson is gratifying. In order
to investigate the outer layers, we have subtracted
the mainstream solution (Egs. 13 and 14). Further-
more, we have stretched the s coordinate by the
factor E-%/7, for 8 < rj, and by the factor E-Y/4, for
$ > r;. The O(E?") and O(EY/*) scalings are vindi-
cated (Fig. 6) inasmuch asthe mainstream solution is
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Table 1

E'/3 and EY4 Stewartson layers

E 5 Al A2

105 0.117 —23.02 195

106 0.057 —3841 33.89

107 0.027 —73.40 63.94

108 0.013 —129.52 106.71
E—0.32 E—0.253 E—0.249

8 is the width of the region where uy is ageostrophic. A1 and 2>
are the rate of exponential decrease of, respectively, u, and Upol
outside the tangent cylinder. The last line gives the slope of the
regression of these coefficients on log E.

recovered for afixed distance to the tangent cylinder.
However, the influence of the O(EY/3) layer on b
inside the tangent cylinder is also visible. Stretching
now the s coordinate by E-/3, we characterize fur-
ther the O(EY/3) layer, whose influence on iy is the
strongest at small z (Fig. 7): the maxima are now
aligned at a fixed distance to the tangent cylinder.
Finally, Fig. 8 demonstrates that the width of the
layer where u, is ageostrophic scales with E*/3 (see
also Table 1) as predicted by Stewartson [2].

The scaling laws given by Stewartson apply well
to the numerical solution for the range of Ekman
numbers [10°8, 1078, even if some features of
the Stewartson solution are absent from the nu-
merical solution. As an example, the amplitude of
E~Y2uyy increases rapidly with E=* in the E-%/3

r=0.7

h

04 | Y

02

-5 -

R T
(0354 (50355

inner layer (cf. Fig. 7), whereas Stewartson [2] pre-
dicted very slow variation (E~%/2'). We note also that
the z-dependence of uyy in the E%7 layer out of the
EY3 inner layer is not linear as predicted (Fig. 5).

5. Magnetohydrodynamics

We now study how the flow is modified in the
presence of an imposed magnetic field (Fig. 9).

5.1. The imposed magnetic field

Only current-free fields have been investigated
(J = 0). A current free field with external sources,
when axisymmetric and dipolar, is aligned along the
axis of rotation. As a consequence, shear at the tan-
gent cylinder does not create electric currents. We
have checked that, in this case, the shear at the tan-
gent cylinder is not reduced by magnetic effects, and
is even reinforced for strong fields, as the Lorentz
force efficiently couples the fluid inside the tangent
cylinder with the inner sphere. The asymptotic solu-
tion for large A consists of bulk rotation of the fluid
volume inside the tangent cylinder together with the
inner body and a bulk rotation of the fluid volume
exterior to the cylinder together with the outer sphere
(see d'so the recent study by Hollerbach [12]).

The problem is very different if the sources of the
magnetic field are internal. For the imposed field one

r=0.7
0.02 |
g
=
3 — E=10"
2 — E=107
| 002 f----E=107
N —-— E=10
=
z
=
-0.04

BT T T
G035 EY (s—0.35)*E'3m

Fig. 6. The outer Stewartson layers. U /s and Upo EY/2 versus E~%/7(s — 0.35) for s < 0.35 and E~/4(s — 0.35) for s > 0.351 = 0.7.
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-0357E™

Fig. 7. The inner Stewartson layer. UpoEY/2 versus E~/3(s — 0.35). r = 0.4 (left) and r = 0.7 (right).

then writes:

1 1
B, = r—3c059, By = Fsin@ a7

Here the magnetic field is not aligned along the
axis of rotation, and will therefore cross the tangent
cylinder. Important, too, is the variation of thefield's
magnitude: in this case the amplitude of the field,
varying as r—3, will be much stronger at the inner
boundary. The field amplitude is 23 times larger at
the inner sphere surface than at the boundary with

I TS Yo
(s-0.35)*E
Fig. 8. The inner Stewartson layer. u, /s versus E~1/3(s — 0.35)
for different Ekman numbers (E = 103, 1076, 10~7, 108 from
top to bottom) and different radius (r = 0.4, 0.5, 0.6, 0.7, 0.8,

09).
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the outer sphere. The local Elsasser number is thus
544 times greater than the value that we quote and
calculate with the field at the outer boundary.

5.2. Comparison with previous studies and
numerical tests

We present results obtained in the case of an
insulating inner core in order to compare with the
numerical study of Hollerbach [3]. The first effect
of the magnetic force is to reduce the shear at the
tangent cylinder. Asthe Elsasser number isincreased
the motion reduces to a rigid rotation with the outer
sphere. Since both spheres are insulating, only vis-
cous torques couple the solid boundaries. Fig. 10
shows how the solution evolves with increasing val-
ues of A at E = 1075. First, we see (for A = 0)
the influence of the equatorial Ekman layer of width
E?/> attached to the inner sphere. Comparison with
[3] validates our code. The recent asymptotic study

Fig. 9. The imposed magnetic induction.
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Fig. 10. Angular velocity with respect to the cylindrical radius s in the case of an insulating inner body; on the left hand sideat r = 0.75,

on the right hand side in an equatorial section. E = 1075,

of Kleeorin et al. [4] predicts a local minimum in
angular velocity, in the vicinity of the equator of the
inner body, in their strong field limit. The reversed
flow can be seen on Fig. 10 (see the equatoria
section). We note that they refer to a first version
of our paper, in which the figures were numbered
differently. Fig. 10 was referred to as Fig. 6.

We now restore finite conductivity to the inner
core. The induction equation (its diffusive part)
must now be solved inside the inner core, aso.
For non-zero Elsasser numbers, a magnetic torque
applies on the inner boundary:

I's = Ar // B:b, sin6 dS (18)

Viscous torques act at both boundaries and are
expressed as:

r,—Er //sjneri"i ds (19)
ar r

Equilibrium between these torques is an addi-
tional check of our numerical calculation. They agree
to within 1%.

5.3. The asymptotic state

We shall see that including a conducting inner
core endows the solution with a rich variety of
features. When the imposed magnetic field is strong
enough, we again expect the solution to be close
to a state of rigid rotation. But, now, the internal
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magnetic torque couples far more efficiently the fluid
with the inner body than the external viscous torque
with the outer body. As a consequence, most viscous
effects are confined to the boundary layer attached to
the outer sphere.

5.3.1. Ekman—Hartmann boundary layer

As the Elsasser number is increased from zero to
O(2) values, the Ekman boundary layer attached to
the outer sphere gradually changes into an Hartmann
type boundary layer. Boundary layers influenced by
both rotation and magnetic field are reviewed by
Acheson and Hide [13]. They give (in their section
5.2) alocal derivation of the effect of the boundary
layer on the flow and the magnetic field in the in-
terior region when the boundary is insulating. With
A = 0, the effect on the flow reduces to the Ekman
suction. In the Hartmann limit, the normal compo-
nent of u vanishes at the edge of the interior region.
In between, elimination of the main flow vorticity in
the expressions for u, and j, yields:

[§] _ (Bo-1)
[ur] Bo
where [-] denotes jump across the boundary layer
and A, isdefined as:

_ 1 (Bo-r)ZA
2z.r B

Fig. 11 shows how the Ekman spirals on both
boundaries are modified by magnetic effects. The

((+42)"+ 4, (20)

Al (21)
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Fig. 11. Same as Fig. 2 in the presence of a magnetic field. As the Elsasser number increases, the angular velocity of the main flow
approaches the angular velocity of the inner body. The 6-component of the velocity vanishes as the layers modify from Ekman type to

Hartmann type.
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Fig. 12. The outer boundary layer for E = 105 and # = 7/12. On the left hand side, the radial electric current j,. The current boundary
layer iswell characterized only for A > 0.1. On the right hand side, numerical (o) and theoretical (as given by Eq. 20) values for [fr]/[ur]

are represented.

meridional motion u, characteristic of the secondary
flow in the Ekman layer is reduced and then sup-
pressed as the local Elsasser number is increased
to order one. Fig. 12 gives a comparison between
Eq. 20 and our numerical results, for E = 1075 with
increasing A at 6 = /12,

5.3.2. Electric currents gjected from the Hartmann
layer

In this section, we investigate the solution in
the limit of large Elsasser numbers: the Hartmann

39

limit. The flow is close to a state of rigid rotation
and the main feature of the solution is a Hartmann
boundary layer attached to the outer sphere through
which the flow velocity decreases from sing to
0.

We rescale the set of Eq. 4, retaining only the
magnetic and viscous forces, and introducing the
Hartmann number M = (A/E)Y2. Only one pa-
rameter controls the system in this regime. Taking
into account the geometry of the imposed field, and
introducing & = M(1 —r) as radia boundary-layer
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coordinate, we get:

2
0u —200398—b =0
9E2 o
9°b ou
— —2c0sf— =0 22
0E2 0F (22)
of which the solutionis[14]:
u=—b=sing (1—e2°%) (23)
To ensure j A B =0, b hasto be written:
1 sin?6
= 24
rsing f( r ) (24)

Hence Eq. 23 is compatible with the bulk rotation
that we have assumed as solution for the interior flow
if:

b=>_" (25)

The equations are singular at the equator, where
the magnetic field lines are parallel to the boundary.

5.3.3. Theequatorial singularity

The singularity of the Hartmann layer has im-
portant consequences because it can be shown that
the flux of electric currents leaving the boundary
layer there does not vanish. We have not pushed
the analytical study further (see Roberts [14] for a
thorough investigation of such singularities) and we
rely here on the numerical study to describe how the
equatorial singularity affectstheinterior flow.

In the presence of rotation forces, the viscous
layer is of Ekman type. It is also singular at the
equator, where the rotation vector is paralel to the
boundary. Numerical study seems necessary to un-
ravel how rotational forces modify the Hartmann
solution.

5.4. Numerical study

Fig. 13 illustrates how the flow synchronizes with
the inner body as the Elsasser number is increased.
For low Elsasser numbers, the electric currents are
generated at the inner core and at the tangent cylin-
der whereas for larger values they are induced by
the viscous shear at the outer boundary (see Fig. 14).
For large Elsasser numbers, the numerical solution
illustrates the role of the equatorial singularity. At

40

high latitude, the electric currents flow along the
lines of the imposed dipolar field. In the viscous
boundary layer, they converge toward the outer equa-
tor and coming back to the inner core, they cross
magnetic field lines which are parallel to the outer
boundary. Indeed, the magnetic field and the electric
field do not share the same symmetry with respect
to the equatorial plane. This discrepancy between
the symmetries of the two fields holds aso in the
intermediate regime where electric currents are in-
duced by the remaining shear in the interior region.
As a conseguence, in the vicinity of the equatorial
plane, magnetic forces do not vanish and make the
interior flow depart from a state of rigid rotation.
Fig. 15 shows the profile of the angular velocity in
the equatorial plane for different strengths of the im-
posed magnetic field at E = 1075, The case A = 10
(M = 10%) exemplifies departure from rigid rota-
tion. Angular velocity reaches a maximum in the
interior region. This maximum is still more pro-
nounced at smaller Elsasser number (see A = 0.1,
i.e. M = 10%). The accelerated flow closely fol-
lows magnetic field lines. With increasing Elsasser
number, the peak angular velocity migrates from the
inner boundary to the outer sphere and the flow
approaches a state of rigid rotation.

In order to better understand how the interior flow
is accelerated, we have studied the magneto-viscous
equilibrium, where the Coriolis forces are absent
(see Figs. 16 and 17). Asin Section 5.3.2, the sys-
tem (Eq. 4) is rescaled so that the Coriolis force
is eliminated in the limit A — oo, E - oo and
the remaining dimensionless number, the Hartmann
number M = (A/E)Y?2 finite. Viscous shear (mainly
in the outer boundary layer) generates electric Hart-
mann currents in the equatorial region crossing the
magnetic field lines as described above. Super-rota-
tion of the fluid is thus a magneto-viscous effect.
Here, viscous forces only oppose the acceleration of
the zonal flow in the equatorial region. The region
of accelerated fluid has a banana shape centred on a
magnetic field line. The maximum speed grows with
increasing Hartmann number, in strong contrast with
what is described above. Whereas a weak magnetic
field (M = 1) changes the dynamics only dlightly, a
moderate magnetic field (M = 3.16) suffices to ac-
celerate the equatoria interior flow. At M = 316 and
M = 1000, the shear is well confined to the bound-
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Fig. 13. Angular velocity with respect to the cylindrical radius s in the case of an conducting inner body; on the left hand sideat r = 0.75

on the right hand side in an equatorial section. Ekman number is 1075,

u¢,/.9 Upol Jpol bpo{

Fig. 14. Meridional sections for E = 10~5, and increasing values of the Elsasser number.

ary layer parallel to the magnetic field line tangent attached to a wall parallel to the imposed magnetic
to the outer sphere. The width of the sheared zone field [15]. Thisinternal shear layer is associated with
follows the M—1/2 asymptotic law for boundary layer the recirculation of electric currents induced in the
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1.0

0.0 . . .
0.35 0.55 0.75 0.95

Fig. 15. Equatorial section of angular velocity at Ekman 10~5. As the Elsasser number increases the flow synchronizes with the inner
body. Unexpectedly the angular velocity of the flow locally exceeds the outer body’s angular velocity.

ug/s Jgol ugy/s Tpel

ug&/s jpal “@/S jPOI

M =100 M = 1000

Fig. 16. Meridional representations of the zonal angular velocity uy /s and the meridional electric currents jiyo in the absence of rotational
forces for increasing Hartmann numbers.

Hartmann layer as the internal Stewartson layer is Comparison of the solutions with and with-
associated with the recirculation of the meridional out the rotational forces shows that they strongly
flow generated in the Ekman layers. inhibit the equatorial acceleration, which violates
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Fig. 17. Equatorial section of the angular velocity in the absence of rotational forces.

the Proudman—Taylor constraint. Besides, departure
from a state of rigid rotation is less and less pro-
nounced as viscosity is decreased (see Fig. 18).
Decreasing the viscosity indeed restores the role of
rotation forces, even for large Elsasser numbers.

Kleeorin et al. [4] have studied how geostrophic

velocity (see Fig. 14) reduces to zero as the equator
of the outer sphere is approached in the intermediate
and strong field limit EY? « A « 1. They write
the ‘modified Taylor’'s constraint’, balance between
Maxwell stress in the mainstream flow and the vis-
cous stress in the Ekman—Hartmann boundary layer.
They describe a magnetic Proudman layer of width
E?/7/A%" where viscous stress is negligible except
at the top and bottom of the geostrophic cylinders.
The remaining discontinuity in the geostrophic ve-
locity is smoothed out in the viscous Stewartson
E?> layer attached to the equator. Kleeorin et al.
[4] have compared their result with our numerical
work. We note that figs. 12, 13 and 16 of that paper
are now, respectively, Figs. 14, 15 and 18. Their
table 2 gives the distance in our units from the outer
sphere at which the rotation rate is one half the
value outside the magnetic Proudman layer, accord-
ing to their asymptotic theory. Only for A = 0.1, the
E?/> Stewartson layer is thin compared to the mag-
netic Proudman layer. But the agreement between
the theoretical and numerical works is striking and
vindicates their analytical work.

Finally, the conducting inner body strongly influ-
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ences the geometry of the electric currents. Electric
currents can enter the inner body (because it is con-
ducting) without shearing it (because it is rigid).
Fig. 14 shows how the electric currents try to follow
the magnetic field linesin the fluid all the way to the
inner solid body where they loop back.

6. Conclusion

Very small values of the Ekman number have
to be studied in order to get some insight into
the asymptotic limit with a numerical study. Ek-
man numbers such as 107> are not small enough
to describe even qualitatively the asymptotic regime,
well-known in the non-magnetic case, and this con-
clusion holds also with strong magnetic effects. It
would be helpful to develop a numerical algorithm
to solve the thin boundary layers without increasing
the number of grid points too much. The method
used here limits the (axisymmetric) studies to E
larger than 10~ on some of the fastest computers
available.

A new structure, defined as a maximum in the
angular rotation inside the interior flow, arises in
the equatorial region in the presence of an imposed
field. It is present only when the solid inner body is
conducting because, firstly, the main boundary layer
is attached at the outer sphere and, secondly, the
electric currents can loop in the inner body. This
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Fig. 18. Equatoria section of the angular velocity at Elsasser

numbers 0.1, 1, 10 for varying Ekman numbers. One can see on

each of these graphs how the amplitude of the super-rotation is
controlled by viscous effects.
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structure vanishes in the magnetostrophic limit but
is present for Ekman number values in the range
that can be investigated in the numerical geodynamo
model s that are being devel oped.
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Abstract. In this paper we study the nonlinear stability of Ekman-Hartmann-type boundary
layers in a rotating magnetohydrodynamics flow in a half-space and between two planes. We prove
rigorously that if the Reynolds number defined on boundary-layer characteristics is smaller than a
critical value, the boundary layer is nonlinearly stable. It is shown that the normal component of
the magnetic field increases the critical Reynolds number for instability.

AMS classification scheme numbers: 35Q35, 76U05, 76W05

1. Introduction and physical motivation

The stability of boundary-layer shear flows in magnetohydrodynamic rotating systems is of
some general interest. We will concentrate our efforts in this study to the parameter range
relevant for the Earth’s core. The magnetohydrodynamic flow (MHD) in the Earth’s core
is believed to support a self-excited dynamo process generating the Earth’s magnetic field.
Although one has very few means of access to the deep interior of our planet, most of the
parameters characterizing the dynamics in the core are quite well known [20, 21]. One can try
to model the core by a spherical shell €2 filled with a conducting fluid of density p, kinematic
viscosity v, conductivity o, which rotates rapidly with angular velocity ©2o. We will only
consider here phenomena occuring close to the outer bounding sphere. Important parameters
are the Ekman number E, the Rossby number &, the Elsasser number A and the magnetic
Reynolds number 6 defined introducing a typical velocity U and magnetic field B as

E=vQ;'L72, e=UQ'L™Y, A=B'Qtus'n™ 6=ULn" (1)

The Earth’s core is believed to be in the asymptotic regime of small Ekman number
(E ~ 10~%) and Rossby number (¢ ~ 10~7).

Here we present the analytical study of a simplified problem. The stability of an Ekman-
Hartmann layer is investigated at the boundary with a half-space R? x [0, +oo[. We will
consider the limit of small Rossby number ¢ at fixed Elsasser number A. It is natural to let
€6 go to zero as it appears to be the rescaled size of the self-induced magnetic field. Finally,
we will let the Ekman number go to zero, and enforce it to be of size €2, in order to have a
bounded and nonvanishing Ekman pumping term.

0951-7715/99/020181+19$19.50 © 1999 IOP Publishing Ltd and LMS Publishing Ltd 181
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The stability of the Ekman—Hartmann layer at the core-mantle boundary is a critical issue
in understanding how it may affect the main flow and thus the dynamo process. The stability
of this layer is often assumed a priori in numerical works.

As the resolution of the Ekman-Hartmann boundary layers is difficult to achieve
numerically [11], some models use free-slip boundary conditions to suppress those layers.
Recently, Kuang and Bloxham [18] have highlighted the important effects of the boundary
layers on the main flow (and field) in a computation of a hyper-viscous dynamo flow at moderate
Ekman numbers.

Some other models suppress inertial and viscous effects in the momentum equation, this
leads to the *‘magnetostrophic’ equilibrium, with the consequence of the Taylor constraint [23].
This simplification can be used to study the induction in the Earth’s core [15], but leads to an
underdetermination of the geostrophic flow. In practice one needs to restore viscous effects in
boundary layers only, through pumping, giving a prescription for this flow.

Let us now describe the stability result. We define a boundary-layer Reynolds number by

&

ReBL u ﬁ (2)
where u is a typical value of the rescaled velocity (and therefore of order 1). This number is
the product of the typical value of the viscosity by the size +/E of the Ekman layer, divided by
the viscosity E /e. Notice that we build this Reynolds number on the size of the Ekman layer at
A = 0and not on the size of the Ekman—-Hartman layer. This point of view clearly emphasizes
the stabilizing role of the magnetic effects and the fact that the stability is controlled by only
two dimensionless parameters, namely A and the particular combination ¢ /+/E (and of course
on the colatitude).

As E is of order s?, Rep; remains constant in the limiting process under consideration.
We prove that the Ekman—Hartmann boundary layer is linearly and nonlinearly stable provided

Repr < Rey(A, 6p) (3)

where 6y is the colatitude, and give an explicit formula for Re;. Of course this does not
prove that the layer is unstable for Reg; > Re; since Reg is a poor bound. However, this
bound seems physically nonempty, and Re; is plotted in figure 1. We recall that as u being
by definition of order 1 and as ¢ ~ 10~7 and E ~ 10725, Rep; is of order 1 and therefore
completely falls within the values of Re; given by figure 1.

This estimate on the critical Reynolds number is, however, far from being optimal. In the
Ekman case (A = 0) for 6y = 0, instabilities appear near Rep; = 55 [19], and moreover the
magnetic field has a stabilizing effect. In [8], using the methods introduced by Lilly [19] in
the pure Ekman case (A = 0) we have computed the critical Reynolds number as a function
of 6y and A for which linear instability occurs for the complete MHD problem.

The stabilizing effect of the magnetic field as well as the destabilizing effect of low latitudes
can also be deduced from such an analysis.

2. The governing equations

Let 2 be a three-dimensional domain, with smooth boundaries (typically a ball, a half-space
or region between two parallel planes), which will be called the core, Q¢ being the mantle to
fit geophysical terminology.

In @, we consider the following MHD model, where we assume the fluid to be
incompressible. We do not consider buoyancy effects here (see [16] for a discussion of the
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e0
0 20 40 60 80

Figure 1. Re; as a function of Elsasser A and colatitude 6y. The stabilizing role of the normal
component of the magnetic induction is clearly illustrated.

linear thermal Ekman layer). We neglect displacement currents in Maxwell’s equations, and
take into account the Coriolis effect
p(u+tu-Vu) — uAu+Vp+pQue x u=j x B,
j=uytcur B, curlE=-8B, j=o(E+ux B), (4)
divB=0, divu=0.
e denotes a constant unit vector, direction of rotation, 5 denotes current density which is
related through Ohm’s law to the electric field E and the magnetic field B. The electrical

conductivity o, the fluid dynamic viscosity p and density p are positive constants. As a result,
we can eliminate 5 and E in the above system and obtain

Vp 1
(O;u+u.Vu) —vAu+ — + Qpe x u = —curl B x B,

o o )
3,B = curl (u x B) +nAB,

divB =0, divu=0.
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Where the magnetic diffusivity # is defined as (o o) ~* and the kinematic viscosity v is defined

asv =pu/p.
Outside the shell, the mantle Q¢ is considered as an electrical insulator and the magnetic
field is assumed to be harmonic:

culB=0, culE=-9,B, divE=0, divB=0. (6)

At the core—-mantle boundary 92, we impose the velocity of the fluid to vanish and the normal
component of the Poynting vector E x B to be continuous.
Introducing typical quantities

u=Uvu, B=BB', E=EE, p=np, z=Lx, t=Tt,

and dropping the primes, we adimensionalize (5) as follows:

L T QoL v B2 L
—dutu-Vu+t —Vp+ —exu— —Au=——curl Bx B, — B
ur pU? 2 ur

U UL puoU
— curl (u x B) + %AB, divB=0, divu=0. @)
Taking
L U v v
=—, E&=BU, w=pUQL, ¢=—, E=—:, = —,
U QoL QoL2 n
and
B? P,e UL
A = s 9 ==,
pS2o/Lon E n
we rewrite (7)
Vp exu E A
oyutu.Vu+ — + — —Au= —curl Bx B
€ £ £ el @)
1 . .
0;B =curl (ux B) + 5AB, divB=0, divu=0,

and in ¢, we have
culB=0, culE=-9,B, divE=0, divB=0. 9

Thenumberse, E, P,, A, 6 are respectively called Rossby, Ekman, magnetic Prandtl, Elsasser
and magnetic Reynolds numbers.

Next, we split the magnetic field B into two parts a large-scale, time-independent field
By = €’ and a scaled perturbation b such that

B =¢€ +6b,
so that (8) becomes in

\Y% E A A6O
dutu-Vutr L _Eau+ Y — Db x e+ 2curl b x b (10)

& & & &
curl "y Ab . .

8,b+u-Vb=b-Vu+%+7, divb=0, divu=0, (11)
and in Q¢

curlb =0, curl E=-69,b, divE=0, divb=0. (12)

The boundary conditions with an insulator can be written as
u=0 and (F xb)-n iscontinuous. (13)
Notice in particular that on the fluid’s side, we have curl b = E.
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We consider in the following the orderings for E, A, 0, &:
e—>0, A=0®1), €0 — OE ~ &2 (14)

Notice that this includes @ — 0,0 = O(1) or 8 — +oo with ¢6 — 0.
These limits are relevant to the Earth’s core [10, 11]. Typical values for the Earth’s core
aree ~ 107", A = O(1), e6 ~ 1074, E ~ 105, which fit (14).

3. Statement of theresults

Let us first consider the case Q = R? x [0, +oo[ (half-plane z > 0) and let e and e’ be the
vectors given in (eq, ey, e3) basis by

e = (—sinfy, 0, cos &)

and
e = ”e—/” with ¢’ = (sinép, 0, 2 cosby),
e

where we identify (e, e2, e3) with (eg, e4, €,) at a given colatitude 6. The normalized
imposed magnetic field ¢’ is assumed to be dipolar, even though any other case could
have been considered. Let Uy, = (11,00, U2.00) be a given velocity at infinity z = +oo.
Let (us(x,y,z),bs(x,y,z)) be the Ekman—-Hartmann layer (see section 4.2 for analytic
expressions) which matches the boundary conditions at z = 0 and satisfies (u,.1, us2) = Uw
at z = +oo.

Theorem 3.1. The Ekman—Hartmann layers are stable provided
&
VE

where Re; is given analytically in section 4.4. More precisely, under this condition, if (u, b)
is another solution of (10), (11)

sup <|u<t> —ul?+ %b(r) — bs|2> < / (|u(0> — g+ %b(m - bs|2> :

>0

1 Usoll < Reg(A, 6p),

Let us now turn to the mathematical approach of the problem. By mathematical approach,
we mean partial differential equation (PDE) type mathematics. The aim is to describe the
convergence of solutions of (10), (11) in the limit (14), dealing with all the nonlinearities and
boundary conditions. We would like to emphasize here the differences between the approaches
of PDE people and physicists: mathematicians try to prove convergence of time dependent,
fully nonlinear solutions of (10), (11) to solutions of some reduced systems (without small
parameters) on arbitrarly large time intervals (rarely globally in time), the limit system being
also fully nonlinear (as complex as two-dimensional Euler’s equations). On the other side,
physicists are more interested in global in time stability of time independent boundary-layer
profiles (the stability in Lyapunov or dynamical sense). Each theorem is followed by a small
comment to make the link with physical concerns.

In what follows, = R? x [0, 1], and to simplify the analysis, e = e’ = e3, perpendicular
to the boundary of &2 (a similar analysis could probably be done for different vectors e and e’
provided they are not tangent to 92). In section 4 we make the formal analysis of the limit
¢ — 0. As usual in antisymmetric perturbations of parabolic systems, we have to distinguish
between well-prepared an ill-prepared initial data [6, 14]. We prove, for well-prepared initial
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data, that j¢ = curl b° goes to 0 and that w* converges to a two-dimensional vector field u"
independent on z, satisfying a damped Euler equation

atuént + (’U,Em A V)ugnt + ,BUf)m + Vpé)m — 0’ (15)

div ul" =0, (16)
where Bui" is a damping term, the sum of a viscous Ekman type pumping and a magnetic
effect.

2E
= g2tan 5
with
nl-o -
2 A+V1I+A2

In section 4.2 we construct the Ekman—Hartmann layer, following for instance [1],
and in section 4.3 we construct an approximate solution (u¢"”, ji”) starting from ug"”, an
approximate solution which satisfies (10), (11) up to very small (in ¢) error terms. It is
classical that for 8 = 0, Sobolev norms of solutions of (15), (16) have a double exponential
behaviour in time. But for 8 > 0 we prove the following.

Theorem3.2. Let 8 > O and let s > 2. There exists a positive function I, such that every
solution uy" of (15), (16) satisfies

ug” (1, )2y < Tolug” (0, )| gonre))e ™. )
Thistheorem is just the mathematical expression of the damping effect of the Ekman—Hartmann
pumping: if the limit flow is initially smooth, it remains smooth and decreases exponentially
in time. This is an improvement with respect to [14], since we can now get convergence results
which are global in time, which was not the case in [14].

Let us now introduce the function

+00
Bk) =+1+ kzx/%/ 2(| cos(zk)| + | sin(zk) e~ dz. (18)
0
the critical Reynolds number for stability
Rey(A) = (19)
= <A+— VA2 )
and the boundary-layer Reynolds number of uJ" at time ¢,
. &
Repp (1) = |ug" (20)

(t, ')|L0°(R2)ﬁ-

We prove in section 5 the following convergence results.

Theorem 3.3. Let ui"(0, x, y) be a given H*(R?) function, with s > 5. Let ul"(z, x, y)
be the global solution of (15), (16) with initial data «j" (0, x, y). Let u§ and b be given
sequences of L?(2) and L?(R3) functions, respectively, such that

int

A6
lug(x, y,2) —ugy" (0, x, )7)”22(9) + T”bg(xv Y, Z)”iZ(RS) -0 as ¢—0,
and let u®, b° be global weak solutions of (10), (11) with initial data ug and bj. Then
luf — ug" 2o, 77, 2R2)) + T”bEHLx([O,T],L?(]RZ)) -0

for every T such that
Ssup Repy(t) < Reg(A). (21)

0<I<T

o1



Stability of mixed Ekman—-Hartmann boundary layers 187

This is just the mathematical formulation of the stability of Ekman—Hartmann layers, expressed
in a time dependent framework of theorem 3.1.

We emphasize the fact that we are only considering so-called ‘well-prepared initial data’
(that is sequences of initial data u{, which converge to a z independent function w{" as & — 0).

Notice that the boundary layers do not appear in the L? norm: we require no control of
ug near the boundaries. In particular, there is no need to impose ug to behave like Ekman-—
Hartmann layers as described in section 4.2 near z = 0 and z = 1. Using the decay result of
section 5.1, condition (21) can be replaced by a condition on the initial data «{", which gives
the following.

Theorem 3.4. Let ui"(0, x, y) be a given H*(R?) function, with s > 5. Let ul"(z, x, y)
be the global solution of (15), (16) with initial data «j" (0, x, y). Let u§ and b be given
sequences of respectively L?(2) and L?(R?) functions such that

int

AO
g, y.2) = ug” .2 Ml + — IO, 7. Dlfeesy >0 @S &0,

and let u®, b° be global weak solutions of (10), (11) with initial data ug and bj. Then

. A6
1w’ — ug" || oo (o, +00f, L2(R2)) + T||b£”L°C([O,+oo[,L2(R2)) -0

provided

&

vE

Physically, this ensures the global stability of the solution using the exponential decreasing of
the maximum norm of the limit velocities.

We complete this study by proving in the spirit of [4, 9] (in the particular case » = 0 to
shorten the proof) that weak solutions of (10), (11) are in fact strong and unique for & small
enough.

51 (lug™ 0, -, )las @) < Reg(A). (22)

Theorem 3.5. Lets > 5. Let u{" (0, x, y) be a given H*(R?) function satisfying the stability
criterion (22). Let i (¢, x, y) be the corresponding global solution of (15), (16) and let us
construct the sequence of approximate solutions w¢’” as in section 4.3 up to order £2. There
exists eg > 0 and Cy > 0 such that if ¢ < g¢ and if ug satisfies

| (UO - ugﬂp) (07 X, Y, Z)'LZ(Q)

IV(ug — uiPP)(0, x, y, D)lr2q) + 22

<G (23

then denoting by w the global weak solutions of the rotating Navier—Stokes equations with
initial data ug, we have D%u € L2((0, +00) x Q) and Vu € L>(0, +oo; L2(2)). Moreover,
w IS unique.

This has important physical consequences, as it guarantees that if at + = 0 the velocity field is
smooth, it remains smooth for all time.

A similar result (weak solutions are in fact strong) in the case of the quasigeostrophic
system with periodic boundary conditions and for ill-prepared initial data has been proved by
Chemin in [4]. Notice, however, that here we deal with vanishing viscosity and that the initial
conditions have large gradients in the boundary layers. In particular, the condition of smallness
of ¢ which arises in [4] is never fulfilled in our case and we have to replace it by a condition
of type (23).
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4. Asymptotic behaviour

4.1. Thelimit system

As usual when we have two parameters which go to 0 (hamely ¢ and 6), the asymptotic
expansion depends on particular links between these two quantities, and leads to many cases.
In order to avoid technicalities and to get a simple asymptotic expansion we will restricit
ourselves to one particular case and assume that & = . The general case (no link between 6
and &) can be treated in a similar way, and leads to similar first order and similar boundary-layer
behaviour.

As usual in boundary-layer theory, we look for approximate solutions of the form

1_
uwppzzgk< Pyt (o, D) e (r,x,y, AZ)), (24)

k>0

and similarly we introduce b, b3~ and b ““"*", ji"* defined by i = curl b and similarly

for 5L and j”""""*", where A denotes the size of the boundary layer that will be precised
later on. Let u™ = (u;”’, v, wi™ and similarly for w2~ and . “”?". In (24) we enforce

BL and u, "“""*" to be rapidly decreasing in their last argument. Putting (24) in (10), (11)
and |dent|fy|ng the terms in e =1 and 1 in the interior of the domain we get

e3 X (Ul + Ay + Vpint =0, (25)
dui" +curl 50" =0, (26)
which leads to
g =0 (27)
and
wi' =0, ul"  depends only on x, y (28)

(‘magnetostrophic flow’). Now equalling the terms in ¢~ and ! in the boundary layers gives
that

as usual in fluid boundary layers (the pressure does not vary much in the layer).
Equalling the terms of order £° in (10) we get

atuln[ + (umt V)ulilf _I_e3 X (umt + A]lnl) + Vpillt — O

and taking the 2D curl of it, with ©{"" = 9;v{" — d,u{" (which only depends on x and y), we
have

atwmt + (ulnt V)wlnt — a wlnt + Aaz]énf (30)

which after a vertical integration, since »f" and uo do not depend on z, gives the two-
dimensional limit equation

8[(0”1[ + (ulnt V)wlnl _ winl(x’ y’ 1) _ wmt(x y 0) + A]lnl(x y 1) lnt(x y 0) (31)

For A = 0 we recover the case of Ekman layers [12], as studied in [14]. We have now to
compute wi" and ji"{ on z = 0 and z = 1. For this we will study the boundary layers which
appear near z = 0 and z = 1. We will prove in the next section that

wi™ (x, y, 1) — wi" (x, y,0) + Aj3 (¥, ¥, 1) = Aj3{ (x, y,0) = —Bawp"
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Stability of mixed Ekman—-Hartmann boundary layers 189

with
T
g2tan 5
where
o 1
2 A+/1+A2
This will lead to the limit system on wi"(z, x, y)
Jod + (u" - V)" + Bol =0 (32)

with div ul" = 0, wi" = 0, wi™ = 805" — duf" and i = 0. Notice that (32) has global
strong solutions for smooth initial data.
4.2. Boundary layers

Let us focus on the boundary layer near z = 0. Let ¢ = z/A and let ug" = W§", v§*, wo ,
qu — (MBL UfL, wi L) bBL — (bfté’ bgé’ bBL) bBL — (bf,i’ bg%’ bBL) J —

lim ult = lim qu = lim b§" = lim bfL = lim jP* =o0.
= =00 =+00 =+00

g=+o0
By incompressibility condition, 3, wf* = 0 hence
=0.
Moreover, in the boundary layer, (10) and (11) give
E
—vBt — —32 BL — agbl L 2 + rdugt =0, (33)
and
E
ugt — —32 . B;bzo, 9Zbys + A5t =0, (34)
hence, eliminating 57§ and b3'(;, we obtain
—d,v8k 33 BL — —Ad.ubt, (35)
deudt — —33 BL = — A3 vBE. (36)

It follows A = 9, uf" +id,vf" € C is solution of

9?A = A)L—Z(A +i) (37)
¢ E .
Defining 7 by
cosr:L and sinrz;
V1+A? V1+A?
recalling that A — 0 when ¢ — +o0 and choosing
A= ( ) veosT _ \/ZEtan I (38)
A cos 5 2

54



190 B Degardinset al

we obtain
A(t,x,y,¢) = A(t,x,y,0)exp (—{ (l+ i tan %)) ,
T 1 (39)
tan- = ———,
2 A+J/1+A2
and
ugt(t,x, v, 0) +ivg" @t x, 3, ¢)
= Wl (t,x,y, 00+, x,y,0)exp <—§‘ (l+itan E)) (40)
0 > 0 LA I &) 2

As aresult, using uf” +uf" = 0 at ¢ = 0, we finally write

udt(t, x,y,¢) = exp(—¢) {—ug"(t, x,y,0)cos (g“ tan %) — v (t, x, y,0)sin (g tan %)}

(41)
vt x, ¥, ) = exp(—¢) {ue’”(r, x,y,0)sin (z tan %) — vi"(t, x. y, 0) COS (; tan 2)} :
(42)
Using the incompressibility condition
deudt +a, 08k + ;a;w{“ =0
we deduce
wib(t, x,y,¢) = —exp(—=)wi (¢, x, y) sin (g tan % + %) VEg2sint. (43)
As wi" +whl = 0at ¢ = 0, we get the succion expression
wi" (x,y,0) = wi(t, x, y)sin (%) Vv Ee2sint. (44)
Next, using (11), 87, b5" = 0 and hence
b§" = 0.
Moreover, D = b} +ib}{ satisfies
2 A
02D = —~A,
&
hence
il thg) (45)
e l+itang
and
bit = (ué“ cos£+v(§“ sin %) VEeg2sint, (46)
byt = (—ué” sin % + Pk cos %) VEe2sint. (47)
In other words, we have
. T T
b1t x,y,¢) = exp(—¢) [—ua’”(t, x,y,0)cos (5 + ¢ tan 5)
— v (¢, x, y,0)sin (% + ¢ tan %)} VEg=2sint (48)
. . T T
byT(t,x,y,¢) =exp(—¢) [ub”’(t, x,y,0)sin (E + ¢ tan §>
— vy (t, x, v, 0) cos <£+gtan %)}VES—Zsin T. (49)
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Stability of mixed Ekman—-Hartmann boundary layers 191

From (48), (49), we deduce that
Jai(t x,y,£) = —exp(=0)awyg" (¢, x, y) COS (% + ¢ tan %) VEe2sint, (50)
and using j71 + ji"f = 0 for ¢ = 0, the currents entering the layer write

jéf'lt(t, x,y,0) = " (t, x, y) cos (%) VEs2sint. (51)

It follows that

] .in in E
(wi" + Aj3") (. x,y,0) = wy" (7, x, y) /m. (52)

Let us observe that in the limit A — 0, A = +/2E, B = /2E/£2 and we recover classical
Ekman layers:

bl =0,
ugh(t,x, y, &) = exp(—=0){ug (1, x, y,0)cos ¢ +v5 (¢, x, y, 0)sin ¢}
vBh(t, x, y, ) = exp(—=){—ug"(t, x, y,0)sin¢ — vt (¢, x, y,0) cos ¢}.

On the other hand, in the limit when A — +o00, A2 ~ E/A and one obtains Hartmann-type
layers

ug (t,x,y,0) = uft(t, x, y,0)exp(—¢), (53)

vt x,y,0) = vt (t, x, v, 0)exp(—¢), (54)
A A

bt = ;ugL, by = gvé”. (55)

Observe that the Ekman succion (44) vanishes in this case, whereas the magnetic damping
(51) tends to infinity.

4.3. Construction of approximate solutions

It is now routine work to construct an approximate solution u:"", ji*?, beP” starting from
ub™ and the boundary-layer terms constructed in the previous section (see for instance [14]
for details in the case of pure Ekman layer, and [6]). By approximate solutions, we mean
functions which match the boundary conditions, which satisfy the divergence free conditions,
and which satisfy (10) up to small error terms Ry ., and (11) up to R ., and moreover for every
t>0,5s > 5,

.

|R1el12() < Ce2 |lug” | s re), (56)
s

[R2.el12) < Ce2 llug” || ysra), (57)

[ulPP | Lo () + € 10SPP | Loy < Cllug” [l L w2y (58)

10, ufPP | o) + 10y ulPP | o) + 10, WP | L) < Cllug | L ®2)- (59)

1/2
/ z|d.ugt|dz
0

and similar integrals for 1 < z < 1, and with u5* replaced by vf~. Using (41) we get

We have to estimate

g(A) =sup
X,y

. . T T
dult =71 (ug” — vy tan 5) cos (; tan §) et

. T . N T
+ 7t (ug" tan - + v{{”) sin (; tan 5) et

56



192 B Desjardins et al

and therefore
ul — vy tan %‘ fm Fy ‘cos (; tan %))e*f dc
0
/0+Oo§ ‘sin (g tan %)‘ et d¢
< ./1+tan? (%)Auug’”nm(w) /0+oo e (‘cos (; tan %)’
+ ’sin (; tan %)D e tdc.

Hence, as A = /2E tan(z/2),

1/2
/ z|8zugL| dz
0

4.4. Slanted magnetic field and rotation

gA) <A

. T .
+)L ull‘lt tan — o+ ,Ulnf
0 2 0

; T
é % 2E||U6m ||L°°(]R2) ) (tan E) . (60)

Let us consider in this section Ekman—Hartmann layers in an half-space, at a colatitude 6y,
with a uniform velocity field at infinity. The angle between the outward normal of the plane
and the rotation vector is therefore 6y. Let y be the angle of the magnetic field with the normal
of the plane. Provided 6y # 7 /2 and ¥ # 7 /2, the calculations of the boundary layers can be
carried out and the results are very similar to those of section 4.2. Let us present them in the
case 6 € [0, 7/2): the size of the layer A is now

2F T/
A= tan —,
cos 6y 2

an T/ _ €0os 6,
2 Acos2y + (A2cost Y + cos2 Gp)/2

where

Let
A/€0S B

E(tan %)
If we assume that the static magnetic field By is a pure axial dipole with internal sources, one
obtains

Rey(A, 0) =

2c0s by
(1+3c0s26)7
since By is proportional to 2 cos dpe, + sinHyey, in spherical coordinates. Up to the above
parameter changes, the boundary-layer expressions (41), (42), (48), (49) still hold in suitably
scaled coordinates.

Those expressions clearly degenerate at the equator. For6y = 7 /2 (see [12]) and ¢ = 7/2
(see [22]), we do not study this singularity here, and will restrict our work to the values of 6y
such that the layer is well-defined by the above expressions (roughly 6y < /2 — E/3).

cosy =

5. Stability of mixed Ekman-Hartmann boundary layers

5.1. Time decay of limit solutions

The aim of this section is to prove that the maximum norm of the interior velocity u/™
which is known to exist for all time (by a small modification of Youdovich argument) decays
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Stability of mixed Ekman—-Hartmann boundary layers 193
exponentially in time. In terms of the vorticity i = curl u§", the limit system reads as a
damped two-dimensional Euler equation
g + (ug" - V)wg" + Bag =0 in D'(R; x R?) and  wg_y = g
As u{'" is divergence free, we have for all p € [1, +o0]

g™ (1, o2y = log'olLo@z e
Using the following classical estimates on commutators [17]

I[D%, uV]wlr < C(olrelulgs + [Vulr<|o|p:)

for |a| = s > 2, and assuming that divu = 0 and w = curl u,

|| Lo

|| s
Vi < C(|lo|r» + |o]r2) + Cylwlr~ log,
we deduce that for all fixeds e N, s > 2

1 d lnt int
Sg o (@ Mo ey + Blag” (1, ) s gz,

< Clag" (¢, M@ + IVug! L@ g (1 )5 @) -
It follows that defining o by
a(t) = lwg" (1, ) s @2)e?, (61)

we observe that

a(t) < a(0) + Cf e Pa(s)
0

i a(s) . .
X (|w6"16|Loo(Rz) |0g+ (—) + |(1)6r}6|Loo(R2) + |a)6’,’6|L2(Rz)> ds. (62)

|wmt|L°°(]R2

Let A = |a)lm|Lz(Rz), let B = |a)””|Loo + |a)’ oli2®e), and let ¥ (r) be the right-hand side of
(62). We have

¥ (1) < Cexp(— ﬁt)w(t)(Alog+<wf(‘)) )

therefore

(/A du »
( +

But u log u is not integrable near +oo, therefore (63) bounds v () and therefore «(z) using
(62) in terms of |a)”” |L2(m2) and |a)”” |L= Which gives theorem 3.2.
5.2. Proof of the stability result

We will only prove theorem 3.4, the proof of theorem 3.3 being similar and easier. Denoting
v=u, —ug’, e =E, — E.'’, and m = b, — b;"”, we obtain

E e3 X v
v+tu,-Votv - Vul’ — —Av+Vrm +
) I3
A A6
= —curl m x e3+ — (bE.Vm + m.Vb?pp) — Ry, (64)
£ €
divo=0, divm=0, and wvpe=0, (65)
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194 B Degardinset al
and
1 1
dm+u,. Vm+v- Vb’ —b, - Vo —m - Vu’ = gAm — gcurl (v X e3) — Ry, (66)
whereas in Q¢, we simply have

curlm =0, curle=-60dm, divm=0 and dive=0. (67)

We recall estimates (56)—(60) for all time ¢ > 0. In order to obtain energy bounds, we multiply
(64) by v and (66) by m A6 /¢ to get

d (1 A6 E A
—/ | w2+ = |m)? dx+—f |Vv|2dx+—/ lcurl m|? dx
dr QZ & & Jo & Ja

+— | (curlm x m) - n < |Ryel@lvlieg + ?|R2,E|L2(Q)|m|L2(Q)

€ Jao
A6 A6
/ (?mimk +’Uﬂ)k)8i’u2{lsp dx / 7<mivk +mkv,-)8ib2ip dx
Q Q

where n denotes the outward normal to 2. Next, we observe using the fact that v vanishes on
Q2

+ +

’

f mmgdul? dx = — f (3 — dem) i,
Q Q
hence

A6
/ — My 0; qu’f dx
Q

A6
. < CT|CUF| m|p2q)lmle oo eXp(—pB1),

A 02
< K;|CUI’| mZy o + CKF§T|m|§2(Q) exp(—2p1).

Similarly, we have
/(mivk +myv;)9; by, dx = f b’ (mi (Bkvi — d;vp) + v (e — 9;my)) dix
Q Q

hence

A6
/Q T(m[vk + mkv;)ainip dx

< AO(Im|20) | VYl 2) + V]2 lcurl m| 2q)) eXp(—pBt),

KE _ A ) AO g?
< T|Vv|L2(Q) + ;cg|curl mlzq) t CKT|m|L2(Q)AOE exp(—28t)
+Ce AO? |0, o EXP(—2B1).

The last term involving the velocity v is estimated as in [6, 14]. Namely, for i = x, y and
arbitrary k, and for i = k = z, using (58), (59),

/ vioRdul dx| < CT,v[2, ) eXp(—B1).
Q

It remains to handle the case i = z and k = x, y. For this, we first remark that

< CA exp(—Bn)|vl2,.

/ v; U 0; (uP? — qu)
Q
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Moreover,

/ V3V10; u Ldxdydz| = / </ o.v3(t, x,y,7) dz/>
R2x[0,1/2] R2x[0,1/2] \ Jo

x(/ v, x,y,7) dz’>azqu dx dydz
0

1/2 1/2
<\// / IBZv3|2dxdydz\/[ / |0,v1]2dx dydz sup
0 R2 0 R2 (x,y)eR?
1/2
/ z|ouft) dz
0

. T
< N10,vall 2®exo,1/2p 18- V1 Il 22 x[0,1/2)) l1tg" | oo r2) vV 2E E (tan E)

X

1 2 1 2
< <2ﬁ ||32U3||L2(R2><[0,1/2]) + ﬁ ||8ZU1||L2(]R2><[0,1/2]))
. T
Uil || e ey V 2E & (tan 5)

and similarly for i = z and k = y. Therefore,

/ v3v18u Ldxdydz| + / v3v23v Ldxdydz
R2x[0,1] R2x[0,1]

”VUHLZ(Q) ||U6 t||Loo(R2)V B (tan 2)

<VEE (tan )||Vu||L2(Q)r exp(—Bi)

where we used theorem 3.2. Thus, finally using the equations (67) in ¢, we obtain

A6 AbO A .
—/ (Curlmxm)-nz—/ (exm) n=—— div (e x m) dx
€ Jao & Jaqo €

o
_ A6% d
T 2e dr
so that we can estimate the energy in the whole space R®

</—| ? +—/|m| dx+— |m| dx>+£/|v'v|2dx
dr & Jo

+—/ lcurl m|? dx
€ Ja

Im/|® dx,

) o AO g2
< C (0B @+ 206D + == lml2: 0,0 1+AE +e) exp(—pr)

T E
+ (rS\/ o (tan E) + 2/(—) Vol + 2 A ~[curl mf?s .
&

Therefore, if (22) is satisfied, and for  small enough we have the global estimate

A6 ’ A2 »
sup |’U(t )|L2(Q) |m(t, ')|L2(Q) + T|m(t’ ~)|L2(Qc)
t>0

/E +00 ) d /A +00 I ) d
+x ’ A |V'v|L2(Q) s+kK " ; |cur m|L2(Q) s
: A6 AO?
< Cp (|v<o, Wiz + — 1m0, iz + —— 1m0, iz * e>

60
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for some constant depending on 8, and for «’ arbitrary close to 1.

5.3. Global strong solutions for the Navier—Stokes equations for small enough ¢

Hereafter, we focus on the case when b = 0 which correspond to the rotating incompressible
Navier—Stokes equations between two parallel plates. As proven in [2,4] in the three-
dimensional periodic case, large enough Rossby numbers ¢ yield global classical solutions
for the Navier—Stokes equations for suitable initial conditions. We want here to prove that this
result holds for the boundary-value problem.

As in the above section, we define v = u, — ue’? solution of

1 .
Btv+v-Vv+V7T—R—Av=L€, diveo =0, (68)
e
where
e3 X v
L, =— 38 —v-Vu;"’p—u‘;pp~Vv+Rév (69)
with
IRN| 20y < CeNtie ™, (70)

where N is a given integer such that N > 3. If the stability criterion is satisfied, we obtain
when Re = ¢~ 1Cg, for some constant Cp,,

1 [*>
SUp fo(r, Mize) + % / IVl ds < Clu(0, )|72q, + Ce?V* = K. (71)
> 0

In order to prove that u. is smooth whenever ¢ is small enough, we proceed as in [9] in
the context of two-dimensional multiphase MHD flows. First, we multiply (68) by 3, and
integrate by parts as follows

! 1 1 1/
2 2 2 2
fo |8,v|L2(Q) ds+—2 e|Vv(t, .)|L2(9) < Re e|Vv(0, .)|L2(Q)+—2/0 [0;v]72 ds

t
+C/ (|L£|2LZ(Q) + |’UV’U|iz)dS
0
hence

t 1 1 t
2 2 2 2
A |a[’U|L2(Q) dS + Re |V/U(t’ ‘)lLZ(Q) g Re |VU(07 ‘)|L2(Q) + CA |L8|L2(Q) dS

t
+c/0 01740 | VOI74(q Os. (72)

Rewriting (68) as a Stokes equation

1 .
—R—AU+VJT=L8—U.VU—8,U, diveve=0, and v=0 on 0%,

e
classical estimates yield
|D?0]72q) < CU00[520) * [LelTzig) + 10+ Voli2q).

Re?
Combining with (72) we get

t | D?v|? 1 C
2 12 2 2
fo (Iatvle + Ra? ds + —ReIV'v(t, 72 < —ReIVv(O, e

t
#C [ (olzaIVol+ |22 ds. 73)
0
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Combining the following two Gagliardo—Nirenberg inequalities,
0l3e < Clol SVl
and

1/2

IVol7: < CIVol

we deduce that forall « > 0

(IV|L2 + | D?v|2)%?

[0/ |V0 2ugy < g (IDP0l22g) + V0[5 ) + CeREP (2, ) V02
L4(Q) LYQ) N R,2 L2(Q) L2(Q) * L2(Q) L2(Q)*
Next, we observe that arguing as in the preceding section, we can estimate
2 2 2
|v - Vugp”|L2(Q) + |u‘;””.Vv|L2(Q) < CIVoliz g exp(—2pt)

which leads to
2
v
IL:|2, < C|Vvl3, exp(—2pt) + c% + Ce?Mexp(—281).
&
As a result, we obtain using the Poincaré lemma, for ¢ < 1,

! 1 1 C
2 2,12 2 2
/0 (|8,v|L2(Q) + R_e2|D v|L2(Q)) ds + R—e|Vv(t, .)|L2(Q) < R—e|Vv(0, .)|L2(Q)

C t ! Vo 2
t—s / [v|2,|Vol8, ds + C/ Vol ds + Ce2V*L,
ReG 0 0 82
Using the Poincaré lemma and |v (¢, .)|i2 < KS we get

! 1 1 C
2 2,12 2 2
A ('atv|L2(Q) + R€2 |D v|L2(Q)> dS + Re |V’U([, ')lLZ(Q) < Re |V’U(0, ~)|L2

4
t \v/ 2
+CReVKE Vol ds+C&K8+C£2N+1
0 0 R g2 0

e
4
IVo(0, )2,  CK§ [ {IVvl2, CK}§
<C + ds + .
Re g10 /0 Re ST
Let
[Vo(t, -)|iz
1) = ———=,
a(t) Re
2
o C Vo0, )% | CKg’
Re g3
CK}
G= 10
and
t
v(t) = c0+clf o ds.
0
We have
t
a < C0+C1/ o ds
0
therefore,

¥ < Cray?®
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hence

+00 -1/2
V() < ¥(0) (1 — 21//(0)2C1/ otds)
0
which bounds v (¢) in terms of v (0) provided

2¢(0)2c1/ ads <1/2
0
that is provided

2
2
[Vv(0, )|, +K_5 - Ko <c
Re g3 Oglo = ¢

where C is some universal constant, or equivalently provided

&

K
Vo0, )lf2 + — < Ca

which ends the proof. Notice that the uniqueness property is a straightforward consequence
of the above regularity. Besides, additional bounds can be obtained by deriving the equation
in time and integrating by parts, but no further details will be given here.

5.4. Proof of theorem 3.1

To prove theorem 3.1 just follow section 5.2 and notice that the term (v - V)u, reduces to
v3d,u; Which can be absorbed in the viscosity exactly as in section 5.2 leading to the fact that
[ 1w[?+ 22 [|m]? is decreasing.
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We propose a new scheme for the pressure treatment in computations of incom-
pressible flow using a colocated grid arrangement. To avoid oscillations associated
with the sparse non-compact stencil, we introduce a compact fourth-order equivalent
of this stencil and study its advantages over the classical second-order averaging
procedure. ) 1999 Academic Press

KeyWords: compact differencing; incompressible Navier—Stokes equation; velocity-
pressure decoupling.

1. INTRODUCTION

When computing incompressible Navier—Stokes equations on a non-staggered (colo-
cated) grid, a Poisson equation is to be solved for the pressure (or pseudo pressure in the
fractional step formalism). The numerical instability, often referred to as the “checkerboard
problem” or “odd—even decoupling problem” then has to be addressed. This problem arises
when second-order central difference approximationsareimplemented for both the pressure
gradient operator in the momentum equation and the divergence operator in the continuity
equation (or, with the cell centered finite volume formalism, if fluxes are obtained by cen-
tral differencing), and when the discrete Poisson equation is defined, in a consistent and
conservative manner, as the product of these two operators [1, 2]. This Poisson equation cor-
responds to a non-compact sparse stencil and produces an oscillatory pressure field. Various
approaches have been used to overcome this difficulty. Van der Wijngaart [3] proposed to fil-
ter out the oscillations. To introduce a coupling term, Russel and Abdallah [4] increased the
order of the divergence operator at the cost of an enlargement of the stencil for the discrete
Laplace operator. The most common approach (here referred to as “compact averaged”)
involves the derivation of a non-conservative compact pressure Poisson equation [2, 5-7].
This modification is introduced differently depending on the way the pressure is treated
in the time integration. It can be understood as a smoothing of the pressure field through

676
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an artificial dissipation. The energy conserving property of the scheme is destroyed in this
process. The error thus introduced in the discrete continuity equation is proportional to the
fourth-order derivatives of the pressure [8]. The idea of the present method is to introduce
a fourth-order “compact equivalent” to the conservative discrete pressure equation.

2. GENERAL METHODOLOGY

In the following, we will present the method using the fractional step formalism (first-
order accuratein time[9]), though it can probably be generalized to the pressure correction
approach or other schemes. We will thus suppose a velocity field u*, which does not satisfy
the continuity equation (for instance obtained by time-advancing the Navier-Stokes equa-
tions without invoking continuity) and we want to project it onto a divergence-free field by
subtracting the gradient of a pressure-like variable ¢ so that

u=u*—Vyo. (D)

Taking the divergence of this equation and requiring u to satisfy the continuity equation
gives

Aoppdp = Vi - u*, 2

where A,y stands for the second-order centered approximation of the Laplacian skipping
the neighboring points (asrepresented on Fig. 18). The sparse nature of thisoperator leadsto
pressure oscillations. A possible remedy to this problem isto interpolate variables linearly,
which leads to a second-order approximation of (2)

Anp = Vi -u*. €)
We will refer to this in the sequel as the “compact averaged” scheme. This scheme can be

interpreted as adding a second-order dissipative term to the pressure in order to damp the
oscillations. In the following we will derive fourth-order compact equivalents of (2).

FIG.1. Computational moleculesfor the three-dimensional pressure equation; only the black points are used
for the computation. (a) The Ay, operator, being defined as the product of numerical divergence of the gradient,
accurate but oscillating. (b) The 7 points compact operator obtained by interpolation. (c) The 19 points fourth-order
compact equivalent operator.
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2.1. OneDimension Compact Derivation
Using the expression of truncation error for the second-order finite difference scheme
9%¢ N h2 %9
0x2 12 9x4

one easily derives the second-order error introduced in replacing (2) with (3):

Angp = + 0O, (4)

2 94

Bn = A — =00 00 (5)
The error thus introduced is of the same order as the one for the discretization scheme
(see[2, 4]). However, the discrete Laplacian is only a second-order estimate of the discrete
divergence of the gradient. Using the fractional step procedure described above (see [10,
11, 9]) thus leads to a modified velocity field in which numerical errors in the divergence
are significantly higher than roundoff error.

The consistent derivation of the pressure-like equation gives

Agmep = Vi -, (6)
926 h2 9%
— f ——— = Vp-u"+Oh. 7
ox2 T 3 oxt ho i+ O @)

Using a Hermitian compact expression one can derive a fourth-order approximation of
Eq. (7),

h? 5%
A ——— =Vy-u' 4
h+ oz = Vaout+ O, ()

2
Apgp = P - %Ah} (Vi -u") + O(h%, 9)

where | stand for the identity operator.

Notethat this compact scheme was not derived to increase the accuracy of the continuous
operator approximation as is the case for other compact formulations [12-18]. Instead it
is derived to approximate to a higher accuracy the conservative non-compact stencil. The
compact schemewe propose (9) isstill second-order accurate, but hasthe same second-order
behavior as the conservative sparse stencil (6). The overall accuracy of the discretization
is thus second-order in space and first-order in time, but the dilatation effects associated
with the non-conservative treatment of the pressure are reduced to afourth order. Note that
this approach also shares some similarity with what is refered to as “improving the order
of approximation” in the Support Operator formalism [19].

2.2. Three-Dimensions Gener alization

The ideaof the previous paragraph can be adapted to three-dimensional problems, though
thisis not straightforward. The original non-compact formulation can be written as

3%  h2 9%p 32 h2 54 2¢  h2 94
2O+ 2L o)+ S+ 2= +O (W) = Vy-ut (10
X2 3 ax4+0( ")+ay2+ 3 3y4+0( y)"'azz"' 3 324"‘0( z) = Vn-u'. (10)

Note that the second-order terms cannot be easily expressed in terms of Vi, - u*.
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2.2.1. Single Sep Procedure

Following the method used by Spotz and Carey [15] (but with a non-uniform grid) a
compact fourth-order approximation to (10) can be derived in the form

1 1
Ax$ + Ayd + Az — 7 Ax [2Ay¢ + hiAzp] — ZAy[hAxd + hiA0)

4
1 2 2 hz hZ A
- ZAz[thxqb +hiAyg) ~ |1 — 20 ZyAy = 28| (Vh-u), (1D

where Ay, Ay, A, stand for the h-discrete three point Laplace scheme respectively in the
X, Yy, and z directions. Notice that this expression not only involves a modification of the
right-hand side (rhs), but also a modification of the operator on the left-hand side (lhs), with
the addition of extra diagonal terms. The corresponding 19 points eomputational molecule
isdisplayed in Fig. 1c.

2.2.2. Two Step Procedure

The previous approach corresponds to a direct adaptation of the one-dimensional idea
to the three-dimensional case. It achieves fourth-order accuracy, but only at the cost of a
modification of thelhsitself for thetreatment of crossderivatives. Intwo spatial dimensions
this would only increase the stencil from five to nine points. In three space dimensions
however this increase is much more important as the standard seven-points stencil has to
be modified to a nineteen-points molecule. This significantly increases the computational
time required. It was found (see Subsection 3.1) that the number of iterationsto resolvethis
problemwith aCGSTAB algorithm [20] isabout threetimesthat required by the nine-points
scheme.

We propose here an alternative two-step approach that allows fourth-order accuracy at
twice the computational cost of the second-order interpolated scheme. Equation (10) can
be approximated with fourth-order accuracy using a two-step procedure. The first step is a
second order approximation to the second-order truncation terms written as

2 84 2 84 2 84
Apy = (h,— + h;— + hi— | Vp -u*. 12
ny ("8x4+ yay“+ Zaz“) h (12
Technically, evaluation of therhs of (12) involves higher order derivatives of Vy, - u* which
implicates larger stencils (five-point stencils in 1D).
A second step uses i as a correction term:

1
Ap¢p = Vj ‘ut - Zl/f (13)

Note that v scales as O (h?) and that (13) is thus consistent with (2).

The pressure thus defined satisfies (2) to the fourth-order (as with the previous method)
and the computational cost is exactly twice the cost of the second order scheme as each of
the steps requires the resolution of a seven-points compact Laplace operator (of the form
displayed in Fig. 1b).

Though the lhs stencils are simple and compact, the rhs of the first step involves a non-
compact stencil. However, this does not increase the numerical cost as this term does not
need to be inverted.
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3. NUMERICAL EXAMPLES

3.1. One-Dimensional Function

Though incompressible flow in one dimension of space is a rather limited notion, we
want to test the ability of the scheme on a simple problem. Let us assume a velocity field
u* of theform

u* = sin(4rx), x € [0, 1]. (149

Application of the procedure described in Subsection 2.1 to this one-dimensional function
should obviously lead to

u=u*—Vyp=0. (15)

The compact fourth-order scheme used here (9) is defined implicitly as

1 1 1 1
F(‘f’i—l —2¢i + ¢ip1) = Z(Vh Ui+ E(Vh Ui + Z(Vh Uiy (16)

We report in Table I the errors (defined as the maximum of the absolute value of Vy, - u)
with varying discretizations, solutions are represented in Fig. 2. The orders of the various
schemes are vindicated.

It should be noted that, in one dimension, the compact scheme only requiresan additional
multiplication by atridiagonal matrix on the rhs (as compared with the compact averaged
scheme). The computational cost of the compact equivalent scheme is thus very similar to
that of the compact averaged approach.

3.2. Three-Dimensional Flow

We have constructed a code for the purpose of studying three-dimensional rapidly rotating
magnetohydrodynamic buoyancy-driven turbulence. It is known [24] that buoyancy-affected
flows require a fine pressure-velocity coupling. Furthermore, in the physical problem that
motivated this work, we expect from previous studies [21] plate-like shear zones. It is
important to compute gradients in these regions accurately. This motivated the choice of

TABLE |
Errors (Maximum of the Absolute Value) in the Numerical
Divergence with Varying Grid Sizes (N)

N CA. CE
20 112 0.11
40 0.30 74-107°
80 7.70-10 2 4.74.10 ¢
160 1.93-102 2.98.10°°
320 4.84-10°° 1.86-10°°

Note. As expected, the compact averaged scheme’s error (C.A.) evolves
as 1/N?, while the fourth-order compact equivalent scheme’s error (C.E.)
evolves as 1/N*. The solution derived using the sparse non-compact
scheme s of the order of the numerical zero (about 10 ).
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FIG. 2. Starting with a velocity field u*, which does not satisfy the continuity condition, we want to compute
the velocity field u by subtracting the gradient of a pseudo-pressure. This is done by solving a discrete Poisson
equation, using for u; thenatural expression A, (accurate but leading to oscillations); for u, the compact averaged
scheme Ay,; for us the fourth-order compact equivalent of A,y,. Errors when varying the discretization are reported
inTablel.

colocated variables though the geometry is rather simple. In awork in preparation, we test
adaptations of the ENO scheme [22, 23] for advective transport on incompressible flows.
This also motivated the development of the present equivalent scheme for the pressure
gradient.

We use here our code with no magnetic field and no rotation and we study a simple laminar
buoyancy-driven flow of a Boussinesq fluid in a fully periodic domain. Time integration is
performed using the optimal second-order TVD (total variation diminishing) Runge—Kutta
method [23] (seealso [11]). We report here some results obtained with the above described
scheme.

Figure 3 displaysthetime evolution of the divergence after each full time step. Thesingle
step compact equivalent approach is found to give accurate results in three dimensions.
The single step procedure leads with a 50 x 50 x 25 grid to a decrease of the error in the
numerical divergence of a coefficient about 14. This method led to a significant increase of
the required CPU time (about a factor three with the compact averaged scheme). The two-
step algorithm isfound to give slightly better and more regular results (probably becausewe
achieve a better resolution of the seven-point stencil with our iterative solver). As expected
it requires twice the computational time of the compact averaged method, although it was
found numerically that ¥+ does not need to be computed with as great an accuracy as ¢.
Relaxing the precision constraint on {» we were able to obtain a fourth-order accurate
solution with only 50% more time than the second-order averaged computation.

4. CONCLUSION

Weintroduced acompact fourth-order equivalent of the pressure equation for the discrete
resolution of the incompressible Navier—Stokes equation. This approach suppresses the
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FIG. 3. Time evolution of the numerical divergence in three-dimensional simulations of a buoyancy driven
convective flow (resolution is 50 x 50 x 25). The computation starts with a flow computed using the C.A. method.
Integration with the C.A. method gives the solid line curve. Introduction of the mass matrix of the single step fourth-
order compact equivalent scheme improves the solution a little, though the overall accuracy is still second order
(dashed curve). Modification of the operator to obtain fourth-order accuracy requires a stronger computational
effort but yields much better results (bold curve). Finally the two-step method (dashed bold) gives as good (if not
better) results for alower computational effort. None of these simulations is oscillating because of the compact
nature of the operators used.

spatial odd—even decoupling of the pressure field without adding a second-order damping
term (as was previously the case). This significantly reduces the residual errors in the discrete
continuity equation.

Three-dimensional simulations have been performed and this approach has been shown
to give satisfactory results at a reasonable computational cost (using a two-step algorithm)
for the fully periodic buoyancy driven flow that motivated this study.

Further important issues remain to be addressed about the scheme introduced here, such
asthe treatment of boundary conditions (e.g., see [25]) as well as the generalization of this
technique to unstructured grids.
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[1j0 Abstract: The past few years have seen the emergence of a large number of numerical simulations
of the geodynamo. In parallel, both new and old geomagnetic, archeomagnetic, and paleomagnetic
observations have been interpreted as actual geomagnetic features and used as constraints for dynamo
models. Naturally, model predictions should be tested against actual characteristics of the geomagnetic
field. Despite huge differences (sometimes in excess of a billion) between the values of parameters used
in the simulations and those estimated for the Earth, it is intriguing that many available simulations
succeed in producing largely axial dipolar magnetic fields with weaker nondipolar structures, in
agreement with the first-order characteristics of the geomagnetic field. Yet, when considering finer
characteristics, there are significant differences, and failures to actually produce a number of
fundamental characteristic features. In this presentation, we first review numerical results obtained to
date, then we attempt to summarize which field characteristics derived from observational data sets can
be considered robust. On the basis of simple criteria used to evaluate the degree of confidence that can
be placed in each datum, we sort presumably characteristic geomagnetic features into three categories
(robust, controversial, and unlikely). We conclude that numerical models should be illustrated with a
number of key “predictions,” averaged over at least 10 dipole diffusion times. These predictions should
be tested against the subset of robust observations only. Controversial observations should await
additional confirmation.
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1. Introduction

1210 After decades of work generally performed
in parallel but with rather little interaction,
specialists of magnetic field observation, on
one hand, and modeling, on the other hand,
have come to interact much more recently.

73
Copyright 2000 by the American Geophysical Union

Papers coauthored by dynamo specialists and
geophysicists observing the field over time-
scales ranging from real time to geological time
have appeared [Gubbins and Coe, 1993; Ultre-
Guérard et al., 1998; Glatzmaier et al., 1999,
Coe et al., 2000]. Acceleration of both theore-
tical and numerical work has produced a num-
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ber of numerical dynamo models that may have
some geophysical relevance. Remarkably, most
if not all of these numerical simulations share
characteristics with the present or past Earth’s
field as it is now known to us: this includes the
dominance of the axial dipolar component,
weak nondipolar structures, and, in some cases,
full polarity reversal. In order to validate these
codes a benchmark comparison is being coor-
dinated by Ulrich Christensen from Géttingen
University.

3] Yet some of the main parameters that con-
trol dynamo equations, such as the Ekman
number (£) or the magnetic Prandtl number
(Pm), that are used in the numerical calcula-
tions are extremely far from their estimated
values for the Earth. It has even been shown
in the case of simplified problems [Dormy et
al., 1998] that the numerical values commonly
used for modeling do not lead to the equilibria
that are appropriate for the Earth.

41 For instance, the Ekman number is defined
as the ratio of the rotation timescale (for the
Earth, that is the day) and the viscous diffusion
timescale. The day is a terribly short timescale
compared to any other relevant timescale that
applies to the Earth’s core: the Ekman number
is believed to be as small as 10" for the Earth
[Poirier, 1994; De Wijs et al., 1998]. Yet it is
impossible with present computers to attain £
values smaller than 107° for the dynamo pro-
blem. This implies that the viscous diffusion
term in numerical models is too strong by a
coefficient of the order of one billion. Viscous
effects decrease very slowly with decreasing
values of the Ekman number: as E'? for
boundary layers, as E' for axial shear. Thus
the Ekman number must be extremely small for
viscous effects to be negligible. When viscous
effects are restricted to very small regions of
shear, it is referred to as the ‘“‘asymptotic
regime” of small £. This regime is relevant to
the Earth’s core. Ekman numbers that can be
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achieved in current numerical simulations are
not small enough to allow viscous effects to be
neglected in the main flow (viscosity actually
being used to ensure numerical stability). One
may therefore expect the flows computed in
numerical models to be of a large scale because
of the important viscous dissipation of the
small-scale flow.

157 The magnetic Prandtl number is a measure
of the ratio of two other characteristic time-
scales: the timescale for dissipation of elec-
trical currents with respect to viscous diffusion
timescale. The magnetic Prandtl number is
estimated at about 10~° for the Earth’s core
[see Poirier, 1994; Braginsky and Roberts,
1995] when in practice, it is always chosen
to be of the order of or larger than 1 in
numerical models (to allow dynamo action).
For more Earth-like values, electrical current
dissipation and thus field diffusion are very
efficient and make it more difficult to achieve
self-excited dynamo action. Also, this implies
that the field will dominantly be of a large
scale (independent of the scale of the flow) in
the Earth’s core itself as well as at its bound-
ary (an important argument when downward
continuing the field at the core-mantle bound-
ary (CMB)).

] The numerical values of two essential para-
meters in dynamo equations are therefore off
from their actual Earth values by factors in
excess of one million! Yet increasing numbers
of authors point out “Earth-like” features in
their numerical models. Quoted features in-
clude a dominant dipolar axial component,
so-called flux patches, westward drift, and in
some cases polarity reversal. Most of these
characteristics are validated with instantaneous
snapshots of the models.

(71 Field observations are becoming simulta-
neously available at timescales ranging over
at least 6 orders of magnitude (from annual to
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millions of years) and a more modest spatial
scale range (from global to spherical harmonic
degree of order 10, i.e., “wavelengths” from
20,000 to 2000 km). However, these “observa-
tional constraints” may not be equally robust,
and all groups of geomagnetists and paleomag-
netists may not agree on their significance.
Proper knowledge of all the pitfalls and sources
of uncertainties in data acquisition (from mag-
netic observatory or satellite observations to
sampling of rocks for paleomagnetic analysis,
laboratory procedures, statistical treatment of
raw data, and extraction of descriptive mean
field models) is requested before these data can
safely be used as constraints and guidelines by
theoreticians and dynamo numericists.

8] In section 2, we briefly summarize pub-
lished dynamo models and recall the numerical
values they use for characteristic parameters
and the “Earth-like” features they are report-
ing. Section 3 is a critical review of field
features uncovered from observations, orga-
nized in order of increasing timescale. The
features we describe are sorted into three cate-
gories: robust, controversial, and rejected. In
section 4, we confront the class of what we
believe to be robust observations versus numer-
ical predictions.

2. Status of Numerical Dynamo
Models

1 Modeling of magnetic induction in the
Earth’s core is a complex problem that involves
the equations of magnetohydrodynamics in a
rotating frame. It can be written using various
approximations (compressible, Boussinesq, an-
elastic, etc.), heating, boundary conditions, and
nondimensionalizations. In order to give a
coherent picture of the models available so
far, we have chosen to present them here using
a common convention for nondimensionaliza-
tion (we will use the core radius r, as the length
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scale and define the Ekman number as v/Qr2,
where v is the kinematic viscosity and €2 the
Earth’s angular velocity). When presenting
these models, we will try to highlight the
differences in the parameters they use (see
Table 1), as well as in the approximations they
apply. We point out in particular any Earth-like
behavior they feature. We first introduce a few
notions that are necessary to describe these
models. The Ekman and magnetic Prandtl
numbers have already been introduced. The
Prandtl number is the ratio of the thermal
versus kinematic diffusive timescales and is
of the order of one or less than one in the Earth
(between 0.01 and 1; or slightly above one if
chemical diffusion is used instead of thermal
diffusion). The ratio of the magnetic Prandtl
number versus the Prandtl number is defined as
the Roberts number; for the Earth’s core it is of
a magnitude comparable to that of the magnetic
Prandtl number (about 10~®). We will concen-
trate here on convection driven dynamos as this
is the case in the papers presented here. It
should be noted that other possible sources of
energy are proposed for the geodynamos; these
include chemical convection (with a shorter
diffusive timescales) and precession. The Ray-
leigh number is a measure of the energy input
to the system: the higher its value, the more
vigorous motions will be. This parameter is
defined using different conventions in numer-
ical works (depending on the heating mode
selected and on the normalizing quantity); it
is very poorly known as far as the Earth’s core
is concerned [Braginsky and Roberts, 1995],
but we know it must be high enough for
motions to be able to sustain a magnetic field.
Finally, we want to define what is meant by
“strong field” and ‘“weak field” dynamos.
These notions were first introduced in asymp-
totic studies, with a meaning that is different
from that used in numerical studies. Following
Roberts [1978], for very rapidly rotating bodies
like the Earth’s core and when the magnetic
Prandtl number is small, there would be two



9.

Table 1. Parameter Values, Model Specifications, and Model Outputs for Numerical Three-Dimensional Dynamos

Parameters Model Outputs
E Pr Pm Boundary Integration Dipolar A Westward
w/Qr?) (v/k) (v/m)  Equations Conditions Time Field (Fp/Fq) Reversals Drift Others
Glatzmaier and €=1,18 x 10°° 5000 500  Boussinesq, conducting I.C., 374 yes 500 yes yes  spectrum, I.C.
Roberts [1995a, ¢=10,13 x 107* no inertia Ins. M., rigid, super-rot.
1995b] ¢=20,1.0 x 1073 with enhanced
viscosity near

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, boundaries
Glatzmaier and €=1,18 x 10°° 5000 500  Boussinesq, conducting .C.,  0.81, yes not yet yes  spectrum, I.C.
Roberts [1996a] £=10,13 x 107 axial-inertia Ins. mantle, rigid super-rot.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, C=20, 1.0 x 10 >
Glatzmaier and (=1,18 x 107° 725 725 anelastic,  conducting 1.C., 1514 yes 100 yes yes  spectrum, I.C.
Roberts [1996b] £=10,65 x 107 axial-inertia Ins. mantle, rigid super-rot.
and following 0= 20, 5.0 X L0
Kuang-Bloxham [=1,40x107° 1 1 Boussinesq, conducting 1.C., 27,4 yes O(1)  not yet yes  flux expulsion,

£=10,9.0 x 107> axial-inertia Ins. M.+conduc- Pacific window,

£=20,49 x 107 ting layer, stress spectrum
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, €€
Busse et al. 51 x107*=72 x 107* 5-20 100 Boussinesq, Ins. M. & 1.C,, 141, yes 2-20  not yet
e Tullinertia SIESS f100
Kageyama et al. 40 x 10°% 1 10.6—15 compressible, B A r =0, rigid 501y yes 7 x107%  yes patches,
Christensen et al. 4.2 x 107°—42 x 107* 1 0.5-5 Boussinesq, Ins. M. & I.C., 31,to0 yes 0.14—14 not yet yes patches
_______________________________________________________________________________________ full-inertia _rigid or stress free 107y
Kitauchi-Kida 56 x 103 1 8.3-14.2 Boussinesq, vacuum, rigid 10071, yes 60 yes yes  quasi threefold
e Ralleimertia S symmetry
Sakuraba-Kono (=1,63 x 107 1 20 Boussinesq, conducting 1.C., 314 yes  0.1-10 not yet Archean

£=10,7.1 x 107> full-inertia  Ins. mantle, rigid paleointensity
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, =20, 1.3 X L0 e
Katayama et al. 72 x 107272 x 1072 1 35 Boussinesq, Ins. M. & L.C., 6Ty yes 6 x 10™* not yet yes

full-inertia stress free

Earth 1071° 7 107° o(1)?

Each row from the left corresponds to one model as described in a paper or series of papers. The last row recalls parameter estimates for the Earth’s core. The first three columns display
the parameters described in the text: the Ekman number, the Prandtl number, and the magnetic Prandtl number. The next three columns present the model used in the computations:
equations, boundary conditions, and integration times (scaled with respect to the dipole free decay time T, ~ 20 kyr). Finally, the last five columns state the character of the generated
field found in each model through the answer to the following questions: “Is the field dipolar?”, “What is its strength?” (measured by the Elsasser number, defined as the ratio of the
Lorentz force to the Coriolis term), “Did it reverse during the simulations?”, “Does it drift westward?”, etc. Ins., insulating; I.C., inner core; M, mantle; rot., rotation.
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branches of dynamo solutions (i.e., two kinds
of solutions): the weak field branch and the
strong field branch. Let us start from a non-
magnetic state and let the Rayleigh number
increase (starting from zero). At first the fluid
is at rest, then, beyond a first critical value of
this parameter, convection starts (this appear-
ance of a new kind of solution is referred to as a
“bifurcation”). The amplitude of convection
increases as the Rayleigh number is further
increased (the nature of this bifurcation is
characterized by the asymptotic study of So-
ward [1977]). Beyond a second critical value,
motions become energetic enough to maintain a
magnetic field (starting with a perturbation):
this is the dynamo bifurcation. This second
bifurcation produces a weak field dynamo, in
the sense that the amplitude of the field is
controlled by viscous effects (though viscosity
is very small). If the Rayleigh number is further
increased, this branch disappears beyond a
third critical value, and the solution quickly
evolves to another branch (through runaway
growth of the magnetic field intensity). On this
new branch, viscous effects are negligible and
the amplitude of the field is now controlled by
magnetostrophic equilibrium (between Lorentz
and Coriolis forces). The nondimensional num-
ber measuring the ratio of the Lorentz force to
the Coriolis acceleration, namely the Elsasser
number, is then close to unity [Soward, 1979].
This second solution is referred to as the strong
field branch. Given the strength of the mea-
sured geomagnetic field, it is clear that the
Earth’s dynamo corresponds to that kind of
solution. The geometry of the solution on that
branch should significantly differ from the
previous one. In fact, once on that strong field
branch, the magnetic field has relaxed the
constraints imposed by rapid rotation on the
flow, and dynamo action is expected to exist
even if the Rayleigh number is now decreased
below its first critical value (onset of convec-
tion). It is worth noting that such behavior
(subcritical dynamo action) has not been ob-

7

served so far in any numerical models with a
spherical geometry.

ro; This whole scenario has been established
for small magnetic Prandtl numbers and in the
limit of small Ekman numbers or vanishing
viscosity (relevant to the Earth), and it is only
relevant to that regime. For numerical work one
refers to a strong field dynamo if the magnetic
field term is on the same order of magnitude, or
even much larger than the Coriolis term (the
Elsasser number is then equal or larger than
unity); this, of course, does not imply that
viscosity is negligible (as would be needed
with the original definition). Viscosity is never
negligible in current three-dimensional numer-
ical models, whose stability always rely on the
viscous term. The strong field notion used to
discuss numerical models must therefore not be
confused with the well-defined one used in the
asymptotic regime (see Childress and Soward
[1972] for a rigorous definition between paral-
lel planes). Indeed, studies of simplified pro-
blems strongly suggested that in the asymptotic
regime, the Elsasser number should settle to
values very close to unity on the strong field
branch (see Eltayeb and Roberts [1970],
Eltayeb and Kumar [1977], Fearn [1979a,
1979b], and Soward [1979], and for a review,
see Soward [1998]). We will see that such is
not always the case for numerically strong
field dynamos.

iy It is important to note here that molecular
values were used to evaluate all diffusivities
(i.e., viscosity as well as thermal and magnetic
diffusivities). It can be argued that small-scale
turbulent flow will lead to equivalent large-
scale diffusivities that could be several orders
of magnitude larger than molecular values.
Through a study of the small-scale thermal
instability of the core, Braginsky and Meytlis
[1990] obtained a qualitative picture of the
anisotropic turbulent motions and field. They
expect that the effects of small-scale turbulence
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on the large-scale flow will be highly aniso-
tropic and that the equivalent thermal diffusiv-
ity tensor could compare in magnitude with
magnetic diffusivity. If this is true and if one
neglects the important anisotropy, then the
equivalent Roberts number at large scale would
be close to one. It is also often argued that
vigorous convective models lead to order one
values for the equivalent Prandtl number. A
simplified argument would then be that all
equivalent diffusivities are of the same order,
which would imply order one Roberts, Prandtl,
and magnetic Prandtl numbers and an Ekman
number close to 10~°. The “turbulent” Ekman
number evaluated this way would still be
several orders of magnitude smaller than can
be achieved so far numerically. For ratios of
diffusivities (especially the Roberts number and
the magnetic Prandtl number), the turbulent
estimates are much easier to use than the values
based on molecular diffusivities.

(121 This turbulent modification of the para-
meters can be justified with the qualitative
picture described above, but it is not theoreti-
cally established. It does not take into account
the strong anisotropy of the small-scale flow.
Also, experimental studies show that setting a
turbulent Prandtl number to unity is an over-
simplification, even for nonrotating and non-
magnetic low Prandtl number turbulent
convection [Cioni et al., 1997].

131 Of course, the present goal of numerical
simulations cannot yet be to achieve geophysi-
cal values of the parameters based on molecular
diffusivities! Only the asymptotic behavior, and
a well-approximated large-scale solution, con-
stitute a realistic objective. One can then won-
der whether this aim can be better achieved
using magnetic Prandtl numbers based on
either isotropic turbulent diffusivities (i.e.,
magnetic Prandtl number of order 1) or mole-
cular values (i.e., 107°). This remains an open
question. However, part of the difficulty clearly
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is to understand how dynamo action is main-
tained despite the very efficient magnetic dif-
fusivity (compared with other ones). Assuming
an order 1 magnetic Prandtl number is a way to
get around this issue.

2.1. Zhang and Busse

n4 In 1988 and 1989, Zhang and Busse
presented magnetic field generation results
in a rotating spherical shell with imposed
symmetry with respect to the equator and
imposed periodicity in longitude (this is
therefore not fully three dimensional). They
studied magnetic Prandtl numbers above
which they obtained steady or oscillatory
dynamos with either quadrupolar or dipolar
fields [see also Zhang et al., 1989]. Their
approach (later extended by Hirshing and
Busse [1995]) consisted in following the
consecutive bifurcations, starting from the
nonmagnetic solution. Being close to the
mathematical/physical understanding desc-
ribed above, this approach should allow one
to describe solutions on the weak field branch
and to safely establish the strong field branch
(after runaway growth of the field intensity).
This seems to be a safe approach to ensure
that parameters different from Earth values
indeed lead to the appropriate equilibria (e.g.,
magnetostrophic balance). The numerical
scheme used for resolving the nonlinearity
(Galerkin) required moderate values of the
Rayleigh number; also in order to study the
dynamo bifurcation (starting with arbitrarily
small magnetic field), a very high resolution
would be needed for the convective regime at
high values of the Rayleigh number. When
trying to increase the Rayleigh number and/or
decrease the Ekman number, authors noted
[Zhang et al., 1989] that magnetic fields tend
to decay. In these earlier studies, little attempt
was made to compare numerical solutions
with geomagnetic features. They only con-
cerned westward drift of the nondipole part
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of the field [Zhang et al., 1989] and sugges-
tions that reversal maybe due to the close
competition observed between dipolar and
quadrupolar field geometries.

2.2. Glatzmaier and Roberts

151 In a series of papers, Glatzmaier and Ro-
berts showed that chaotic dynamos exhibiting
features similar to those of the geomagnetic
field can be simulated with current computers.
Their approach was different from that of
Zhang and Busse. Instead of following succes-
sive bifurcations (or modifications) of the solu-
tion as the Rayleigh number was increased,
starting with a nonmagnetic solution, they fixed
the Rayleigh number and exhibited a dynamo
solution starting with large initial magnetic
fields. The Elsasser number (defined on the
maximum value of the field) was found to be
larger than one.

i1e] They successively used two approaches to
model the liquid outer core. The first approach
[Glatzmaier and Roberts, 1995a, 1995b, 1996a]
relied on the Boussinesq approximation. Essen-
tially, all density variations were neglected,
except for the buoyancy effect. This approx-
imation has been used in most subsequent
numerical models. It is not quite appropriate
for the Earth, since density varies with depth in
the core, but it is a reasonable approximation.
The second approach [Glatzmaier and Roberts,
1996b and following] relied on the more appro-
priate anelastic approximation, allowing for
varying properties of the Earth with depth. This
approximation and its application to the Earth’s
core had been fully introduced by Braginsky
and Roberts [1995]. It was not found to yield
drastic changes on the solution.

n71 The first model [Glatzmaier and Roberts,
1995a, 1995b] was the first to exhibit reversals
in a configuration trying to mimic the Earth’s
core. This model is very sophisticated and
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incorporates many different features (hyper-
viscosity, rotation of the inner core, thin con-
ducting layer at the base of the mantle, etc.).
Numerical integration of the model was per-
formed over some three dipole diffusion times
(to attest dynamo action). Inertia was dropped
in this integration, because of the low value
(107°) of the coefficient scaling it (for geophy-
sically realistic values of parameters). This term
was discarded, whereas numerical reasons im-
posed that a 10° times smaller term (viscous
effects) be retained. The model incorporated
enhanced viscosity in boundary layers. The
authors later noted [Glatzmaier and Roberts,
1996a, 1997b] that this feature was at least
partly responsible for destabilizing the solution
(which led to the reversal) and significantly
altered the field spectrum. When removing this
additional enhanced turbulent viscosity in
boundary layers, Glatzmaier and Roberts
[1996a] noted that the solution got more
strongly dipolar and did not reverse for the
remainder of their simulation. Other modifica-
tions included reintroduction of inertia for the
zonal axisymmetric components of the flow
and a significant reduction of the electrical
conductivity of the lower mantle [see Glatzma-
ier and Roberts, 1996a]. It was integrated
further over less than one dipole diffusion time.
They observed flux patches in these models
and noted that the nondipolar part of the
simulated field at the outer boundary (CMB)
was qualitatively similar in structure to that on
Earth and had westward drifting features
[Glatzmaier and Roberts, 1997b].

18] The second model [Glatzmaier and Ro-
berts, 1996b, 1996c] was similar to the first
one (in its 1996a version), but it used an
inhomogeneous (or anelastic) approximation.
This approximation is based on the assump-
tion that velocities in the fluid flow are small
compared with acoustic velocities. The tem-
perature gradient at the outer sphere was
superadiabatic and uniform. The associated
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heat loss generated thermal and compositional
sources at the inner sphere boundary by cool-
ing the whole domain. Both thermal and
compositional driving mechanisms were con-
sidered, and model parameters were slightly
modified, the hyperdiffusivity was reduced.
The field generated by this model again
showed a tendency to drift westward. For both
models the behavior was very different inside
and outside the tangent cylinder (the cylinder
having the same axis as the axis of rotation
and the same radius as the inner core). The
most intense magnetic activity was confined to
the interior of this cylinder (in contrast with
most other models reported below). This sec-
ond model was also studied in different con-
figurations [see Glatzmaier and Roberts,
1997a]: heterogeneous heat flux at the outer
sphere (inspired by lower mantle tomography),
subadiabatic model, and subadiabatic model
with varying heat flux.

9] Important ingredients of all these simula-
tions were assumptions concerning the way
the small-scale turbulent flow, which could
not be numerically resolved, affected the
large-scale flow and field. Crucial to the
success of the numerical work was the intro-
duction of enhanced dissipation of the higher
spectral components, a procedure described as
using “‘hyperviscosity.” The same was also
applied to magnetic and thermal diffusivity,
and referred to as using “hyperdiffusivity.”
This procedure, though essential for the nu-
merical work, is difficult to justify on physical
grounds. In very approximate terms we might
say that the simulations introduce enhanced
turbulent diffusivities in the horizontal direc-
tions, rather than in the directions given by the
rotation axis and the large-scale magnetic
field, as identified by Braginsky and Meytlis
[1990]. The effective Ekman number varies
with the spherical harmonic degree of the
field. The effect of hyperviscosity on the
large-scale solution is unknown, though Zhang
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and Jones [1997] showed that the introduction
of hyperviscosity in convection simulations
not only has some impact on the effective
Ekman number (see Table 1 for the Ekman
number at various degree 1) but also modifies
the force balance in the momentum equation
and thus the asymptotic behavior itself (see
the discussion by Sarson and Jones [1999)).
This issue was recently addressed in the
dynamo regime by Grofe et al. [2000b] (see
section 2.4). They found that the effects of
hyperdiffusivities increased as the Ekman
number was decreased.

20] In both models the authors observed that
the solid core rotates faster than the mantle.
There is an ongoing debate in the seismological
community to determine whether such super-
rotation of the inner core is actually observed in
the Earth [Song and Richards, 1996; Su et al.,
1996; Souriau et al., 1997; Souriau, 1998a,
1998b; Poupinet et al., 2000]. Magnetic ob-
servations of a polar vortex were recently
reported [Pais and Hulot, 1997, 2000; Olson
and Aurnou, 1999]. These observations appear
to be compatible with a thermally driven rota-
tion of the inner core [Aurnou et al., 1996; Pais
and Hulot, 2000] but also with a nonrotating
inner core [Olson and Aurnou, 1999]. Kuang
[1999] argued that this effect could be an
artefact, due to excessive viscous coupling in
numerical models. The issue of a possible
rotation of the Earth’s inner core is therefore
not yet resolved.

211 Glatzmaier et al. [1999] studied reversals
with this model and various patterns of heat
flux at the core-mantle boundary. They ex-
tended time integration over some 15 dipole
diffusion times. Surprisingly, they found that
the case with uniform heat flux at the core-
mantle boundary appeared the most Earth-like.
The simulation using a prescribed heat flux
inferred from seismic velocity anomalies (to-
mography) in the lowermost mantle did not
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produce a very realistic field (a reversal lasted
more than one dipole diffusion time), plus the
excursion frequency appeared much too high.
The authors suggested that variations in heat
flux at the core-mantle boundary could thus be
smaller than previously thought. Interestingly,
varying numerical resolutions, they noted that
the field strength depended on the resolution
used. The dipole moment, on average lower
than that stimated for the Earth, was found to
be greater or similar when numerical resolution
was increased. Very recently, Coe et al. [2000]
performed a detailed comparison of reversals in
these numerical simulations. Both homoge-
neous and heterogeneous heat fluxes at the
outer boundary were found to feature low
intensities during reversals, with longer-term
intensity variation resembling sawtooth beha-
vior. Statistical studies of virtual geomagnetic
pole (VGP) paths, i.e., paths followed by the
poles of a dipole that would produce the ob-
served directions at a given site, were performed
during reversals. In the case of the heteroge-
neous model it was suggested that VGP paths
seem to correlate with high heat flux areas,
though only two reversals were available.

221 Parameters used for these models are pre-
sented in Table 1. The choice of these para-
meters is of course not unique and other
parameters could be added (e.g., the Roberts
number, introduced in section 2). An interest-
ing number is the ratio of the Ekman to the
magnetic Prandtl number, sometimes referred
to as the magnetic Ekman number, and repre-
senting the ratio of the rotation timescale (the
day) to the magnetic timescale. This number is
important when comparing numerical with ac-
tual time units (as will be discussed in section
3). It is close to 10~° for the Earth. Parameters
used in the Glatzmaier and Roberts models
were set to approach this value (using nominal
coefficients, i.e., neglecting hyperdiffusivities).
It is useful to recall that viscosity does not enter
the definition of this number.
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2.3. Kuang and Bloxham

231 Kuang and Bloxham [1997] presented an-
other model that they called “an Earth-like
numerical dynamo model.” They studied a
Boussinesq model including a conducting inner
core. They assumed a conductive layer above
the core-mantle boundary and used hypervisc-
osity, only axial inertia was retained. Reported
integration times range over four dipole diffu-
sion times. Their solution differs greatly from
the Glatzmaier and Roberts models: convection
and induction occur mainly outside the tangent
cylinder. Many differences exist between both
models (definition of hyperviscosity, heat flux,
rotation rate, boundary conditions, etc.). Kuang
and Bloxham [1997] attributed most of the
differences in the numerical results to the
kinematic boundary conditions. Moreover, they
produced a solution comparable to the Glatz-
maier and Roberts model when using the same
kinematic boundary conditions. Glatzmaier and
Roberts used a no-slip (or rigid) kinematic
boundary condition: this condition is physically
realistic (motion of a fluid near a solid wall
should vanish). Kuang and Bloxham, on the
other hand, used free-slip (or stress-free)
boundary conditions (no penetration but also
no tangential stress). This condition has the
convenient property of suppressing sharp
boundary layers (numerically difficult to re-
solve). The authors claimed that since viscosity
is very small in the Earth’s core, the effects of
these layers could be neglected, and thus the
layers be suppressed from the computations.
They suggested that viscous effects (associated
with high Ekman number values) in the Glatz-
maier-Roberts dynamo models were especially
important near boundaries (in boundary layers).
They claimed that by using stress-free bound-
ary conditions, hence suppressing strong vis-
cous effects at the boundary, they would reduce
viscosity effects in their model to an almost
negligible level, bringing it closer to expected
Earth behavior [Kuang and Bloxham, 1997].



"4k~ Geochemistr 2
~ Geophysics Y(A‘J
" Geosystems {_7J

DORMY ET AL.. GEODYNAMO MODELS AND OBSERVATIONS

2000GC000062

The possibility of boundary layer instabilities in
the parameter regime thought to be valid for the
Earth [Desjardins et al., 1999, also Instability
of Ekman-Hartmann boundary layers, with ap-
plication to the fluid flow near the core-mantle
boundary, submitted to Physics of the Earth
and Planetary Interiors, 2000] however raises
questions on the validity of this simplification.

4] Kuang and Bloxham [1998] next presented
a comparison of their results with the actual
Earth’s magnetic field. They proposed an inter-
pretation in terms of physical quantities, under
the assumption that viscous effects were negli-
gible in their computation (this scaling is com-
parable to the one used by Glatzmaier and
Roberts). They focused their comparison on
westward drift, episodes of flux expulsion, and
behavior similar to the so-called ““Pacific dipole
window” (i.e., low secular variation in the
Pacific hemisphere, see below). They compared
the spectrum of the field generated by their
dynamo with that based on historical measure-
ments of the Earth’s magnetic field. While other
groups generally compared the spectrum of
their dynamo fields with the Earth’s field for
1980 (well known because of MAGSAT data),
Kuang and Bloxham used the Bloxham and
Jackson [1992] reconstruction of the mean field
over the last 300 years (this field model incor-
porates some additional assumptions, including
damping of higher degree terms). They also
noted that flow at the core surface was similar
to that inferred from secular variation. However,
they did not report any polarity reversal. The
full description of their numerical model was
recently published [Kuang and Bloxham, 1999].

251 Kuang [1999] investigated the role of
boundary conditions in this dynamo model.
He presented two computations, one with
stress-free boundaries and the other with no-slip
boundaries. His main concern was to show that
when viscous couplings at the boundaries are
eliminated (free-slip conditions), the axial Lor-
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entz torque acting on cylindrical surfaces (co-
axial with the axis of rotation) almost balances
fluid inertia, leading to the suggestion that
viscosity had little effect on the solution. Kuang
showed that with free-slip boundary conditions
the viscous torque was smaller than the Lorentz
torque (by a factor of 2) on most of these
cylinders. Using free-slip boundary conditions
led to an oscillating (rather than rotating) inner
core. Note finally that the Elsasser number was
measured using averaged field values.

2.4. Busse and Coworkers

1261 Wicht and Busse [1997] presented the study
of numerical dynamos, using a Boussinesq
approximation with full inertia, as well as
stress-free and insulating boundary conditions.
Their study was limited to even azimuthal wave
numbers (implying symmetry of the solution
about a meridional plane). The authors concen-
trated on numerical resolution and sequences of
bifurcations (see the discussion of the model by
Zhang and Busse above) at low Prandtl number
values (Pr ~ 0.1). They showed that the subcri-
tical dynamo effect disappeared when numer-
ical resolution was increased. Thus they could
not produce numerical dynamos for Rayleigh
numbers below the critical value for convec-
tion (except when restricting their comparison
to the dominant azimuthal wave number).
Later, Busse et al. [1998] used a Chebychev
(instead of Fourier) radial scheme and studied
the influence of the Prandtl number. They
investigated chaotic dynamos and noted a
strong dependence of the mean zonal flow on
the Prandtl number. More strikingly, they noted
that the ratio of magnetic to kinetic energy
density is proportional to the Prandtl number
(after nondimensional reasoning and confirma-
tion by their numerical results). Because the
inertial term scales as the inverse of the Prandtl
number, magnetic energy density would neces-
sarily be larger than kinetic energy density in
models where the inertial term is dropped (e.g.,
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Glatzmaier and Roberts’ first model, Jones et
al.) or partly dropped (e.g., Glatzmaier and
Roberts’ following models, Kuang and Blox-
ham). This emphasizes how the popular dis-
tinction between weak and strong field
dynamos in numerical models can be very
misleading (see also the nontrivial definitions
of these notions in the beginning of this sec-
tion). The authors also noted that the ratio of
magnetic energies of the axisymmetric to non-
axisymmetric components of the induced field
increased strongly with the Prandtl number.
Busse et al., [1998, p. 212] stressed that “the
impression currently en vogue in parts of the
scientific community that the problem of the
origin of the Earth’s magnetic field has been
solved is overly optimistic”” and insisted on the
need for numerical dynamos with magnetic
Prandtl numbers lower than unity (not yet
achieved so far). Grote et al. [1999] showed
that for (1) Prandtl number unity, (2) magnetic
Prandtl numbers in the neighborhood of unity,
and (3) with Ekman numbers ranging from 6 x
107° to 2.4 x 107*, the field generated by
dynamo action is dominantly axial quadrupo-
lar. They argue that this preference is related to
the suppression of convection in polar regions
observed at lower Ekman numbers. Grote et
al., [2000a, p. 270] present a more detailed
parameter space and distinguish between reg-
ular and chaotic dipolar dynamos, quadrupolar
dynamos, and hemispherical dynamos (where
the magnetic field nearly vanishes in one hemi-
sphere due to “roughly equal contributions
from the axial quadrupolar and dipolar fields”).
The type of solution is found to depend mainly
on the magnetic Prandtl number and on the
Rayleigh number. Dipolar dynamos were only
reported for magnetic Prandtl numbers above
10 [see Grote et al., 2000a, Figure 1]. Grote et
al. [2000a, p. 271] insisted that in such simula-
tions “‘the magnetic field does not seem to
influence the convection velocity very much.”
Grote et al. [2000b] investigated the role of
hyperviscosity on their dynamo model and
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noted that unrealistic dynamical effects could
be introduced. The ratio between axisymmetric
and nonaxisymmetric components of the mag-
netic energies was also found to be larger in
hyperdiffusive simulations (by a factor 4). The
authors note that the differences between hy-
perdiffusive and regular dynamos increase
when the Ekman number is decreased and the
Rayleigh number increased.

2.5. Kageyama and Sato

271 Kageyama and Sato [1997a, 1997b, 1997¢]
presented a dynamo model in a rotating sphe-
rical shell filled with a conductive ideal gas;
thus they solved equations in the compressible
case. They used rigid kinematic boundary con-
ditions and included full inertia. Magnetic
boundary conditions in their model were not
very geophysical: only the radial component of
the field was allowed to be nonzero at the
boundary (the authors argue that this ensures
that the Poynting vector flux through the
boundaries is zero). They first [Kageyama
and Sato, 1997a] concentrated on the linear
growth phase (before saturation) and described
how the field was increased by convective
columns. They next [Kageyama and Sato,
1997b] studied a (numerical) strong field dy-
namo, in which the magnetic field was found to
be strongly dipolar, the second largest multi-
pole being the octupole (representing 77% of
the dipole in terms of energy). Kageyama and
Sato concluded that dipolar fields were a nat-
ural consequence of columnar convection in a
rotating spherical geometry. Kageyama and
Sato [1997¢] focused on the magnetic field
distribution at the CMB and in the equatorial
plane. Recently, Kageyama et al. [1999] ex-
tended integration time from some 15 to about
50 dipole diffusion times and presented a
numerical polarity reversal in their model (the
magnetic Prandtl number was here increased to
15). They observed that the dipole reversal was
followed by a sequence of octupole reversals,
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each one correlated with energy jumps, and
suggested that paleomagnetists should look for
such features in data.

2.6. Christensen-Olson-Glatzmaier

28] Christensen et al. [1998] published a
dynamo model without hyperdiffusivity, re-
taining full inertia and using no-slip boundary
conditions. Boundary conditions were rigid
and insulating (including the inner core). The
authors noted that their model qualitatively
reproduced several structural characteristics
of the present-day geomagnetic field: a di-
pole-dominated magnetic field, with distinct
bundles of strong radial flux at high latitudes,
low flux over the poles, and paired spots of
reversed flux near the equator. The magnetic
flux contribution to the dipole moment was
concentrated in distinct patches at about 60°
latitude. The field generated appeared to be
more dipolar than the present geomagnetic
field. Its structure appeared to be comparable
to that found in the work of Kuang and
Bloxham’s model.

o] In a later study, Olson et al. [1999] ex-
hibited two regimes for dynamo action, which
depend on the Rayleigh number (energy input).
The first one (low Rayleigh number) corre-
sponds to a strongly columnar regime (compar-
able to laminar convection with no magnetic
field). The dipole-dominated external field then
appears to be formed from a superposition of
flux bundles. The authors observed a pattern of
reversed flux patches that propagated in the
westward direction at low latitudes. At higher
Rayleigh numbers they observed the develop-
ment of convection inside the tangent cylinder,
characterized by polar upwelling and azimuthal
winds. This second regime reproduced some of
the features thought to be typical of the present
magnetic field: concentrated flux patches, polar
minima in field intensity, and episodes of
westward drift (this regime contains some ele-
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ments of similarity with the Glatzmaier and
Roberts dynamo).

po; Recently, Christensen et al. [1999] pub-
lished a systematic parameter study of their
dynamo model and varied the kinematic
boundary conditions. Again, they obtained
mainly axial dipolar fields (with a few quad-
rupolar exceptions). Interestingly, they found
little influence of the kinematic boundary con-
ditions (no-slip versus free-slip) in their model,
contrary to what Kuang and Bloxham ob-
served. They suggest this discrepancy is due
to the use of an insulating inner core, which
suppresses magnetic torque on the inner core.
They studied various magnetic Prandtl numbers
(they decreased, for the first time, this para-
meter slightly below one and presented dyna-
mos at Pm = 0.5). As the magnetic Prandtl
number was decreased below a critical value
for a given Ekman number, the authors ob-
served that no self-sustained dynamo action
could occur. This is an important result, be-
cause the minimum critical values they ob-
tained are about one million times larger than
the magnetic Prandtl number relevant to the
Earth’s core. They observed, however, by de-
creasing the Ekman number by a factor of 10,
that the critical value decreased as well. By
computing the exponent for the evolution of
this parameter (over a rather short range), they
estimated that an Ekman number as small as
10~"? would be necessary to sustain dynamo
action in the regime of small magnetic Prandtl
number (10~°). This confirms the need to study
high rotation rates (i.e., small Ekman numbers)
to observe dynamo action in a medium with
efficient magnetic field diffusion (small mag-
netic Prandtl number), as is the case for the
Earth’s core.

311 The magnetic fields they obtained at the
outer boundary for two of their dynamo models
were of smaller scale, with flux spots stretched
in a meridional direction. The authors sug-
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gested that the field at the Earth’s core-mantle
boundary could be small scale as well (despite
the much larger magnetic diffusivity) but would
appear large scale because of the limited reso-
lution used to represent the core field (largely
because of difficulties in removing crustal ef-
fects). Broad features (such as patches) in a
low-pass filtered representation of their results
compared well with those observed in the 1980
field model. No reversal nor significant excur-
sion was observed in any of these studies.

321 Kutzner and Christensen [2000] studied
the influence of different driving mechanisms
on this model. They reported dipolar dynamos
when modeling chemical convection or thermal
convection with an imposed temperature dif-
ference between the ICB and the CMB. When
using purely internal heating (e.g., radioactive
heat sources in the core), they only reported
dynamos producing quadrupolar (or more com-
plex) fields (see also, in section 2.4, quadrupo-
lar dynamos reported by Grote et al.).

2.7. Kitauchi and Kida

331 Kitauchi and Kida [1998] presented nu-
merical simulations with a Boussinesq model
with full inertia. Boundary conditions were
somewhat ungeophysical: vacuum was as-
sumed outside the shell. Their solution took
the form of a weak field dynamo with periodic
reversals of the dipole moment. The flow con-
sisted in convection columns (with a fivefold
symmetry); they observed that the magnetic
field did not share the same symmetry and
studied the mechanism of field intensification.
Kitauchi and Kida noted that the structure of
the external magnetic field they obtained bore
some similarities with the Earth’s field: the
pattern of the magnetic field was antisymmetric
with respect to the equatorial plane and strong
magnetic flux in the middle latitudes drifted
westward. Kida and Kitauchi [1998] increased
the magnetic Prandtl number and reported
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chaotic polarity reversals of their solution. Four
observational constraints were considered in
this article: dominance of the dipole compo-
nent, chaotic nature of dipole reversals, quasi-
threefold symmetry around the rotation axis,
and westward drift of the magnetic field. They
noted that these features were all well repro-
duced by their model except for the quasi-
threefold symmetry. Using the reported mag-
netic energy, one can estimate the Elsasser
number to be close to 60.

2.8. Sakuraba and Kono

1341 Sakuraba and Kono [1999] presented the
study of a numerical dynamo model in a
spherical shell and in a full-sphere simulation.
They used a Boussinesq model and retained
full inertia. The authors used hyperviscosity
(see definition section 2.2). The aim of their
work was to study the effect of the conducting
and free-to-rotate inner core on field genera-
tion. They observed that field induction was
particularly important near the zone of strong
shear associated with boundary layers (pre-
cisely those boundary layers suppressed in
models using free-slip kinematic boundary con-
ditions). They reported an “Earth like dipole
field” and concluded that the thin boundary
layers were important in the magnetic field
generation process. They observed the stabiliz-
ing effect of the inner core on the magnetic
field and suggested that growth of the inner
core could help interpret the low paleointensity
records from the Archean.

2.9. Katayama and Coworkers

351 Katayama et al. [1999] presented a Bous-
sinesq dynamo model with full inertia and an
insulating inner core. Stress-free (or free-slip)
boundary conditions were used (suppressing
boundary layers). The authors examined the
magnetic field generation mechanism of their
solutions. The magnetic field appeared to be
confined in cyclonic convection columns (in a
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manner comparable to the models of Zhang and
Busse or Kageyama and Sato presented above).
They describe the ‘“‘numerical weak field”
regime (the Elsasser number can be estimated,
based on the magnetic energy, to be less than
1073). In this regime, and with Ekman number
0f 0.07, they still obtained a dominantly dipolar
axial field. They also noted that patterns of
velocity and magnetic field drift westward in
their simulation, although they did not observe
any reversal (so far) in the parameter range they
studied.

2.10. Jones and Coworkers

36] We also would like to briefly report some
results obtained with a mean field approxima-
tion model introduced by Jones et al. [1995]. In
this approach, only an arbitrary azimuthal com-
ponent was considered in addition to the mean
axisymmetric component. The authors used a
two-mode approximation, which is self-consis-
tent and is referred to as a 2.5-dimensional
model. Although this model is not a full
three-dimensional solution to the MHD equa-
tions, some of the results they reported have
Earth-like behavior and can shed some light on
the behavior of fully 3-D models. The main
advantage of their approach is to make numer-
ical integration lighter, thus allowing the ex-
tention of the range of studied parameter
values. Jones et al. [1995] studied different
parameter regimes and found a (numerical)
“weak field” regime as well as a (numerical)
“strong field” regime. The fields were largely
axial and dipolar but had an axisymmetric
dipolar component about twice as large as in
the Earth and a larger value of the nonaxisym-
metric components. Jones et al. [1995] also
studied a model in which a stable layer was
introduced at the top of the core in order to
decrease these discrepancies.

371 Sarson et al. [1998] presented a systematic
study of the 2.5-D model, using hyperdiffusiv-
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ity for some simulations only. This model
produced solutions very similar to some of the
previously published 3-D numerical dynamos,
yet at much lower cost. At the higher values of
the Ekman and Roberts numbers and moder-
ately supercritical Rayleigh numbers, results
were very similar to the Zhang and Busse
[1988, 1989] solutions. At lower values of these
parameters (with hyperviscosity) the solution
reproduced most of the characteristics of the
Glatzmaier and Roberts [1995a, 1995b, 1996a,
1996b] model. Sarson and Jones [1999] studied
magnetic field reversals in more detail in the
latter parameter regime. The origin of reversals
was interpreted in terms of “buoyancy surges”
occurring inside the tangent cylinder. It was
demonstrated that suppressing the Lorentz force
did not significantly alter the basic form of the
flow, again showing that viscosity has a very
important effect on numerical solutions and that
the magnetic field exerts a relatively minor
influence on the solution (despite the dynamo
being a “numerically” strong field).

2.11. Conclusions on Geodynamo Models

381 We summarize the results presented above
in Table 1. The first three columns of Table 1
recall parameter values used in the models
(using the common nondimensionalizations in-
troduced above); the next three columns sum-
marize the differences in the model definitions
and integration times; the last five columns
summarize the outputs from these models. All
models succeed in producing dipolar fields.
Most of them are strong field models according
to the definition used by numericists (i.e., El-
sasser number above unity). Note that the El-
sasser numbers reported here are those given by
the authors (or derived from values of magnetic
energy). They are based in most cases on the
mean value of the magnetic field throughout the
core, although some authors prefer to use its
maximum value (e.g., Glatzmaier and Roberts).
Actually, most models produce Elsasser num-
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bers much larger than unity, opposed to what is
expected in the asymptotic regime (see discus-
sion at the beginning of this section). Also,
several authors [Grote et al., 2000a; Sarson et
al., 1998] have pointed out that the Lorentz
force could be suppressed from numerical in-
tegration without affecting much the geometry
of their solutions. Reversals were observed in
some models but relatively short integration
times (below 5 dipole diffusion times for most
models) do not allow a significant distinction
between models. Most models are found to have
westward drifting features, and a few other
Earth-like features have also been noted in the
last column.

39] We wish to stress that the most fundamen-
tal point to have emerged from numerical
simulations within the last few years is prob-
ably that most of the available numerical mod-
els, even with Ekman numbers close to 0.1 [see
Katayama et al., 1999] succeed in producing an
external magnetic field largely dominated by an
axial dipole component (with a few quadrupo-
lar exceptions, see Grote et al. [1999, 2000a]
and Kutzner and Christensen [2000]), with
weaker nondipolar structures and in some cases
even polarity reversal of the dipole. With per-
haps exaggerated optimism one could argue
that despite drastic differences in the parameter
regimes, numerical dynamos capture the essen-
tial features of the Earth’s magnetic field gen-
eration mechanism. Somewhat puzzling,
though, are the discrepancies on the generation
mechanisms involved in these models. Some
models generate the magnetic field by chaotic
motions mainly inside the cylinder tangent to
the inner core (e.g., Glatzmaier and Roberts),
others by chaotic motions mainly outside this
cylinder (e.g., Kuang and Bloxham); some
propose a giant alpha effect in columnar struc-
tures comparable to nonmagnetic convection
rolls (e.g., Christensen et al. or Kitauchi and
Kida); some stress the role of boundary layers
in the field generation mechanism (e.g., Sakur-
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aba and Kono), whereas others artificially sup-
press these layers (e.g., Kuang and Bloxham,
Busse et al., or Katayama et al.). This stresses
the need for robust yet detailed constraints to
describe what an Earth-like magnetic field
actually should be and hopefully establish
whether any of the available models fulfills
these constraints. This is the object of the
following two sections.

3. Evaluation of Observational
Constraints

0] A picture of the present-day geomagnetic
field would, of course, not be sufficient to
describe the Earth’s magnetic field, much in
the same way it would be impossible to deter-
mine the climate of a region with only a snap-
shot of the weather at an arbitrary time. We
therefore present here a short review of obser-
vational facts established with geomagnetism,
archeomagnetism, and paleomagnetism, and
attempt to find objective criteria that allow
one to propose which observations can be
considered as robust and can (should) be used
in order to efficiently constrain numerical mod-
els. Data provided by geomagnetism, archeo-
magnetism, and paleomagnetism are based on
instrumental and interpolation methods whose
heterogeneity must be taken into account; their
accuracy and time constants vary over a very
large range. Some simple criteria must be
sought to provide an objective basis to decide
which of these observations are indeed robust
and relevant. There is not much worry re-
garding present-day and historical field de-
terminations over the last centuries, although
improving accuracy and spatial coverage are of
course important. Bloxham and Gubbins [1985]
have considerably extended our knowledge of
the geomagnetic field over the last three cen-
turies, using ancient ship logs. Confidence in
the results is a function of irregular data dis-
tribution and, for instance, lack of intensity
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measurements prior to 1830. Most controver-
sies or ambiguous observations occur for older
periods and longer timescales, when magnetic
measurements are linked to acquisition of mag-
netization by artefacts or rocks. This is due to
uncertainties in dating and in the complex
process of magnetization acquisition.

411 For this reason, global geomagnetic fea-
tures must be properly documented by multiple
records from different locations (and different
materials whenever possible). It is also impor-
tant that additional testing be provided by
different approaches or alternative parameters.
Converging observations reached indepen-
dently by various teams should be considered
as a prerequisite to the evaluation of the re-
cords. It is obviously difficult to reach any
conclusion about the actual interpretation of
the records, as long as there is controversy
going on about the validity of the observations
or the relevance of the interpretations. It cannot
be excluded that in the near future, new data or
theories could invalidate some features that we
presently retain as actual characteristics of the
field. Conversely, some ongoing controversies
could be settled by new data. On the basis of
these ideas we will attempt to sort observations
in three categories: A, the most robust ones that
are supported by multiple locations/analyses/
authors; B, those that are still at the center of
live ongoing controversies, and C, those that
have at some time been proposed but are now
considered most unlikely. We believe there is
overall agreement within the community on the
first (A) category.

42] Analyses based on present or historical
field data are useful to document most varia-
tions with time constants of a few hundred
years, which seem to characterize the evolution
of the main part of nondipole terms. The mean
archeomagnetic field documents longer field
changes and appears to resemble the paleomag-
netic field [e.g., Carlut et al., 1999]. Its geo-
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metry is also much simpler (i.e., lower
harmonic degrees prevail) than the complex
historical field. As recalled above, such time-
scale-dependent magnetic behavior, with com-
plex short-term secular variation opposed to
longer-term smoother changes, is reminisent
of the contrast between the complexity of
weather patterns and longer-term evolution of
the climate [see Cox, 1975]. At all timescales,
one seeks to characterize the steady and tran-
sient parts of the field, to describe their ampli-
tude and space variations, and to relate one
timescale to the next. For instance, Hulot and
Le Mouél [1994] and Carlut et al. [1999] have
attempted to identify the typical time constants
of individual spherical harmonic components
of the field; these components are noted g,”
and 4,” and are respectively defined as the
cosine and sine terms in the spherical harmonic
expansion of the magnetic potential in the
mantle (assumed to be an insulator). These
timescales are of the order of 500 years for
the equatorial dipole (g,",4,") and less for other
higher-order terms, whereas the axial dipole
(g:°) changes much slower. In the following,
we summarize our analysis of available data
and observations based on their characteristic
duration, starting with the shortest ones.

3.1. From 0.1 Year to 1 kyr

3.1.1. Secular Variation Impulses

431 Many summaries of the present-day and
historical field time variations are available
[e.g., Merrill et al., 1996; Courtillot and Le
Moueél, 1988]. It is now generally accepted that
the conductive mantle efficiently attenuates and
therefore screens out variations with internal
origin with a time constant shorter than a few
months. The shortest phenomena of unques-
tionable internal origin are the so-called geo-
magnetic secular variation impulses or jerks
[Courtillot and Le Mouél, 1984], which have
occurred (irregularly) some seven times in the
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last 150 years [Alexandrescu et al., 1995,
1996a, 1996b, 1997; Mandea-Alexandrescu et
al., 1999; McMillan, 1996]. These worldwide
events have a total duration of the order of, or
possibly less than, 1 year. They possibly propa-
gate and are attributed to brief, major changes in
the large-scale flow in the core [Hulot et al.,
1993]. They are well established and thus fully
satisfy category A requirements. Although the
sequence of identified jerks is very short, their
occurrence appears to be quite irregular, with
seven events between the present and 1870, and
none in the preceding 150 years [Alexandrescu
et al., 1997, Mandea-Alexandrescu et al.,
1999]. The impulses, which are separated by
quieter intervals, shape much of recent secular
variation. This is found to correlate well with
predictions based on time-dependent models of
flow in the core, and with observed length of
day changes, implying core-mantle coupling
with exchange of angular momentum, as was
first shown for the 1969—1985 period by Jault
et al. [1988] and extended to the 1840—1990
period by Jackson et al. [1993], then developed
in more detail by Pais and Hulot [2000].

144] Interestingly, the fastest impulses have
been inferred not from geomagnetic but from
paleomagnetic observations: they are those
associated with the polarity transition recorded
16 Myr ago at the Steens Mountain in Oregon.
In a series of papers [e.g., Coe and Prévot,
1989; Coe et al., 1995], a French-U.S. team
investigated the origin of a puzzling progres-
sive evolution of paleomagnetic directions in
the interiors of two transitional lava flows.
Each lava unit recorded a complete sequence
of directions going all the way from that of the
underlying flow to the direction of the over-
lying flow. In the absence of any clear evidence
for anomalous rock magnetic properties
[Camps et al., 1999] these features have been
interpreted in terms of very fast geomagnetic
changes, which would have reached 10° and
1000 nT per day. For comparison, values typi-
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cal of the present-day secular variation are of
the order of 0.1° and 50 nT per year, i.e., some
10* times slower. Such paleomagnetic impulses
would thus have been even larger and sharper
than geomagnetic jerks.

1451 These geomagnetic time constants could be
constrained by estimates of the cooling times of
individual flows. However, such rapid changes
do not seem to be compatible with accepted
values of mantle conductivity [see Ultré-Guer-
ard and Achache, 1995]. Additional detailed
investigations have therefore been conducted in
order to see whether this situation could not
have arisen because of remagnetization of the
flows. Remagnetizations of lava flows, yielding
complex or unusual directions, have been de-
tected at several localities where reversals have
been recorded. A first interesting example on
Oligocene basaltic rocks was given by Hoffman
[1984]. Recently, Valet et al. [1998] observed
the coexistence of both polarities within flows
marking the last reversal boundary (0.78 Ma)
and also in a lava flow associated with the onset
of the upper Réunion subchron (2.13 Ma) in
Ethiopia. In these cases a purely geomagnetic
interpretation would imply that a full reversal
took place in only a few days. As in the Steens
Mountain case, there is no striking difference
between the rock magnetic properties of these
units and the rest of the sequence, but a scenario
involving thermochemical remagnetization in
the early stages of magnetization is not incom-
patible with the results. Thermochemical mag-
netic overprinting can be particularly serious
when it affects a flow emplaced at a time of very
low field intensity, sandwiched between flows
emplaced at a time of full (stable polarity)
intensity. The same effects may as well unfortu-
nately alter features of secular variation re-
corded in lava flows. Although difficult to
demonstrate, such remagnetization events are
far more likely to be identified when a reversal
has occurred than during a period of constant
polarity. A recent investigation of additional
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flows at Steens by members of the original
study team casts doubt on the geomagnetic
significance of the paleomagnetic directions
[Camps et al., 1999]. Therefore the existence
of very large and rapid changes that have been
documented from a single site by a unique team
remain controversial and thus cannot be re-
tained as a robust characteristic of reversals
(category C). The occurrence of complex and
hardly detectable remagnetization effects re-
mains the most reasonable assumption.

3.1.2. Westward Drift and Flux Patches
(Decades to Millenia)

6] Among the first observations that have been
made over the longer time range of decades to
millenia are the decrease in geomagnetic axial
dipole intensity (of the order of 5% per century)
and the famous westward drift of the nondipole
field [see, e.g., Merrill et al., 1996]. This drift of
isoporic lines and foci was discovered by Halley
in 1692 and quantified by Bullard et al. [1950],
who evaluated its global rate at 0.18°/yr. Blox-
ham and Jackson [1992] [see also Bloxham and
Gubbins, 1985, 1986] have emphasized the fact
that over three centuries, westward drift has
been far from uniform. The observations that
the most intense westward drift was found over
the Atlantic hemisphere and that the historical
nondipole field had been small in the Pacific
Ocean have been made by a number of authors
[e.g., Bloxham and Gubbins, 1985; Walker and
Backus, 1996; McElhinny et al., 1996; Johnson
and Constable, 1998]. Le Mouél [1984] showed
that the large-scale geometry of flow at the
surface of the core, under the geostrophic ap-
proximation, could account in a rather simple
way for this apparent discrepancy between both
hemispheres. Since there is controversy regard-
ing its interpretation this observation has been
ranked in category B.

471 Gire et al. [1984] tried to estimate the
“instantaneous” rate of westward drift and its
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time changes based on separate individual field
components. They showed that this was an ill-
posed problem, without a unique solution. Drift
estimates are significantly larger when the Y
(east) component is used and smaller when X
(north) is used. Drift estimates also vary with
time, with values at the time of the 1970 secular
variation impulse being a minimum. If this is
attributed to bodily drift of core fluid, then the
drift rate in 1980 was about twice as large as
that before. More importantly, Yukutake [1967]
showed that drift estimates also depended
strongly on latitude (see also the more recent
analysis of Jault et al. [1988]). Under the
frozen flux and geostrophic approximations,
Jault et al. [1988] were able to show that this
could be due to differential rotation of core
fluid with time constants of the order of 10
years and overall symmetry with respect to the
equator. The characteristic latitudinal patterns
of drift estimates based on components X, ¥,
and Z can be interpreted in terms of rigid
rotation of axial cylindrical annuli about the
Earth’s rotation axis. The corresponding zonal
flow model has those annuli intersecting the
CMB at latitudes less than 40° rotating west-
ward at about 0.1°/yr, whereas annuli at higher
latitudes rotate at a similar velocity but east-
ward. As a result, the overall changes in the
angular momentum of these core annuli
roughly balance changes in the angular mo-
mentum of the mantle (or length of day). The
various results reported, i.c., the large variabil-
ity of estimates as a function of geophysical
area (Pacific versus non-Pacific hemispheres),
latitude, geomagnetic component, and time,
cast serious doubt on the physical reality and
meaning of a (bodily) westward drift of geo-
magnetic features. A recent investigation of
torsional oscillations [Pais and Hulot, 2000]
illustrates this issue: the variation of angular
velocities with latitude is far from constant,
neither is the time variation of the sign of
the component of the flow corresponding to
an axial rotation (7,°). A systematic and
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global westward drift certainly enters the
category C.

48] Evidence for drift has been sought in
archeomagnetic data. Relevant references and
discussions can be found in the work of Merrill
et al. [1996]. On the basis of 2000 years of
archeomagnetic data, Evans [1987] argued that
they demonstrated westward drift at some 0.3°/
yr, but this was shown to be a highly nonunique
interpretation [Merrill et al., 1996].

49] The most intriguing feature that emerged
from the historical compilations of Gubbins
and Bloxham [1987] was a concentration of
magnetic flux at high latitudes in both hemi-
spheres. These are particularly prominent in the
Northern Hemisphere near 120° (both east and
west) longitudes and 60° latitude and obviously
fit category A. They have been attributed to
convection columns in the fluid core, parallel to
the rotation axis and tangent to the (solid) inner
core. A third patch near 0° longitude, which
would be required to complete some form of
(threefold) symmetry, and the corresponding
mirror images in the Southern Hemisphere are
either missing or not well developed. In the
Southern Hemisphere this could partly be due
to relatively sparse data coverage.

3.1.3. Dipole Versus Nondipole Field

501 A number of authors have tried to identify
persistent features in archeomagnetic field
models, which extend beyond the range of
historical data. Naturally, this entails less de-
tailed representations of the field, with much
lower spatial resolution: in general, the mean
amplitudes and variations of the lower degree
spherical harmonic components are evaluated
and tested against a priori statistical models of
the field. Such a model has been proposed
(actually based on paleomagnetic data) by
Constable and Parker [1988] and extended
by Hulot and Le Mouél [1994]. Spherical
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harmonic components of the field are sup-
posed to be independent stationary central
random Gaussian variables with known corre-
lation functions, zero mean (except g;° and
2,°) and variances depending only of degree
n. This approach allows one to evaluate the
time intervals over which the time series
become uncorrelated. On the basis of histor-
ical and archeomagnetic data, Hulot and Le
Moueél [1994] and Hongre et al. [1998] have
shown that the correlation times for terms with
degree 2 or higher were less than 150 years;
correlation times for the equatorial and axial
dipoles are respectively thought to be of the
order of 500 years and much larger. Hongre et
al. [1998] (see also Carlut et al., 1999] show
that historical and archeomagnetic data are
compatible with zero long-term averages for
the equatorial dipole and for the quadrupole
and octupole. When the field is averaged over,
say, 2000 years or more, only the axial dipole
remains. As no study exists to the contrary, we
assign an A rating to the persistence of an
axial dipolar field over times over 2000 years.

3.2. From 1 to 10 kyr

511 As one attempts to jump from scales of
thousands to tens of thousands of years, one
crosses the boundary where archeomagnetism
and artefacts are replaced by paleomagnetism
and natural rocks. Yet finding rocks that record
field changes with a ~10 kyr resolution is very
difficult. The most limiting factor is the general
difficulty in correlating records in time over
large distances. This is typically the case for
secular variation records covering the past 10
kyr. Sediments with high deposition rates are
required to document nondipole field changes
with sufficient resolution. As a consequence the
corresponding database has been mostly ob-
tained from lake sediments. A large number of
records has been published from western Eur-
ope, North America, Australia, and Japan (see
Opdyke and Channel [1996] for a more de-
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tailed account). Correlation of individual re-
cords even over short distances requires very
accurate dating. The better dated data sets from
Britain have been merged together into a well-
dated “master curve” of directional changes for
the past 10 kyr. The variations seem to match
over distances of up to 2000 km, from western
Europe to Iceland, but are incompatible with
the record from the Sea of Galilee. Secular
variation from Australia is more difficult to
correlate because of the lower amplitude of
directional changes. The general lack of simi-
larity of records from Argentina, Australia, and
the North American Great Lakes confirms that
patterns of secular variation cannot be corre-
lated over large distances. In summary, when
considered together, these paleomagnetic re-
cords display large-amplitude variations, up to
60° in declination and 30° in inclination and
suggest the possibility that secular variation
waveforms could be recurrent at some sites
[Lund et al., 1988].

3.2.1. Westward Drift

(521 Runcorn [1959] championed the use of
(D,I) or Bauer diagrams to relate anticlockwise
looping to westward drift of nonaxial dipolar
sources (see also Thompson and Barraclough
[1982]). However, Dodson [1979] showed that
this Runcorn’s rule suffered a number of viola-
tions. Work on lake sediments on the 10,000 to
30,000 year timescale [e.g., Denham, 1975;
Thouveny et al., 1990] has suggested alternat-
ing periods of clockwise and anticlockwise
rotation in Bauer diagrams, which would cor-
respond to alternate periods of eastward and
westward drift. These have been sometimes
interpreted as evidence for propagating dynamo
waves [e.g., Parker, 1979; Hagee and Olson,
1989]. However, none of these studies have
been clear or systematic. In any case, the
significance of westward drift, which was em-
phasized in the 1950s and until the 1970s, has
decreased. It is no longer considered as a
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characteristic feature of the field and its secular
variation, and thus enters category C. It is not a
robust feature that can be imposed on dynamo
models, despite the fact that it seems to have
remained ingrained in some recent presenta-
tions of geomagnetic field behavior.

3.2.2. Excursions and Reversals

1531 In contrast to reversals, which correspond
to a full polarity change, excursions reflect
deviations from the geocentric axial dipole
(GAD) that are only considered to be ‘“‘larger
than normal” paleosecular variation. The
meaning of such deviations remained contro-
versial for a long time because they were
mostly observed at a single location and asso-
ciated with a large reduction in magnetization
intensity, which could be indicative of remag-
netization. It became clear that excursions of
the geomagnetic field did exist when the same
events could be detected at distinct locations,
and in some cases in different materials, i.e.,
volcanics and sediments [Verosub and Bene-
rjee, 1977; Verosub, 1982; Champion et al.,
1988; Quidelleur and Valet, 1994]. Excursions
and reversals share several common character-
istics, which suggest that they can be treated as
manisfestations of similar processes within the
core. Alternatively, excursions are regarded by
some authors as an intrinsic part of secular
variation, whereas reversals would involve
longer time and larger spatial scales [Lund,
1997]. The main question is thus to know
whether paleomagnetic records are detailed
and accurate enough to make a clear distinction
between these two possibilities.

3.2.3. Apparent Duration of Excursions and
Reversals

1541 Excursions and reversals are, geologically
speaking, rapid phenomena and thus their exact
duration is extremely delicate to evaluate. In
their recent review on polarity transitions, Mer-
rill and McFadden [1999] have summarized
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four distinct approaches to estimate the duration
of reversals. Estimates derived from cooling of
intrusive igneous rocks are not very reliable
because of uncertainties in cooling rates. Statis-
tical approaches involving the number of oc-
currences of intermediate directions are also not
very meaningful. Indeed, in many cases, records
have been obtained from single lava flows so
that it is impossible to distinguish intermediate
directions associated with excursions from tran-
sitional directions during reversals. Actually, it
is common to encounter lava flows with direc-
tions pointing farther away from the geographic
pole than expected for usual secular variation
during periods without reversals. Direct abso-
lute dating of long sequences with well-identi-
fied events is the most reliable approach with
volcanics. However, most records are incom-
plete owing to the episodic nature of volcanic
activity. Oversampling of particular field direc-
tions is frequent, as is the absence of recording
during other periods. Above all, the uncertain-
ties inherent to dating techniques are at least
equivalent to the duration of the event. Combin-
ing and averaging datings of parallel records
does not reduce uncertainties and thus does not
solve the problem.

(551 An interesting case is the Laschamp event,
which was initially detected in several lava
flows from the French Massif central at
Laschamp, Olby, and Louchardi¢re [Bornhom-
met and Babkine, 1967]. The Laschamp event
is by far the most extensively dated excursion.
Three sets of measurements performed at three
laboratories on the same sample sites [Gillot et
al., 1979] indicate that absolute ages of the
Laschamp and Olby flows lie between 38 and
50 ka with a mean estimate of 46.6 + 2.4 ka
[Levi et al., 1990]. However, there is strong
overlap of the determinations when dispersion
is taken into account. This conclusion is re-
inforced when adding results from Icelandic
lava flows, which very likely recorded the same
event with a mean age of 42.9 + 7.8 ka ob-
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tained from 19 determinations [Levi et al.,
1990]. Thus, despite the existence of detailed
records, it is impossible to obtain better esti-
mates for the duration of this event.

56 Records from sediments could be more
appropriate. The best and most detailed records
of the Laschamp event have been published
recently by S. Lund et al. (Deep sea sediment
records of the Laschamp geomagnetic field
excursion (~40,000 14C years BP), submitted
to Geophysical Journal International, 2000)
based on marine sediments with very high
deposition rates. The results indicate a duration
of 2000 years for the period with low intensity
and a shorter one for directional changes. The
fact that intensity changes would last longer
than directional changes is readily understood
[Mary and Courtillot, 1993], if one accepts that
the (axial) dipole plays a special role among
other field components [Courtillot et al., 1992].
Indeed, the intensity of the (axial) dipole needs
to be reduced by a very significant factor (of
the order of 3 to 5), compared to its “normal”
values, before dipolar dominance in field geo-
metry at the Earth’s surface is significantly
affected (and field directions or VGPs start
departing strongly from a dipole-dominated
field).

1571 These estimates obviously require that the
mean deposition rate was high enough and
more or less constant and also that smoothing
resulting from postdepositional reorientations
can be neglected. Actually, whereas records
with very high deposition rates are supposed
to provide the best estimates, in such cases,
there is an increased probability that the deposi-
tion rate was highly variable. It is often claimed
that field reversals last longer than excursions
because excursional directions are rare in sedi-
ments while transitional directions are more
frequent, which would explain also why there
are so few estimates of their duration. However,
several factors can affect the sediment thick-
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ness over which the magnetic event has been
recorded. Significant delay in the acquisition of
magnetization can generate smoothing of non-
antipodal pre- and posttransitional directions
and thus create artificial intermediate directions
[Rochette, 1990; Langereis et al., 1992]. This
smoothing effect is more pronounced for re-
versals than for excursions for which the pre-
and postevent directions are close and not
antipodal [Quidelleur and Valet, 1994]. In the
same vein, complications can arise from early
diagenetic processes [Van Hoof, 1993], with
particular intervals being affected by dissolu-
tion and/or precipitation of minerals, resulting
in the obliteration of an excursion or alterna-
tively in a longer apparent duration.

(s8] Not only are there differences between the
apparent duration of different events but also for
the same event recorded at different locations.
This is particularly well documented for the last
reversal. Such variability could reflect the fact
that the apparent duration of reversals or excur-
sions actually depends on site location. Indeed,
the intensity of the axial dipole decreases during
reversals and excursions and higher-order terms
become more prominent or may even dominate
field geometry. Because they fluctuate with a
much shorter spatial wavelength, the duration of
directional changes can be strikingly different at
different locations [Quidelleur and Valet, 1996;
Carlut et al., 1999]. This would explain why
very different durations (from a few years to 10
kyr) have been published for the Brunhes-Ma-
tuyama reversal and also why excursions are so
difficult to observe.

(599 In summary, we do not find convincing
evidence for significant differences between
durations of excursions and reversals. In most
cases, directional changes would take place in
less than 5 kyr, which justify that this upper
limit actually fits category A. However, dura-
tions as short as 1 kyr or even less have been
proposed based on high-resolution records
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[Love and Mazaud, 1997; Merrill and McFad-
den, 1999] and cannot be totally excluded.
There are also longer durations such as for the
Gauss-Matuyama [Glen et al., 1999]. Gubbins
[1999] suggested recently that the field would
reverse in the liquid outer core during excur-
sions but not in the inner core, whereas reversals
would involve the entire core. A similar sugges-
tion, based on 3-D simulations of these events,
was discussed by Glatzmaier et al. [1999]. In
fact, Gubbins divides the field into the outer
core field and the inner core field, whereas
Glatzmaier et al. simulations show that the
two different field polarities tend to divide along
the tangent cylinder (that is, the field outside the
tangent cylinder can reverse its polarity without
the field inside the tangent cylinder reversing).
These appealing suggestions are not yet testa-
ble, since the overall variability of the duration
of reversals still does not allow one to argue that
they would last significantly longer than excur-
sions. The first critical parameter that should be
explored is the apparent duration of a same
event at different sites, which depends on details
of field morphology.

3.2.4. Field Intensity During Excursions

0] The absence of records with sufficiently
good geographic coverage implies that the
documentation of the “excursional” field is
relatively limited and thus prevents us from
drawing firm conclusions. There is no systema-
tic feature emerging from the present excursion
database. Virtual geomagnetic poles (VGP) are
often used as a simple way to characterize field
geometry during excursions and reversals. The
compilation of excursional VGPs does not
show any preference for a particular sector of
longitude [Quidelleur and Valet, 1994]. In fact,
the present data set remains fully compatible
with the simplest hypothesis, which links ex-
cursions to amplified directional secular varia-
tion directly related with a large decrease in the
geocentric axial dipole (GAD) [Courtillot et
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al., 1992; Mary and Courtillot, 1993; Courtil-
lot and Valet, 1995].

(611 Further indications about the origin of
excursions come from relative paleointensity
records, which demonstrate that most acknowl-
edged excursional events are coeval with a
large decrease in the GAD. Recent papers
[Langereis et al., 1997; Lund, 1997; Lund et
al., 1998] report compilations of excursions in
the most recent Brunhes (0—780 ka) normal
chron. Six excursions can now be reliably
considered as worldwide events, whereas five
others have not been globally correlated [Lan-
gereis et al., 1997]. The six global events are
associated with the major intensity lows in the
composite paleointensity record of Guyodo and
Valet [1999]. This is consistent with the ob-
servation that nondipole components did not
emerge everywhere in the five cases with a
larger GAD and also that the apparent duration
of each excursion is significantly different at
each site [Quidelleur et al., 1999]. Thus the
frequency of excursions in the last Myr appears
to be much higher and to yield a much more
unstable image of the field than was assumed
before. Several results indicate that the same
characteristics prevailed during periods older
than 1 Myr, and it appears likely that excur-
sions punctuated the entire history of the geo-
magnetic field. We therefore believe that
excursions, and their frequency of occurrence,
is a major field characteristic that must be
considered as an actual constraint for dynamo
modeling (category A).

621 Very few detailed records of absolute pa-
leointensity have been obtained across excur-
sions [Roperch et al., 1988; Chauvin et al.,
1991; Carlut et al., 1999]. A noticeable feature
is the absence of field recovery (during the
excursional period) before the field returns to
initial polarity. This is also the case in the
sedimentary records. However, we are well
aware that the brevity of the event in compar-
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ison with the resolution of the records prevents
any strong inferences. One can speculate that
the absence of recovery could be a sufficient
condition for a rapid return to initial polarity;
conversely, intense recovery following a geo-
magnetic instability could be a necessary con-
dition to induce a stable polarity. However, if
excursions and reversals are primarily linked
with strong decreases in (axial) dipole intensity
with little changes in the amplitudes of other
(nondipolar) terms, a whole spectrum of excur-
sions will simply be due to fluctuations in
dipole intensity. The smaller the fluctuation,
the more evasive the excursion. In that case the
notion of field recovery is part of the descrip-
tion and definition of the excursion, with no
other special physical causal link. Given the
very few detailed records obtained so far, it is
premature to consider such observations as
systematic and hence to give them too much
weight in dynamo modeling (thus C rating).

3.2.5. Field Intensity Variations Across
Reversals

631 A large number of paleomagnetic studies
have been carried out for about 20 years in
order to document field variations during re-
versals. It is now relatively well established, on
the basis of sedimentary as well as volcanic
records, that field intensity drops significantly
and that these changes last longer than direc-
tional changes (see Merrill and McFadden
[1999] for a complete review). Again, this is
simply because a large decrease in dipole
intensity is necessary before directions depart
significantly from dipolar ones [Mary and
Courtillot, 1993]. There are also indications
that recovery following a transition is short
and culminates in higher values than before
the decay phase. Indeed, the four detailed
volcanic records including determinations of
absolute paleointensity provide support for
such an asymmetry. Strong posttransitional
field values have been reported in a Pliocene
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reversal recorded at Kauai [Bogue and Paul,
1993] and in the upper Jaramillo subchron
recorded from Tahiti [Chauvin et al., 1990].
The comparable characteristics emerge also
from the 15 Ma old Steens Mountain reversal
[Prévot et al., 1985] and the Matuyama-
Brunhes transition recorded from La Palma in
the Canary islands [Valet et al., 1999]. Similar
observations have been drawn from sediments
but over much longer periods (we will return to
this later). In the present situation we are only
dealing with relatively short time periods pre-
ceeding and following the reversals. In this
case the present database shows asymmetrical
field changes. Since additional records are still
needed on this matter, this observation has been
classified in category B.

3.2.6. Field Morphology During Reversals

¢4 Many reversal studies have attempted to
constrain field geometry on the basis of the
configuration of VGP paths. After early pub-
lications of a few sparse records from volcanic
flows, most attention was focused on sedimen-
tary records. It was rapidly accepted that the
field was not dipolar during reversals [Dagley
and Lawley, 1974; Hillhouse and Cox, 1976].
Despite still ongoing discussions the nondipo-
lar character of the transitional field is more and
more widely recognized and seen as a direct
consequence of the overall and systematic drop
of dipole intensity. We consider that this is an A
level constraint that must be produced by
numerical simulations of reversals. Syntheses
of paleomagnetic records published about 10
years ago yielded several very interesting and
still controversial observations [Clement, 1991;
Tric et al., 1991; Laj et al., 1992; Gubbins,
1994; Gubbins and Love, 1998], such as the
existence of preferred longitudinal bands for
VGP paths, over the Americas and eastern
Asia, possibly in relation with the cold cir-
cum-Pacific regions in the lower mantle (out-
lined by seismic tomography). It was shown
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subsequently [Valet et al., 1992; McFadden et
al., 1993] that this coincidence cannot be
interpreted without taking into account the poor
distribution of paleomagnetic sites, which lie
mostly 90° away from the preferred bands.
Actually, many factors related to acquisition
of magnetization in sediments in the case of
low field intensity can generate VGP paths 90°
away from the observation sites [Quidelleur
and Valet, 1994; Quidelleur et al., 1995; Barton
and McFadden, 1996; Langereis et al., 1992;
Rochette, 1990]. Prévot and Camps [1993]
observed also that there is no preferred long-
itudinal band emerging from the database of
volcanic records. Recently, Love [1998] ques-
tioned this interpretation, arguing that similar
directions from successive flows should not be
averaged, because they do not necessarily result
from a very rapid succession of eruptions.
Instead, he treated each individual flow as a
single time event (implying no correlation
between successive flows, or identically that
the duration between flows was longer than the
typical correlation times of secular variation;
see above). This is a drastic assumption and a
violation of the Occam’s razor principle. The
most extensively dated flows from Hawaii
show evidence that such is not the case [Hol-
comb, 1987] and a recent study of the same
reversals [Herrero-Bervera and Valet, 1999]
recorded in three parallel sections show that
identical successive transitional directions are
not reproduced between parallel sections. This
is clear evidence of fast sampling of geomag-
netic changes by irregular and spatially limited
volcanic flows. Actually, both analyses are
limited by the number of sites and by the
identification of actual transitional directions.
Because VGPs obtained from volcanics can
reach latitudes as low as 45—50° during epi-
sodes of large secular changes (and of course
excursions), one should restrain reversal ana-
lyses to ‘““actual” transitional directions, i.e.,
corresponding to VGP latitudes less than 45° in
order to support a more robust analysis. There
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is actually no clear distinction between excur-
sional and transitional VGPs; Love’s [1998]
subset of data shows significant scatter when
restrained to “pure” transitional VGPs. Would
we wish to rely on VGP positions lower than 45°
(and not 60°), the number of points would
become far too small to perform any robust
analysis. An answer to this question should rely
exclusively on volcanic records with well-de-
fined pre- and posttransitional directions and a
sufficient number of intermediate directions.
Only those records have some significance in
terms of transitional field characteristics, with-
out generating unacceptable uncertainties about
the origin of the directions and their stratigraphic
relationship. The distribution of poles extracted
from this very limited database does not display
any preferred location nor does it show any
evidence for systematics in the reversal process.
For these reasons the hypothesis of preferred
longitudinal VGP paths fits category B.

1657 Using another selection of records, Hoffinan
[1991, 1992, 1996] pointed out the existence of
VGP clusters in the vicinity of south America
and above western Australia, which could be
due to persistent inclined dipolar field config-
urations during the reversal process. This sug-
gestion would establish some link between
sedimentary and volcanic records. Such features
could imply some form of indirect control of the
reversal processes by the mantle, generating
heterogeneous flow at the CMB. Such hetero-
geneous constraints at the CMB are not taken
into account in most present dynamos. However,
VGP clusters could simply indicate that a series
of volcanic flows were emitted over a short
interval of time compared to the time constants
of secular variation (years rather than centuries
or millenia). As described above, clusters of
directions are not reproduced between nearby
sections of the same reversals in Hawaii [Her-
rero-Bervera and Valet, 1999] and are therefore
most likely due to a brief spurt of volcanic
activity. These cannot be considered as statisti-
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cally uncorrelated data for the kind of analyses
we wish to perform. The apparent concentration
of VGPs close to south America and western
Australia could therefore still be considered as a
coincidence (or a sampling artefact). Thus it
cannot be considered as certain yet that long-
lived transitional states represent an actual char-
acteristic of the reversing field, and this leads us
to rank this observation within category B.

6] A dominant feature emerging from the most
detailed sedimentary [Valet et al., 1986; Tric et
al., 1991; Channell and Lehman, 1997) and
volcanic (Mankinen et al., 1985; Chauvin et
al., 1990; Herrero-Bervera and Valet, 1999]
records is their complex structure, with large
directional variations (particularly in inclina-
tion) preceeding and/or following the transition.
The presence of such large loops shows similar-
ity with secular variation of the present nondi-
pole field. This observation reinforces the
concept of a rather complex transitional field
that would be dominated by nondipole compo-
nents, subsequent to the large decrease of in-
tensity that has been observed in all records of
reversals. Therefore the simple model that con-
siders the field variations during reversals as
identical to historical secular variaton [Dagley
and Lawley, 1974; Valet et al., 1989; Courtillot
et al., 1992] remains in our view the most
plausible. The large loops are easily modeled
as soon as the drop in (axial) dipole field
intensity is large enough to let the typical pattern
of secular variation of nondipole terms emerge.
This observational fact should in our view be
considered as an actual characteristic of transi-
tional field morphology, and could be a useful
constraint for numerical dynamos (category A).

3.3. From 10 to 100 kyr

3.3.1. Oscillations of Dipole Moment

671 In principle, field intensity changes
should not be decoupled from directional
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changes and the magnetic field vector should
be studied as a whole. Unfortunately, paleoin-
tensity studies were only developed exten-
sively during the past decade. Except for
the past 40 kyr, which are well documented
by a large number of full vector data, not
much information has been gained from re-
cords of absolute paleointensity. Recent de-
velopment in the measurement of relative
paleointensity from sediments has signifi-
cantly changed this picture. Thirty-two re-
cords from different locations around the
globe have now been integrated into the
Sint-800 composite curve, which describes
the variations of the GAD field intensity up
to 800 kyr [Guyodo and Valet, 1999]. The
resolution of the curve is limited by the
subset of records with the poorest resolution
and is not better than a few thousand years.
Directional variations mostly reflect changes
in dipole field intensity. The geomagnetic
nature of the signal is strongly supported by
its agreement with an independent estimate
derived from the variation in '’Be production
during the past 200 kyr [Frank et al., 1997;
Frank, 2000].

8] Several features inherent to these records
can thus be considered as actual geomagnetic
characteristics and thus fit category A. The
first one is the very variable overall character
of the field, which depicts a succession of
large 20-60 kyr long oscillations and
changes in amplitude, that can exceed a
factor of 5. Within the limits imposed by
the low resolution of the curve to document
short-term variations we could not identify
any periodicity in any time interval (long
enough to allow proper spectral analysis).
Thus dipolar field intensity has varied in a
nonperiodical, erratic manner (periodicity
would enter category C). Another interesting
observation (see above) is that the weakest
intensities always correspond with geomag-
netic excursions.
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3.3.2. Average Dipole Moment

691 Another aspect is the time-averaged value
of the dipole moment. Between 50 and 15 ka
B.P. the number of volcanic records is large
enough to average out nondipole compo-
nents within 5 kyr windows. For this period
the dipole moment has an average value of
(4.5 + 0.6) x 10* Am?, nearly half the
(8.7 £ 1.6) x 10> Am? value found over the
past 10 kyr.

3.4. From 0.1 to 5 Myr

3.4.1. Average Dipole Moment

700 For older periods, temporal coverage of
the volcanic database is much poorer than with
sediments. The calibration of Sint-800 has
been performed by adjusting the younger part
of the curve with the volcanic data set. Since
Sint-800 incorporates a very large number of
records, it is reasonable to consider that the
differences in amplitude between distinct re-
cords have been averaged out. Thus the mean
value of 6.0 x 102 Am? with a standard
deviation (s.d.) of 1.5 obtained for the past
800 kyr can be considered with good confi-
dence. Unfortunately, this calculation cannot be
extended as yet over a longer period by using
sediments because of the absence of worldwide
records. The number of volcanic records is also
far too sparse and poorly constrained in time. In
addition, a typical problem inherent in the
volcanic data set is that dispersion increases
with the number of results within each temporal
window. Overall averages performed from vol-
canics tend to indicate higher values than those
derived from calibrated sedimentary records.
The 4 Myr long record from the Pacific ocean
[Valet and Meynadier, 1993] has an average
value of 4.0 x 102 Am? (s.d. 1.9). This is
almost half the 7.4 x 10°? Am? value (s.d. 4.3),
which is often quoted [Merrill et al., 1996] and
in satisfactory agreement with the determination
of 5.49 x 10** Am? (s.d. 2.36) recently pub-
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lished by Juarez and Tauxe [2000] after careful
data selection. Note, however, that the volcanic
database derived from this subset has very poor
temporal coverage and large dispersion. Sedi-
mentary records calibrated with volcanic data
remain at the present time the most promising
approach to extract the field mean intensity over
a long period of time.

711 In summary, it is likely that the average
field intensity was about 6 x 10** Am? during
the past 0.8 Myr, which is 30% lower than the
present-day field. Despite large uncertainties
and poor geographical and temporal coverage
of the existing data, there is no evidence as yet
for any substantial long-term decrease (or in-
crease) of mean field intensity for, say, the past
10 Myr. Of course, there is no reason why
present-day field intensity should be considered
as representative of the long-term average. One
can thus consider that the mean intensity varies
between 4 and 6 x 10*> Am? on this timescale
(category A). This is reasonably well estab-
lished for the past 1 Myr and is likely to hold
also the past few million years.

3.4.2. Sawtooth Pattern of Intensity
Variations

721 No attention could be paid to field intensity
changes across reversals until the recent emer-
gence of long and well-dated sedimentary se-
quences. It is essential to detect whether
specific conditions prevail before the field
reverses and if there is any influence of rever-
sals on dynamo operation. The most intriguing
feature is the sawtooth shape of the records that
features a long-term decrease of the field in-
tensity during periods of stable polarity and a
large and rapid increase immediately after the
reversals. Such characteristics have been ob-
served in several records from the Pacific and
Indian Oceans [Valet and Meynadier, 1993;
Valet et al., 1994; Thibal et al., 1995; Verosub
et al., 1996]. However, there are also records
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that do not exhibit such asymmetry between the
pre- and postreversal periods [Laj et al., 1996].
Raisbeck et al. [1994] attempted to observe the
changes in '°Be production that are modulated
by the screening effect of the geomagnetic field
against penetration of cosmic rays. However,
the results were inconclusive, since they did not
reveal any variation accompanying the large-
intensity changes that prevail during reversals.
Several alternative nongeomagnetic explana-
tions have also been proposed [Meynadier
and Valet, 1995; Mazaud, 1996; Meynadier
and Valet, 1996; Kok and Tauxe, 1996a,
1996b], but they have not been convincingly
demonstrated so far [Meynadier and Valet,
1996; Meynadier et al., 1998]. Of course, this
does not validate the geomagnetic origin of the
sawtooth shape of relative paleointensity,
which has thus been ranked among the B level
observations. Detailed records of '°Be produc-
tion for this period would certainly be extre-
mely useful. Another promising approach may
be provided by detailed study of young
marine magnetic anomalies: recent studies
[Gee et al., 1996; G. Pouliquen et al, A
geomagnetic record over the last 4 million
years from deep-tow magnetic anomaly pro-
files across the Central Indian Ridge, sub-
mitted to Journal of Geophysical Research,
2000] have shown that the oceanic crust
formed at ridges can provide a reliable record
of field intensity changes. The 4 Myr records
obtained so far from sediments depict a field
evolution dominated by a succession of highs
and lows, similar to the past 800 kyr. The
intensity lows coincide either with reversals
or with excursions and/or short events. Thus
it appears that the major characteristics of
variations in field intensity (time constants,
amplitude, averaged value) remained un-
changed during the past four million years.
In other words, no drastic changes in field
intensity variations need to be expected in
numerical dynamos over periods of a few
million years.
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3.4.3. The Last 5 Myr (Very Long Term
Averages of Spherical Harmonic
Coefficients)

(73] Paleomagnetists have assembled large di-
rectional databases from sediments and lava
flows to search for persistent features in the
geomagnetic field in the time window from
hundreds of thousands to millions of years.
Recent analyses [e.g., Johnson and Constable,
1997; Kelly and Gubbins, 1997; Carlut and
Courtillot, 1998] of some of these bases using
diverse inverse techniques come to somewhat
different conclusions. All agree on the pre-
sence and robustness of a long-term axial
quadrupole g,°, on the order of 5% of g,°.
Carlut and Courtillot [1998] estimate that all
other terms have long-term zero averages,
compatible with the Constable and Parker
[1988] Gaussian process. Carlut et al. [1999]
find that the persistent axial quadrupole
emerges from noise when the length of the
available time series exceeds about 6 kyr. This
would be why archeomagnetic data are not
sufficient to isolate it. Johnson and Constable
[1997] and Kelly and Gubbins [1997] find
flux concentrations at the core surface under
Canada and Siberia, similar to those observed
over historical times and possibly related to
columns parallel to the rotation axis in the
core. They propose that the present pattern of
secular variation is typical of the past mil-
lions of years. Johnson and Constable [1997]
find significantly smaller higher-order and
nonzonal terms than Kelly and Gubbins
[1997], yet they do believe that they are
significant. Therefore, given ongoing debates,
in addition to g,° only a small persistent g,°
(about 5% of g,°) can be considered as a
robust constraint on the 10° to 10° year
timescale for modeling purposes (category
A). Values of other g,” and h,” remain
controversial. However, they can all be safely
considered to be below 1 uT (a rather weak
category A constraint).
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3.5. Beyond 5 Myr

3.5.1. Changes in Reversal Frequency

741 There have been many studies dealing with
statistics of the reversal sequence, some claim-
ing that reversals form a Poissonian process,
whereas others favor some form of determin-
ism. The distinction is sometimes subtle. The
succession of polarity intervals is closely ap-
proximated by a Poisson process or at least by a
gamma process [McFadden, 1984; McFadden
and Merrill, 1984, 1986, 1993; McFadden et
al., 1987; Lutz and Watson, 1988], assuming
that short events have been missed in the
reversal sequence. This implies that subsequent
refinement of the magnetic polarity timescale
could bring different conclusions. Thus the
distribution of the length of polarity intervals
cannot be considered as a major constraint to
build an Earth-like dynamo.

(751 However, reversal frequency slowly chan-
ges between well-defined values. The long-
term (hundreds of Myr) average is of the order
of 1 reversal per million years, and the max-
imum value when averaged over a few million
year does not seem to exceed 6 reversals per
million years (category A).

3.5.2. Superchrons

1761 It could be tempting to take into considera-
tion the occurrence of very long periods with-
out reversals, such as the Cretaceous or Kiaman
superchrons. These are periods when the field
apparently did not reverse for tens of millons of
years (though, see Tarduno et al. [1992], on the
presence of events within the Cretaceous super-
chron). There is no doubt that these are extreme
occurrences in the time series of geomagnetic
chrons (category A). However, there is no
agreement on how extreme they are. They
might correspond to possible values with low
probabilities; the small total number of avail-
able reversals precludes a firm statistical con-
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clusion. They might correspond to times when
the process responsible for geomagnetic rever-
sals passed below a certain critical threshold,
and reversals could start again only when that
threshold was exceeded again. Various other
analyses [e.g., McFadden and Merrill, 1995]
suggested that these intervals would reflect
cessation of the reversal process. In other
words, the geodynamo would have a reversing
and a nonreversing state. Alternatively, Gallet
and Hulot [1997] proposed an explanation in
terms of perturbations of the reversal process.
Such changes may depend on factors directly
connected with boundary conditions that affect
the flow pattern within the core (such as the
distribution of heterogeneities within the D"
zone of the lower mantle) and therefore may
not be related to the intrinsic time constants of
the geodynamo. Consequently, we feel that
taking these superchrons as constraints for
dynamo modeling is not yet warranted, parti-
cularly in the case of homogeneous conditions
at the CMB.

(771 The same remark also holds for the hypoth-
esis that there would be a long period of low
dipole intensity between 120 and 180 Ma
[Perrin et al., 1991; Courtillot and Besse,
1987]. Note that the accumulation of new
results suggests that the duration of this period
(if ever it existed) has been considerably over-
estimated, so that no reliable estimate can be
derived as long as a large independent set of
data has not been obtained (category B).

781 The observational constraints summarized
in this section are listed in Table 2, together with
what we estimate to be their robustness and
reliability and whether they can actually be used
in constraining numerical dynamo models.

4. Discussion and Conclusion

791 A comparison between characteristics of
numerical models and observations requires

101

additional care, both when interpreting results
from numerical models and when selecting
relevant constraints. In this section, we first
try to highlight the difficulties of such an
exercise; we then attempt a comparison based
on previously published models (when relevant
data, i.e., numerical results, are available,
which is far from being the general situation);
finally, we propose a short list of the features
that we feel should be presented with each
numerical model in the future to allow a more
efficient comparison with observational con-
straints.

soj] The scaling of quantities extracted from
numerical models requires some attention be-
fore they can be compared with Earth values.
Equations are usually solved in nondimensional
form (to broaden potential use of the solutions
and reduce the number of parameters involved).
If all nondimensional numbers used in the
computations were equal to their geophysical
values, an obvious transformation would then
allow one to scale numerical results and com-
pare them with actual observations. It is clear at
this point that this is not the case and that
parameters used in the numerical simulations
may significantly differ from geophysical esti-
mates. In this case, the “scaling” needed to
compare results with observations is not
straightforward anymore and one can interpret
the discrepancies in the nondimensional num-
bers in terms of different physical quantities.
For example, if the Ekman number (v/Qr.2)
used in the numerical model is larger than the
Earth value, this could be interpreted as either
due to a higher value of viscosity or to a
smaller size of the core or to slower rotation
of the Earth.

811 Moreover, interpretations need to be con-
sistent with the definition of all other nondi-
mensional numbers relevant to the system. For
instance, we may want to scale the results of a
computation to compare the intensity of the
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Table 2. Major Characteristics of the Geomagnetic Field

Multiple ~ Volcanics and  Different

Timescale F D, I Field Characteristic Sites Sediments Authors  Controversy  Status
01-Tkyr  x_ . X geomagnetic impulses Yoo na. Yo A
X geomagnetic impulses during reversals n y? n y

.x_ . x_ Pacificdipole window "y~ na 'y y B~
X X global and systematic westward drift n_ooo na. Yoo C ..
. columns and patches Yoo na. Yo A

dipole dominates y n.a y A
1-10kyr T X  global and systematic westward drift T n T na. y Ty UCT
T excursions and réversals have T ooy yo A
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, similar durations shorter than S kyr
X X excursions associated with intensity lows YooY Yo A

X X reversals dominated by nondipole components y y y A
Cox T x T asymmetrical decay and recovery y Ty y B

immediately before and after reversal

C

y A

0.1-5 Myr X long-term decrease (saw-tooth) y y y y B

during stable polarity

Coox average dipole moment T y Ty y A
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, between 4 and 6 x 10 Am®
e X columns and patches Yo Yo Yoo Yoo B .
X X dipole dominates . ... Yoo Yo Y A

X 1000 < g,° < 2000 nT y y y A
o x T g h, ™ <1000nT y Ty y AT
SEMyr T x 7 reversal frequency < 6/Myr T y T y T y A
I x T superchrons™ T y o Ty y A
S x Mezosoic dipole low T y y y B

Each line corresponds to a proposed characteristic feature of the field. These are arranged (as in the text) in the order of increasing timescales (first column). Next two columns indicate
whether these involve measurements of field intensity (¥) and/or direction (D,/). The characteristic feature (next column) is then evaluated through the answer to the following questions
(four next columns): “Was it observed at multiple sites?”, “Was it observed both in volcanics and sediments?”, “Was it reported by different authors?”, “Is it an ongoing controversy?”.
The last column is a direct consequence of the preceeding ones and suggests a classification of field characteristics into three categories: A (established), B (still discussed), and C
(unlikely). Only category A will be retained for comparison with numerical models. (Abbreviations used are as follows: n.a., not applicable; y, yes; n, no.)
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induced magnetic field with that observed for
the Earth. Field intensity is usually based on
rotation rate and magnetic diffusivity. If we
want to interpret our results using Earth values
for both quantities, we must consider all non-
dimensional numbers using these values. Let us
assume that we describe our system with three
nondimensional numbers: the Ekman, Prandtl,
and magnetic Prandtl numbers. Because rota-
tion is now fixed, viscosity is given by the
value of the Ekman number used in the com-
putation. Because magnetic diffusivity is also
fixed (to determine field intensity), thermal
diffusivity is given by the value of the magnetic
Prandtl number used in the computation. As a
consequence, because viscosity and thermal
diffusivity are given, there is only one consis-
tent (imposed) value for the Prandtl number.
When inertia is dropped from the computation,
the Prandtl number is “free” (although it
should be kept small to justify the simplifica-
tion); but if such is not the case, its value is
already independently fixed in the computa-
tion, leading to a possible inconsistency in
interpreting the results (see discussions by
Glatzmaier and Roberts [1995a, 1995b] and
Kuang and Bloxham [1998]).

821 Timescale constraints are particularly diffi-
cult to take into account with numerical mod-
els. The reason for this difficulty is again a
consequence of the parameters used in the
simulations (that can be readily interpreted as
ratios of characteristic timescales). Numerical
results are often published using “year” as unit
of time. By year, authors generally mean “mag-
netic year,” i.e., the timescale constructed using
the dipole decay time, or magnetic diffusion
timescale in the Earth’s core (roughly 20 kyr).
A consequence is that the ratio of the rotation
timescale (the day) to the magnetic timescale
(directly proportional to the magnetic Ekman
number defined above) is much larger than it
should be. One can count much less than a day
per year in most models.
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831 The fact that numerical models use para-
meters far from geophysical estimates must be
taken into account when establishing which
observational constraints can effectively be
used for comparison with numerical predic-
tions. For example, it is difficult to directly
incorporate constraints based on timescales in
numerical results, for the reasons stated above,
and we will therefore prefer to present them in
terms of ratios of characteristic times or scale
them using the dipole diffusion time.

84 In section 2 on generally accepted facts
versus ongoing controversies, we propose a
classification of magnetic features (i.e., geo-
magnetic and paleomagnetic “observations’’;
see Table 2) in three main categories: those
that are established independently by different
teams and essentially agreed on by most
authors and that can safely be considered as
robust constraints for numerical dynamo mod-
eling (A); those for which the extent of con-
troversy or disagreement is such that they
should not be used pending confirmation (B);
and those that are most unlikely (C). Some
features that had been proposed in the past can
clearly now be rejected. The decision to place
data into one category should be as objective as
possible, and we have outlined a few criteria
that we believe should be prerequisites. How-
ever, there is clearly room left for ambiguity
and personal bias (or preference), and we do
not claim to be free of such limitations.

851 A sensible choice appears to be to retain
only the first category of observations (A) as
constraints for numerical models. We believe
features placed in this category to be free of
controversies. Following the presentation
adopted in Table 2 and starting with the 0.1—
1 kyr scale, the existence of geomagnetic im-
pulses should clearly be retained as a strong
and well-established constraint. Features such
as the Pacific dipole window low, columns and
patches, or even the ratio g,°/g,° (as estimated
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over this timescale) need confirmation from
longer timescale observations. On the 1-10
kyr scale the existence of excursions and re-
versals and the fact that both have similar
durations (shorter than half of the dipole decay
time) clearly is a robust and efficient constraint
and so are as well the existence of intensity
lows associated with excursions and the non-
dipolar character of the field during reversals.
On the 10—100 kyr scale, oscillations of dipole
intensity with time constants of the order of 1
to 3 dipole decay times is a robust constraint.
On the 0.1-5 Myr scale the average intensity
of the field between 4 x 10*? and 6 x 10*
Am? is well established as well as the ratio
2,°/g,°, close to 5%. From longer scales the
only robust observations are the maximum
reversal frequency (~5 Myr ') and the exis-
tence of superchrons. Because such timescales
are comparable with the characteristic time-
scales of mantle convection and evolution,
there is a possibility that superchrons are not
only due to some internal mechanism of the
dynamo but are linked to boundary conditions
imposed by the mantle on the CMB. This issue
is still the focus of an ongoing debate, and it
should not, at this stage, be retained as a robust
constraint. This prevents us from establishing a
meaningful minimum reversal frequency.

6] In summary, according to the above discus-
sion, there appear to be currently 10 and only 10
well-established, robust constraints for dynamo
models: (1) Dipolar character of the field; (2)
existence of geomagnetic impulses or jerks with
a short time scale (less than 10~ times of the
dipole decay time); (3) existence of excursions
on timescales of the order of one tenth to one
half the dipole decay time; (4) excursions asso-
ciated with intensity lows; (5) existence of
reversals, with a duration comparable to that
of excursions, and occurring at a rate of at most
1 per 10 dipole decay times; (6) nondipolar
character of the field during reversals; (7) non-
periodic long-term oscillations of dipole inten-
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sity (1 to 3 dipole decay times) with maximum
amplitude 5 x 10*> Am?; (8) long-term average
dipole intensity between 4 x 10*? and 6 x 10**
Am? (when averaged over more than ten dipole
decay times); (9) long-term average value of g,°
between 1 and 2 uT (i.e., close to 5% of that of
2:°), when averaged over more than 10 dipole
decay times; and (10) long-term average values
of all higher-degree terms lower than 1 pT,
when averaged over more than 10 dipole decay
times.

871 Clearly, there is no proof that any magnetic
field satisfying all these requirement will neces-
sarily correspond to the same generation me-
chanism as that actually operating within the
Earth’s core; comparisons with asymptotic stu-
dies constitute the only robust confirmation.
Also, one could imagine a numerical dynamo
model could be based on the correct physical
processes occurring in the Earth’s core but not
satisfy some constraints, simply because some
parameter values would not be appropriate (and
as a result, some outputs would not scale prop-
erly). Nevertheless, this appears to be a minimal
set of well-established necessary conditions for
a numerical model to claim Earth-like behavior.

88 Most numerical models were integrated
over a few dipole diffusion times (about 3) to
attest self-sustained dynamo action. However,
it is clear from section 2 that to test for Earth-
like behavior, relevant features and numerical
predictions should be averaged over at least 10
dipole diffusion times.

9] Comparing the above list with Table 1, it is
striking that apart from dipole dominancy, not
many features are common to both. Many
numerical models appear to concentrate on
rather controversial features that cannot be
considered as indisputably Earth-like (such as
westward drift of the field) but also outputs
from these models were not formatted in a way
that would allow direct comparison with ob-
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servational constraints. No impulses (jerks)
seem to have been uncovered in numerical
models. Excursions have only been reported
by the recent work of Glatzmaier et al. [1999].
When models presented reversals (e.g., Glatz-
maier and Roberts; Kageyama et al.; Kitauchi
and Kida), the maximum reversal frequency of
about 1 per 10 dipole diffusion times (1,) can
be used directly as a constraint. Clearly, the
Glatzmaier and Roberts [1995a, 1995b] model
(one reversal in ~3 T1,) is not testable, because
it is available over too short a time period.
Glatzmaier et al. [1999] (two reversals in ~15
T4) and Kageyama et al. [1999] (one reversal in
~50 T,) are on the right side according to this
test, although time integration is obviously too
short to establish a reversal frequency. Kitauchi
and Kida [1998] presented a polarity time
series with some 30 reversals in ~100 T, long
enough to suggest that the frequency value is
significantly above the requirement for Earth-
like behavior.

v0) Figure le presents dipole moment fluctua-
tions as observed over the last 3 million years,
i.e., approximately 150 dipole decay times
[Valet and Meynadier, 1993] together with the
SINT-800 paleointensity stack over the last 800
kyr [Guyodo and Valet, 1999]. These are com-
pared to the numerical results published by
three groups: Kida and Kitauchi [1998], Ka-
geyama et al. [1999], and Glatzmaier et al.
[1999]. These results cover a long enough time
interval to allow comparison with the Earth
observations. In addition, a histogram of the
dipole moment values in the corresponding
time series is shown (normalized to unit area,
except for Figure 1c and the red part of le
(SINT-800) for which it was normalized to one
half). Direct inspection of Figure 1 shows that
the Kida and Kitauchi [1998] curve (Figure 1d)
does not feature the alternance of polarities that
characterizes chrons (i.e., fails to predict a
symmetric bimodal histogram). The Glatzmaier
et al. [1999] tomographic model (Figure 1b)
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has too much high frequency oscillations, i.e.,
secular variation and excursions (as noted by
the authors), leading to a “flatter” histogram.
The results of Kageyama et al. [1999] (Figure
1c) are closer to traditional ideas of what
bimodal fluctuations should be like. However,
there is a lack of lower dipole moment values,
which is not observed in the case of Earth, and
more importantly the large contribution of the
octupole (not shown in Figure 1) is not at all
Earth-like. Finally, only the results from the
Glatzmaier et al. [1999] homogeneous model
(Figure la) appear acceptable. Indeed, they
look very much like a portion of the observed
record near 90-120 T4 but, of course, the
integration time (15 T,) is still too short to
allow a robust comparison.

1] Checking constraints concerning the dura-
tion of reversals would require comparison of
plots of paleomagnetic directions with numer-
ical results. Only Glatzmaier et al. [1999]
provide such plots for reversals. Both reversals
reported for the homogeneous model were
appropriately fast; however, the second reversal
in the tomographic model was apparently too
long. It would be useful if other models pro-
vided such information. The nondipolar char-
acter of the field during reversals would also
need documentation (such as field spectra dur-
ing reversals, only provided by Glatzmaier and
Roberts [1995a, 1995b])).

2] Finally, when trying to constrain the g,”,
h,” coefficients, it is clear that much relevant
information is usually absent from most papers
presenting numerical dynamos. These con-
straints are readily converted into constraints
on the energy spectrum of the average field (W,
=(n+ 1Y e0"(84™ + hy"); [Lowes, 1974]) at
the core-mantle boundary over a long enough
period of time (above 10 T,). Spectra have been
published for a few numerical models. Unfortu-
nately, these spectra were often instantaneous or
averaged over only a short period of time (the
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Figure 1. Time evolution of the dipole moment (relative values) for numerical dynamo models with
integration times longer than 10 dipole diffusion times (base lines correspond to zero). The x coordinate has
been scaled using dipole diffusion time T, as unit. (a, b) time evolution of the dipole moment as published by
Glatzmaier et al. [1999]; (c) same for Kageyama et al. [1999]; and (d) same for Kida and Kitauchi, [1998]. It
should be stressed that the length of time integration does not reflect the amount of modeling and
computational work, since the parameter regime is very different from one model to the other (see Table 1).
(e) Dipole moment measured for the Earth over the last 3 Myr [Valet and Meynadier, 1993] using the same
convention for time (present is at the far right), the red graph corresponding to the SINT-800 paleointensity
stack over the last 800 kyr [Guyodo and Valet, 1999]. The histograms on the right show the distribution of the
dipole moments for each simulation and for the observations (see text).

o

only exception being the model of Glatzmaier
and Roberts in the work of Coe et al. [2000]);
also, these spectra have been plotted at different
elevations (Earth surface, core-mantle bound-
ary, or depth corresponding to a flat spectrum).

93] We show all available spectra from those
papers, reduced to a common elevation (outer
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bounding sphere, corresponding to the core-
mantle boundary) on Figure 2. Spectra from
Glatzmaier and Roberts (GR95-1995b; GR96b-
1996b) correspond to instantaneous spectra
(three spectra for GR9S5, one for GR96b). The
spectra from Glatzmaier and Roberts (GR96a-
1996a) correspond to a series of values over 300
year (the green bars correspond to the intervals
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Figure 2. Published power spectra (wn=(n+I)Zmzl”(gn”’z-i-h,,mz) [after Lowes, 1974] for numerical dynamo
models. Spectra have been converted to a common unit and reduced to a common depth (core-mantle
boundary). Red dots represent the 1980 instantaneous spectrum for the Earth; red boxes represent the
intervals for the average field as inferred from paleomagnetic data (see text). Symbols for numerical models
are given in the inset; codes and references are given in the text (Note that not all model spectra are averaged

over the same length of time; see text).

over which these range). Kuang and Bloxham
(KB98-1998) display a spectrum averaged over
1500 years shown with its variance (bars). They
have, unfortunately, not published a spectrum
averaged over the total duration (~2 7,) of their
simulation. COG98 is a time average (probably
over 3 T,) spectrum from Christensen et al.
[1998]. Two spectra from Coe et al. [2000] were
averaged over 15 T, They correspond to the
Glatzmaier and Roberts model (GR0O0; one with
homogeneous thermal boundary conditions, the
other with an imposed heat flux inspired by
tomographic seismological studies). The 1980
field model (constructed with MAGSAT data

and observatories) is shown as red dots. This
spectrum is used for comparison by most
authors (with the exception of Kuang and
Bloxham [1998], who used the Bloxham and
Jackson [1992] model for comparison). It is
clear from section 2 that the field spectrum of
the Earth in 1980 or over 300 years cannot be
used as a valid constraint. On the other hand, the
first three components of the spectrum are well
constrained when averaged over more than 10
T4 (using the knowledge of the corresponding
g,", h," coefficients; see Figure 2). The corre-
sponding bounds are also indicated, for infor-
mation, on Figure 2. Clearly, one should not use

107



"4k~ Geochemistr 2
~ Geophysics Y(A‘J
" Geosystems {_7J

DORMY ET AL.. GEODYNAMO MODELS AND OBSERVATIONS

2000GC000062

these bounds to test all spectra displayed on
Figure 2, as they do not correspond to fields
averaged over more than 10 T, The only
exceptions are the two spectra presented by
Coe et al. [2000] that correspond to the Glatz-
maier and Roberts model.

4] Figure 2 allows us to conclude that models
such as GR95 and COG99, though averaged
over only a limited duration, are far more
energetic at all degrees than the actual geomag-
netic field. On the other hand, the “homoge-
neous” model (GRO0) of Coe et al. [2000],
averaged over 15 T, is rather close to the best
information we have about the paleomagnetic
field spectrum, whereas the ‘““tomographic”
model has a much too weak dipole. The
GRO0 homogeneous model [Glatzmaier et
al., 1999; Coe et al., 2000] appears to fit
rather well the contraints summarized in Fig-
ure 1 and 2, and it is the only one so far to
come close to such success (the Kuang and
Bloxham KB9S8, though possibly promising,
is averaged over only a fraction of T, which
is too short for a robust conclusion). How-
ever, we recall that the GR0OO model suffers,
like the other models, from unrealistic values
of the Ekman and magnetic Prandtl numbers.
Puzzling features include a large Elsasser
number (~100), contrary to expected (but
not demonstrated) Earth values which are
on the order of one. Also, magnetic induction
and fluid motion is localized mostly within
the inner part of the cylinder tangent to the
solid inner core, whereas models based on
secular variation have most of the motion
outside of this cylinder. Finally, the value of
the mean dipole term in the spectrum could
be ill resolved, since the authors state that
their high-resolution tests produce field inten-
sities that can be greater than Earth values
[Glatzmaier et al., 1999].

951 We may conclude this review with some
perspectives for forthcoming studies. We sug-
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gest that future numerical models wanting to
test for Earth-like behavior should clearly pre-
sent quantities averaged over the full integra-
tion time, which should (if possible) be at least
10 T4 From the observational side it would, of
course, be most useful to establish the validity
of some observations in category B, to propose
additional constraints for dynamo models. In-
deed, Carlut et al. [2000] propose that the mean
values derived from paleomagnetic data over
half a million years and more could be attained
for timescales only slightly in excess of arche-
omagnetic values, of the order of 10 kyr, i.e.,
not 10 but only one half a dipole diffusion time.
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Abstract

Our aim is to investigate the instability of mixed Ekman—Hartmann boundary layers arising in rotating incompressible
magnetohydrodynamics flows in a parameter regime relevant to the Earth liquid core. We perform a local study in a half
space at a given co-latitude 6 # m /2, and assume a mean dipolar axial magnetic field with internal sources. Instabilities are
driven, for high enough Reynolds number, by the quadratic term in the momentum equation. Following the work of Lilly [J.
Atmos. Sci. 23 (1966) 481], we restrict our analysis to the linearized growth phase. We describe the dependence of the critical
Reynolds number in terms of 6 and Elsasser number (measuring the relative strength of Lorentz and Coriolis terms). It is
found that no matter how large the Elsasser number is, there exists a critical band centered on the equator in which instabilities
can occur. For geophysically relevant values of parameters, this band extends over some 45° away from the equator. This
study establishes the possibility of boundary layer instabilities near the core—mantle boundary. © 2001 Elsevier Science B.V.
All rights reserved.

Keywords: Core-mantle boundary; Ekman—Hartmann layers; Earth core dynamics

1. Introduction will only consider here phenomena occurring close

to the outer bounding sphere. Important parameters

The magnetohydrodynamic flow in the Earth’s core
is believed to support a self excited dynamo process
responsible for the Earth’s magnetic field. Though
one has very few means of access to the deep interior
of our planet, most of the parameters characterizing
the dynamics in the core are relatively well known
(Poirier, 1991, 1994). One can model the Earth’s core
by a spherical shell, filled with a conducting fluid
of density p, kinematic viscosity v, conductivity o,
which rotates rapidly with angular velocity 2. We

* Corresponding author.
E-mail address: dormy@ipgp.jussieu.fr (E. Dormy).

are the Ekman number E, the Rossby number ¢, the
Elsasser number A and the magnetic Reynolds num-
ber Rp. These are defined introducing the magnetic
diffusivity n = (o40)~!, a typical velocity U, length
scale £ and magnetic field 55 as

E v U
= —, E = —,
292.,2 22L
B2 UL
A=——, Rp=—. (1)
282puon n

The role of boundary layers on the dynamics of the
core and on the geodynamo is usually thought to be

0031-9201/01/$ — see front matter © 2001 Elsevier Science B.V. All rights reserved.
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small. The laminar Ekman layer effect on the main
flow, through the Ekman suction, scales as EY2. The
Ekman suction is even reduced by magnetic effects
(Acheson and Hide, 1973). This would of course be
very different if the boundary layers happened to be
unstable (they could then extend over a larger do-
main and would most probably affect the main flow).
Recent studies showed that pure Ekman layer insta-
bilities could indeed produce field generation and
act as a dynamo (Ponty et al., 2000). In the last few
years, numerous numerical models of self excited dy-
namos have been proposed (see Dormy et al. (2000)
for a review). Among these models, some suppressed
boundary layers using stress-free boundary conditions
(Busse et al., 1999; Christensen et al., 1999; Katayama
et al., 1999; Kuang and Bloxham, 1997, 1999).
This was proven to strongly modify the moderate
Ekman number solutions with a conducting inner

A%
8,u—|—u-Vu+—p+
£

1
0;B = curl(u x B) + R—AB,

core (Kuang and Bloxham, 1997; Christensen et al.,
1999). Suppression of these boundary layers is based
on the assumption that they are stable, and thus, small
and negligible. Other numerical models retained the
Ekman layers and observed a large field induction in
laminar layers near the core—mantle boundary (CMB)
for moderate values of the Ekman number (Sakuraba
and Kono, 1999). The evidence of instabilities of these
layers would shed some new light on the flow near the
CMB, but also on numerical models for the dynamo.

We present a linearized study for instability of
the mixed Ekman—Hartmann boundary layers in ro-
tating incompressible magnetohydrodynamic flows.
It is known (Gilman, 1971) that Ekman-Hartmann
layer (as the Ekman layer and the Hartmann layer)
are unstable to two-dimensional rolls for sufficiently
high Reynolds numbers. The purpose of this work
is to extend previous instability studies (Leibovich
and Lele, 1985; Lilly, 1966; Gilman, 1971), to in-
compressible MHD flows near a spherical boundary
at a given co-latitude 6 € [0, 7/2) for dipolar static
magnetic field. The Reynolds number at which these
instabilities occur, as well as the details of these insta-
bilities, are the subject of this article. The possibility
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eoxu E

for such instabilities to occur near the CMB will then
be discussed.

2. Model description
2.1. Laminar Ekman—Hartmann boundary layer

We focus in this study to the parameter range rel-
evant for the Earth’s core, and in particular small
value of the magnetic Prandtl number (ERme™"). We
perform a local analysis at a given co-latitude, assum-
ing a dipolar axial mean magnetic field with internal
sources. More precisely, we consider a half space D
filed with an incompressible conducting fluid gov-
erned by the Navier-Stokes equations coupled with
the induction equation

A
Au=——curl Bx B
& & ERm (2)
divB =0, divu =0

m
where eo denotes the constant unit vector in the
direction of rotation, B the magnetic field, and E =
(curl B)/Rm — u x B the electric field.

Outside the shell (D), the mantle is considered to
be an electrical insulator and the magnetic field is thus
assumed to be harmonic

curl B=0,
div E =0,

curl E = —9;B,
div B = 0. 3)

At the CMB 0D, we require the velocity of the fluid
to vanish and the tangential component of the electric
field and magnetic field to be continuous.

We consider in the sequel the following orderings
fore, A, Rm, E

e — 0, eRm — 0, E~¢&2. (4

A~ O,

These limits are relevant to the Earth’s core (Dormy
et al., 1998; Desjardins et al., 1999).

We define our frame of reference (x, y, z) with x
in the e direction (co-latitude), y in the e, direction
(longitude) and z in the e3 direction (radial direction)
(see Fig. 1).

We also assume that the direction of the static
magnetic field By varies in latitude as a pure axial
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e, =e€;
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Fig. 1. Geometry of the local study. Rotation vector and magnetic
field, respectively, make an angle 6 and ¥ with the normal to
the boundary. Traveling wave solutions are sought for an external
velocity Ux. These quantities, respectively, make an angle 6 and
Yo = 8 + y with the plane (£2, B).

dipole with internal sources, so that we can write

eo = (—sinh,0,cos0),eg = €'/||¢/||withe' =
(sinf, 0, 2 cos #) and hence
" 2cosf
cosYy =—————
(1 +3cos20)l/2
is the vertical component of B . (®)]

Note that the polarity of the field can be reversed
through a modification of v in & + ¥, what does not
affect the rest of the study.

Note also that the first assumption here is that
the static magnetic field B has only two non-zero
coordinates b; and b3. If such was not the case, a
second angle (say ) would need to be introduced
at this stage. The dipolar variation of the field’s di-
rection (i.e. the precise relation between 6 and ),
however, becomes important only in Section 2.5 and
following.

Introducing the normal Elsasser number A =
Acos? y(cos)~1, it is convenient to define T such
that tant = AII. With this definition, the width of
the laminar Ekman—Hartmann boundary layer AL
varies (see Acheson and Hide, 1973; Desjardins et al.,
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1999) as
[2Et 2
cos 6
where
cosf

t 2) = .
an(z/2) Acos?y + (A% cos* Y + cos? 6)1/2

(N
The boundary layers are obtained by introducing
the scaled vertical coordinate 77 = z/A. Assuming

that the limit flow at z7 = oo has the form Uy =
(cos yp, —sin yp, 0) and that the magnetic field van-
ishes at infinity, one obtains (Acheson and Hide, 1973;
Benton and Loper, 1969, 1970; Gilman and Benton,
1968; Loper, 1970a,b) a stationary velocity profile
(U, V, W = 0) and magnetic profile (By, B>, B3 = 0),

U(Z) = cosyp —e % cos (Ztan(t/2) + po),
V(Z) = —sinyy + e~ sin (z’ tan(t/2) + ),

, Esint _y
Bi(z) = — e
cosf
T
cos (5 + 7 tan(7/2) + yo) cos V¥,
, Esint _y
By(z) = e
cosf

sin (% + 7 tan(t/2) + yo) cosv.  (8)

So that the velocity at infinity makes an angle —y
with the x direction (i.e. eg).

It should be noted that Loper (1970a,b) demon-
strated that this profile does not depend on the conduc-
tivity of the outer domain (D°€). This result, however,
does not extend to the following sections (instability).

2.2. Ekman—Hartrnann boundary layer instabilities

The laminar Ekman-Hartmann boundary layer
profile (8) is known (Gilman, 1971) to be unstable
to two-dimensional disturbances for sufficiently high
Reynolds number. The relevant number here is the
boundary layer Reynolds number, it is defined as the
classical Reynolds number (#£/v), but using a typical
length scale £ based on the boundary layer width,
rather than the problem size.
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For the Ekman layer at the pole, it is expressed as

- 9
ep)==¢ E ()

If we now define the local boundary layer Reynolds
number Re on the scale A, we can write
re
=z
This quantity is constructed on the width of the
Ekman-Hartmann boundary layer which varies with
6 and A. It is, thus, the relevant physical quantity.
However, it needs to be compared with the local
boundary Reynolds number for the Earth (which
depends on latitude). The quantity Rey (9) used in
Desjardins et al. (1999) is scaled with respect to an
arbitrary length: the width of the pure Ekman layer
at the poles and can thus be compared with the same
quantity for the Earth’s core.

In a previous work (Desjardins et al., 1999), we
derived analytically a range of Reynolds number for
which nonlinear stability holds. More precisely, defin-
ing the function = by

Re (10)

+00
E)=v1+ sz z(|cos(kz)| + [sin(kz)|) e™* dz,
0
(In

it was shown that if the Reynolds number Re attached
to the boundary layer satisfies

Re = Reg M<Re :; (12)
V' cos@ * 7 E(tan(r/2)’

the corresponding MHD flow is nonlinearly stable
(see Eq. (7) for the definition of tan(t/2) and Fig. 2).
Note that Z (k) is not defined here as in Desjardins
et al. (1999), since we consider the local value of the
Reynolds number Re instead of a global estimate Reg.
In our previous study, we concluded that assuming an
order one Reynolds number Reg for the boundary layer
near the CMB, stability could only be demonstrated
locally near the poles if the Elsasser number was above
unity. Re; is probably a poor bound on Re. We will now
study the linearized problem to establish with accuracy
the boundary layer Reynolds number for instability.

Numerical simulations will yield upper bounds Re;
such that if

Re > Re; (A, 0), (13)
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Fig. 2. Representation of an analytical result from our previous
study (Re;), here using present conventions. If the Reynolds num-
ber Re attached to the boundary layer is lower than Reg, non-linear
stability is demonstrated. We concentrate in the sequel on bound-
ary layer Reynolds number above Re;.

the Ekman—Hartmann flow is linearly unstable. We
establish that the flow is then unstable in the following
sense: there exists arbitrarily small initial perturbations
which grow exponentially in time in the linear phase
and reach a non negligible size (i.e. the supremum of
the difference between the velocities of the perturbed
flow and the unperturbed one does not go to 0 as & goes
to 0). However, we do not demonstrate mathematically
that the energy of the perturbation grows significantly.
The corresponding non-linear analysis is postponed to
further study.

In the absence of electromagnetic coupling and
for the co-latitude & = 0, Lilly (1966) showed
that the pure Ekman flow is linearly unstable to
two-dimensional disturbances when the boundary
layer Reynolds number exceeds a critical value
(Re; =~ 54.16). This study was extended to the
Ekman—-Hartmann profile by Gilman (1971) (still for
a horizontal boundary). Leibovich and Lele (1985)
extended this approach in the pure Ekman case to a
spherical boundary and demonstrated the importance
of the horizontal component of §2. The case of the
Ekman-Hartmann layer near a spherical boundary (in
the sense §2 and By vary with 0) is addressed in the
present work.

A finer estimate than (4) can be achieved for geo-
physical parameters (Poirier, 1991, 1994; Hulot et al.,
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1990). We use the radius of the core as length £
and the following values: ||By|| >~ 5 x 10°nT, p ~
10%kgm™, o ~ 47 x 1077 TmA™!, n ~ 1.1 m?
sly >~ 107%m?2s 1, 2 ~ 73 x107? rads~! and
||u|| ~ 10 km per year ~ 3 x 10 ms~!.

This yields the following values for non-dimensional
numbers

A>~0.13, e~6x10"7, E~55x10""9,
R ~ 9.5 x 10?2, Rep ~ 35.6. (14)

A few words on two important simplifications are
needed. First, we will neglect large scale electrical cur-
rents (corresponding to curl By) in their interactions
with the induced field and second we only consider
the dipolar component of the magnetic field (B;) when
constructing By and evaluating A.

The interaction of small scale currents curl b with
large scale field By is of order 1/A. The interaction of
large scale currents curl By with b, however, does not
enter this order. Physically, this last term is scaled as
I/L, where L is based on magnetic diffusion. Clearly
for the limits considered here (4) the ratio of viscosity
to magnetic diffusivity (R, Es~') tends to zero and
this effect can be neglected.

The toroidal component of the field can indeed be
neglected here, as it needs to vanish near the insulating
mantle. Writing the magnetostrophic equilibrium near
the core mantle boundary would yield

9Buor /Lopm—u ~4x 107" Tm™ . (15)

ar B,

It is clear that By, would remain much smaller than
By in the area of interest for our study (a few meters
thick).

The Elsasser number thus evaluated is lower than
unity and the Reynolds number Reg greater than 1,
it is then reasonable to study precisely the onset of
instability, since non-linear stability was not estab-
lished in Desjardins et al. (1999) for this parameter
régime.

2.3. Linearized system
Let us consider linearized perturbations (u, p, b) of

the stationary profile (8). Magnetic perturbations are
scaled according to B = ep + Ry b. Coordinates are
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scaled as x’ = A~'x,# = A~!t. Then, dropping the
primes, we obtain

e E v
X(8Iu+U-Vu+u~VU)—FAu+Tp

A
= xcurlbxeB —eo Xu

R

A

A
+

(curl Bx b+curlb x B), divu =0,

(16)

R
Tm(8,b+U-Vb+u-VB—b-VU—BVu)

1 1
=7 curl(u x eg) + 2 Ab, divb=0. a7

We will consider perturbations which are plane trav-
eling waves (see Fig. 1) and we will change the refer-
ence frame (x, y, z) to (X', /, z) such that x’ derivatives
of (u, p, b) vanish. We, therefore, introduce the angle
8 between the intersection of the plane of the waves
and the plane (x, y) and the projection of ¢ and ¢’ on
the plane (x, y).

We then rotate coordinates (x, y) by an angle § to
get (¥, y). In the sequel, the primes of x’ and y' are
dropped. In this new frame, (u, p, b) are independent
of x, and

e = (—sinf cosd, —sinf sin§, cosh),
ep = (sin ¥ cos §, sin ¥ sin §, cos V).

We use the velocity components u along e}, the
field component b; along the same axis scaled as
B = b /(A cos¥) and stream function ¢ with vector
potential X in the normal plane.

We now take traveling wave type perturbations ¢,
X, u and B as follows:

Bt y,2) = p(z)e@0=D,
'f(t’ ) Z) = X(Z) eia(}'*Ct),
M(t, y, Z) = /’L(Z) el'ot(y—cl)7

B(t,y,2) = B(z)e =, (18)

The set of differential equations governing these per-
turbations (demonstration is given in the Appendix A)
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can be written as
cia Re(¢" — o> )
=—@" - 207" +o'9)
+2tan %(—u' + i tan 6 sin§ u)
+iaV Re(¢" — a’p) —iaRe V"¢
- (1 — tan® %) X" — X'

+iatan ¥ sind (X7 — o X)), (19)
cia Re 1
=—(u" —a’p)

+2tan %(qﬁ/ —iatan 6 sin § @)
+iaRe(Viu +U'¢)
_ (1 — tan® %) (B + ia tan sin 8 B), (20)

iatan¥sindu + 1’ + B —a?B =0, Q1)
iotan ¥ sin 8(¢” — o)
+¢/// _ o[2¢)/ + X" — 20[2)(// + OI4X =0. (22)
The coefficients U and V vary with z, what makes
numerical computations necessary. They also depend

on yo, minimization over y is, thus, required to get
the most unstable configuration.

2.4. Boundary conditions

The system of differential equations expressed
above requires 12 boundary conditions. We first state
that velocity vanishes at z = 0, so that

¢ =0, ¢’ =0,

Moreover, we assume that the tangential component of
the electric field and the magnetic field are continuous
across the interface (Roberts, 1967b). In the insulator,
we can use the x invariance to write the magnetic field
b in terms of ﬁ and vector potential X , as in Section
2.3, which leads to

Ay X=0, 3.f=03p=0,
@El = Rmd9: X,  3E; = Rmdd,X.

u=0atz=0.

Hence, taking E and b in the insulator as in (18), we
deduce

E| = —iacRpX, and X’ — a*X = 0.
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In particular, X’(07) = aX(07), and the continuity
of E; across the interface reduces to

X"(0") = aX(0) (o — icRm).

At infinity, we assume, as in Lilly (1966), that
o;u, d;v, w, and 8§b1, 8?[72, 0,b3 vanish, and write
¢ =0,
X' =0,

¢"=0, ©' =0, and g’ =0,
X" = O atinfinity.

Thus, the 12 conditions needed are expressed.
2.5. Relevant equilibria

As stressed in Leibovich and Lele (1985), in the
pure Ekman case (A = 0), the 6 and § dependence of
system (19-22) only relies on the parameter

& =tan@ siné.

First, it is useful to note that this parameter vanishes
in the horizontal plane case. This highlights that
though the laminar layer only depends on the normal
component of £2, the instabilities are affected by its
horizontal component as well (Leibovich and Lele,
1985). The parameter £ accounts for this effect.

It should be noted that changing § into 7 — & does
not modify &, and thus does not affect the Reynolds
number. This implies that if § # /2, two instabilities
with angles § and m — & occur for the same critical
Reynolds number.

The minimizing value &* of & is obtained in
Leibovich and Lele (1985). For & = £*, the boundary
layer Reynolds number for instability (Re;) is mini-
mal. At low values of 6, & = &* cannot be realized
and § = m/2 is required to have large values of &,
as close as possible to &£*. Past a critical co-latitude
0* = atan(£*) ~ 63.8°, the value of &, and thus, the
Reynolds number for instability, can be maintained
constant (§ = &*) through a proper variation of the
angle §

%-*
8 = & = asin ( > ,
tan 6

or

5=7T—51.

Near the equator, as tan 6 increases, §; tends to zero,
and the rolls get aligned with e (north—south).
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In the mixed Ekman-Hartmann régime (A # 0),
relevant to the Earth core, for an arbitrary imposed
magnetic field, a similar reasoning leads to introducing

£ =tany siné.

The boundary layer Reynolds number for instabil-
ity is then a function of both & and &', and the two
parameters describe the full 8, ¥, & dependence.
Note that both & and &’ vanish for & = ¢ = 0. The
terms, respectively, reflect the role of the horizontal
component of 2 and By on the instabilities.

If the imposed field varies in latitude as an axial
dipole, ¥ and 6 are related through (5), so that con-
stant values for & and &’ cannot be maintained through
a simple variation of §, and thus, the critical Reynolds
number will not be constant at low latitudes once A #
0. Note that neither & nor &’ is affected by a, modi-
fication of 8 in & + 6, however, the profiles (8) are
modified and we arbitrarily chose to restrict, our study
to one hemisphere: 6 € [0, 7/2].

Note also that neither & nor &’ is affected by a mod-
ification of § in w — 8. This modification, therefore,
leaves the Reynolds number unaffected, as was the
case previously in the non-magnetic régime (both an-
gles are unstable for the same boundary layer Reynolds
number).

Because we assumed a perfectly dipolar variation of
the static magnetic field (Eq. (5)), the value 6 = w /2
is singular both for the Ekman layer Greenspan (1969)
and the Hartmann layer (Roberts, 1967a). As the value
of 0 increases toward the equator, the stable mixed
Ekman-Hartmann boundary layer, however, degener-
ates to an Ekman layer. Indeed for (/2 — ) < A™!
rotation dominates. As a consequence, the equatorial
singularity relevant to our study is the Ekman layer
singularity. It scales as E'/3 in the axial direction and
as E?/ in the radial direction (e.g. Kleeorin et al.,
1997). Our study is limited by the size of this singu-
larity (which we do not intend to describe here), and
thus, to values of 6 smaller than 7 /2 — E /5 For geo-
physically realistic values of E, a thin strip of width
1073 rad near the equator is to be excluded.

The instability Eqs. (19)-(22) in the magnetic
régime (A # 0) still differ from the simple Ekman
equations (i.e. A = 0) near the equator, because of the
term associated with the horizontal component of the
imposed magnetic field. But, as in the non-magnetic
régime, § must tend to zero (in order to maintain £ and

121

&’ finite), also for the field we consider tan(t/2) tends
to unity. As a consequence, all magnetic effects van-
ish near the equator, and the instability itself evolves
toward the pure Ekman layer instability. Physically,
this is related to the invariance of the pure Ekman
layer instability with respect to the direction e, the
horizontal component of the imposed magnetic field
lies precisely along this direction near the equator
(6 = 0) and does not affect the instability.

3. Numerical results
3.1. Validation

We developed a Fortran-90 code to compute the
critical Reynolds number Re above which instabili-
ties appear, resolving Egs. (19)—(22). Eigenvalues of
complex matrices were computed using the EISPACK
library from Netlib (http://netlib.bell-labs.com/netlib/
eispack). The gradient algorithm was parallelized us-
ing the MPI library. Results were tested successfully
against previous studies: in the non-magnetic régime
(Leibovich and Lele, 1985; Lilly, 1966), as well as in a
horizontal plane in the pure Hartmann limit (Roberts,
1967b) and in the mixed Ekman-Hartmann régime
(Gilman, 1971).

3.2. Results

We find that the layer is linearly unstable if Reg >
Rei (A, 0). We represent in Fig. 3 the critical Reynolds
number Re; versus the co-latitude 6, for different val-
ues of the Elsasser number A € {0, 0.3, 1}. One can
note on this figure that the critical Reynolds number
for instability is no longer independent of 6 at low
latitudes once A # 0 as expected from the discussion
in Section 2.5.

We can then construct an approximate estimate for
the local boundary layer Reynolds number at the CMB

_ 2 [tan(t/2)
ReBL = 8\/; W (23)

Note, however, that this estimate is proportional to the
estimation on &, and thus, llull. The estimation (14)
is based on secular variation studies (Bloxham and
Jackson, 1992; Hulot et al., 1990) and represent a
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Fig. 3. Boundary layer Reynolds number for instability for three different values of the Elsasser number vs. co-latitude 6. An estimation
of the boundary layer Reynolds number near the core—mantle boundary is also represented for comparison.

typical velocity near the CMB. It is clear, however,
that the velocity could locally be at least twice as large
and could also be several order smaller at other places;
the value of Repy, would then undergo the same vari-
ations. It is, thus, important to consider Repy, as an
estimate only. Regy, computed from (14) and (23) is
also represented on Fig. 3.

For the parameter range (14) relevant to the Earth
core, there exists a critical co-latitude 6. below which
the Ekman—Hartmann boundary layer can be linearly
unstable. From the estimated Repr, one would get
6, >~ 45°.

We would like to stress that, we previously es-
tablished in Desjardins et al. (1999) the value below
which non-linear stability could be proven (Rey).
This value being estimated analytically, it probably
represents a poor estimate. However, comparing this
value (see Fig. 2) with the present results (Re;), a
coefficient close to 50 is obtained for A = 0.3. This
much lower value of Re; could suggest, a possible
subcritical bifurcation of the Ekman—Hartmann layer.

Let us now describe physically the instability (for
Re = Re;). The angle § at which the instability grows
is represented versus co-latitude 6 on Fig. 4. The in-
stability is aligned with the ey, direction near the pole
for the three Elsasser numbers considered here. Past
a critical co-latitude two branches of solution exist,
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corresponding to § and 7 — §, as described in Section
2.5. This critical value of the co-latitude (noted 6* in
the non-magnetic case) decreases with A, as the hori-
zontal component of the imposed magnetic field lies
in the ey direction and magnetic effects reduce shear
in this direction (maximum when § = 90°). Near the
equator, the instability is aligned with eg in the mag-
netic régime as in the A = 0 case.

180 T T T T T
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160
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140
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120 -
110 -

g 100 + //," 100?
qa), 920 X 19 ;5,,
T 80 W\ 180 T
70 | AR 170
60 | 60
% d for A=0.0 o
ol 4 for A=0.3 140
30 -—-- 3 for A=1.0 30
20 20
10 10
0 . . L 0
0 10 20 30 40 50 60 o 70 80 90

G}

Fig. 4. Angles § for instability with respect to €, represented
vs. the co-latitude 6. The instability develops in the €4 direction
near the poles. Past a critical co-latitude (decreasing with A) two
branches of solutions exist. The instability is aligned with €y near
the equator.
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Fig. 5. Angles y on the left and yy = 8§ + y (between the ey

Angles y between €/ and the U, flow correspond-
ing to these instabilities (which enters Egs. (19)—(22)
through the expressions of U and V) are represented
in Fig. 5, together with yy = § 4 y corresponding to
the angle between the ey direction and Uy, (see also
Fig. 1, for angles construction).

The wave number « and the corresponding phase
velocity o x ¢, are represented on Fig. 6. The solution
propagates in the azimuthal direction in the equatorial
region and towards the poles away from the equator.

3.3. Geophysical discussion

When trying to develop an intuitive understanding
of the stability of the boundary layer near the Earth’s
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direction and Us) on the right, both represented vs. co-latitude 6.

CMB (an Ekman-Hartmann type of boundary layer),
one can hesitate between two main lines of thinking.
The first one states that the Reynolds number in the
core is so high (around 10®) that, one can hardly imag-
ine anything laminar in the flow. The other lines that
the layer is so thin (LE'/? would represent less than a
meter) that instabilities are unlikely to develop there.
Probably the first geophysically relevant result of our
work is to show how these two effects compensate and
how the boundary layer near the core mantle boundary
is extremely close to instability.

For geophysically realistic values of the control pa-
rameters, a critical band is found to extend over some
45° away from the equator (see Fig. 3). It is, however,
useful to recall that Repy, is only an estimate based on

04 T T T T T T T

—— A=0.0

03

0.0 L L n . 1 L L I
0 10 20 30 40 50 60 70 80 90

Fig. 6. Wave number « on the left and the corresponding phase velocity o x ¢, on the right, both represented vs. co-latitude 6.
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a typical value of llull and that its value is, therefore
indicative.

The critical value for instability being so close to
geophysical estimates, it appears useful to discuss
with additional care the limitations of our study. We
computed here the minimal Reynolds number after
minimizing on y (measuring the direction of Uyy).
This direction could, in the Earth, be far from opti-
mum. For example, an optimal Re;, was obtained near
the equator for Y9 = § + y =~ —10° whereas in the
Earth, flows near the CMB inferred from variations of
the magnetic field (Bloxham and Jackson, 1992) are
rather found to be aligned in the longitudinal direction
near the equator (yp = § + y =~ £90°). Also, we as-
sumed a perfectly spherical boundary. This, however,
seems reasonable as bumps at the CMB are known
to be small about 4km for wavelength larger than
300km (Garcia and Sourian, 2000) and they would
only slightly modify the results. We assumed that the
static field varies in latitude as a perfect dipole, this
certainly is not the case in the Earth. In particular,
as the geographic equator and the magnetic equator
would differ almost everywhere the normal compo-
nent of the field may stabilize the flow near the geo-
graphic equator. This effect is, however, expected to
be small. We assumed a perfectly insulating mantle.
This is a reasonable assumption, as conductivity of
the lower mantle is known to be very small (Alexan-
drescu et al., 1999) and the existence of a thin conduc-
tive layer appears most unlikely (Poirier et al., 1998).
There are also some physical effects, not included
in our model, that could alter the critical boundary
layer Reynolds number. In particular effects of den-
sity perturbations were neglected. Buoyancy effects
could modify the stability of the layer (see Braginsky
(1999) for geophysical discussion of density profile
near the CMB). Thermal effects could also possibly
be associated with current sheets near the insulating
mantle, this could help destabilize the layer. Also we
insist again that, when comparing results with the
estimated boundary Reynolds number near the CMB

—vcosf — wsinf sin §
ucos + wsin6 cos
—vsin 6 cos §+u sin 6 sin §

Re | 0;u+V 0oyu+ w +A2
w_ —
e | Oru yu & 7

(RepL), only an order of magnitude was used for a
llzll. The problem of possible boundary layer insta-
bilities near the CMB clearly deserves further study
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(especially concerning more complicated large scale
fields and the effects of the direction of Uy, and of
the non dipolar component of the field), such study
could rely on field map at the CMB and core flows de-
rived from the secular variation of the field. This could
also allow to test a possible relation between bound-
ary layer instabilities and rapid geomagnetic impulses
(or jerks) observed some eight times in the last cen-
tury (Alexandrescu et al., 1995, 1996; Courtillot and
Le Mouél, 1984; Mac Millan, 1996).
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Appendix A. Mathematical construction of
instability equations

Let us first recall that we have assumed in (4) that

£—>0, A~O1), ¢Rp—0, E~¢*
and that the magnetic field B was expended as B =
eg + Rmb.

We consider perturbations of the stationary profile
(8). However, By and B; being of order E/2, only ep
is relevant here.

As b is of order e, we can rewrite (16)—(17) as

0 AX 0,b1 cos Y + 9y by sinyr sin §
dyp—Ayu = — | —dbisingcoss— jicosy (A.1)
azp —0,by sinyr cos 8 + jj sin ¥ sin

where j; = dyb3 — 9,b2, and

A(siny sin§ dyu + cos vy d;u) + A, ;b =0 (A2)
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We will now use the velocity and field components
along the axis of instability; in the normal plane, the
divergence free condition on u and b yield the exis-
tence of a stream function ¢ and a vector potential X
such that

v=—0.0, w = 3y,

bzz—kcoswazﬁé, b3:kcosw8y)?.
Denoting B = by/(Acosv),{ = Ay,ZJ) andn =
Ay . X and taking the first component of the curl of
Egs. (A.1) and (A.2), we deduce

Re(DiL + Vaye — V"d,)

22 -
+E(—cos0 d.u +sin@sind dyu) — Ay ;¢

_ A2 Acosyr

z (cosyr 0,7 +sinrsind dy17),  (A.3)

Re(du + Vayu + U'dy)
e - -
+E(cosé 0,¢ —sinfsind dy¢) — Ay ;u

_ A2 Acosy

5 (cosyr 3, B +sinyrsin8 3, f), (A4)

sin ¢ sin 8 dyu + cos ¥ d,u + cos YAy B =0,
(A.5)

sin i sin § ByZ' + cos ¥ 3. + cos Ay n=0.
(A.6)

We now take traveling wave type perturbations b, X,
u and B as follows:

$(1,y,2) = () 0D,

X(t,y,2) = X(2) e,

u(t,y, z) = pu(z)e 0=,

B(t,y,z2) = B(z)e 0=, (A.7)

and obtain an eigenvalue problem expressed in
terms of a system of four ordinary differential
equations:
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cia Re(¢” — a*¢)
— _(d)//// _ 2(){2(15// + Ol4¢)
232
+E (—cosOu’ + iasin@ sindu)
+iaV Re(¢” —a’¢p) —iaRe V'

AN?
—%Sw(cos Y(X" —a?X)

+iasiny sin§(X” — &> X)) (A.8)

cieRep=—(u" —a’p)
)\2
+E(cosé) ¢ —iasindsiné @)
+iaRe(Vu + U’ ¢)
AX% cos ¥

5 (cosy B’ + i sin yr sin § B),

(A9)

i sin ¥ sind p + cos ¥y + cos Y (B” — a?B) = 0,
(A.10)

i siny sin8(¢” — a’¢) + cos Y (¢ — a’¢’)
teosy (x”" —2a%x" +a*x) =0 (A.11)

where the expressions V = V(2), V" = V"(z), U’ =
U’(z) in the reference frame (e}, e, e) are obtained
10 €2 €3
replacing yo by y = yp — 6 in (8).
Using the expression tan T = cos 6(A cos? ) ~! =
All, the system (A.8)—(A.11) can be rewritten as
cia Re(¢” — o> )
_(¢//// _ 2a2¢// + Ol4¢)
+2 tan %(—M/ +ictan 6 siné u)
+iaV Re(¢” —a’¢p) —iaRe V"¢
— (1 — tan® %) X" — X

+iotan ¥ sin 8 (X — a? X)) (A.12)

cia Re u
= — (" —a®p) +2tan %(d — iortan 6 sin 8 ¢)
tiaRe(Vi+U'¢) — (1 — tan? %)

x (B’ + iatan ¢ sin § B) (A.13)
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iotanysindu + ' + B —a?B =0, (A.14)
iotan ¥ sin8(¢” — a’¢) + ¢" — o>¢’
+X" = 202X +a*X =0 (A.15)
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Abstract

We present the results of a benchmark study for a convection-driven magnetohydrodynamic dynamo problem in a rotating
spherical shell. The solutions are stationary aside from azimuthal drift. One case of non-magnetic convection and two dynamos
that differ in the assumptions concerning the inner core are studied. Six groups contributed numerical solutions which show
good agreement. This provides an accurate reference standard with high confidence. © 2001 Elsevier Science B.V. All rights

reserved.

Keywords: Geodynamo; Numerical modeling

1. Introduction

In recent years, three-dimensional simulations of
convection-driven magnetohydrodynamic dynamos in
rotating spherical shells have become possible and are
progressively employed to develop an understanding
for the origin of the Earth’s magnetic field and its spa-
tial and temporal structure. The first models employed
hyperdiffusivities and either neglected inertia or in-
cluded only the axisymmetric part (Glatzmaier and

* Corresponding author. Tel.: +49-551-39-7451;
fax: +49-551-39-7459.
E-mail address: urc@uni-geophys.gwdg.de (U.R. Christensen).

Roberts, 1995; Kuang and Bloxham, 1997) or they
assumed somewhat artificial boundary conditions for
the magnetic field Kageyama and Sato (1995). Later
models with more moderate values of the control
parameters did not use these approximations (for ex-
ample, Christensen et al., 1998; Busse et al., 1998;
Christensen et al., 1999; Katayama et al., 1999; Grote
et al., 2000). Several numerical codes for dynamo
modelling have been developed independently by
various groups, although they usually follow simi-
lar principles. The velocity and magnetic fields are
represented by poloidal and toroidal scalar potentials
and all the unknowns are expanded in spherical har-
monic functions in the angular coordinates. Diffusive

0031-9201/01/$ — see front matter © 2001 Elsevier Science B.\[.94ll rights reserved.
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terms in the equations are treated implicitly during
time-stepping, while the non-linear terms are evalu-
ated on grid points, which requires transformations
between spectral and grid space (spectral transform
method). The codes differ mainly in their treatment
of the radial dependence and in the way the arising
boundary value problems for each harmonic mode
are solved. Some expand the variables in Chebyshev
polynomials and use collocation methods, while oth-
ers use finite differencing and grid representation.
An exception is the method by Kageyama and Sato
(1995), who have used finite differences throughout.
Other codes that employ only local representations
of the variables, for example by finite elements, are
currently under development.

The verification of newly developed codes for com-
plex nonlinear problems is not a simple task. Rigorous
testing with analytical solutions is not possible for the
fully non-linear problem. Comparison with other pub-
lished solutions is difficult because they usually show
chaotic time-dependence and because they make spe-
cific assumptions (for example, on boundary condi-
tions or neglected terms), which are not implemented
in other codes. The concept of a benchmark is to set up
a simple, well defined and easily reproduced standard
solution, which is confirmed by several independent
codes and which is converged to great accuracy. It
serves several purposes: (i) to increase the confidence
in the correctness of the codes that contribute to the
benchmark, (ii) to assess the accuracy and possibly
the run-time performance of existing methods, and

tum equation and the concept of hyperdiffusivity is not
used. In addition to the originally proposed dynamo
with an insulating inner core co-rotating with the outer
boundary (case 1), the cases of rotating non-magnetic
convection (case 0) and that of a dynamo with a con-
ducting and freely rotating inner core (case 2) have
been added. Aside from global properties, such as ki-
netic and magnetic energies, where small inaccuracies
may average out, some local values of the solution are
also reported.

2. Definition of the benchmark cases

Thermal convection and magnetic field generation
in a rotating spherical shell filled with an electrically
conducting fluid are considered. The ratio of inner
radius rj to outer radius ry is set to 0.35. Temperature
is fixed to 7o and To + AT on the outer and inner
boundaries, respectively. The Boussinesq approxima-
tion is used and gravity varies linearly with radius.
The equations are scaled with D = ry — rj as the fun-
damental length scale, which makes the dimensions-
less radii equal to r, = 20/13 and rj = 7/13. The time
scale is D?/v, with v the kinematic viscosity, v/D
is the scale for velocity u, and AT for temperature
T. The scaled temperature on the outer boundary is
zero. Magnetic induction B is scaled by (pun$2)1/2,
where p is the density, u the magnetic permeability,
n the magnetic diffusivity, and £2 is the basic rotation
rate about the z-axis. The non-hydrostatic pressure P
is scaled by pv§2. The scaled equations are

E(a—u+u-vU—v2u)+2zxu+VP=RaLT+i(vXB)xB (1)
ot o Pm
9B 1,

(iii) to assist future code developments by providing ar VxUuxB+ ﬁv B )
a well-established standard solution for verification. 9T 1,

The present benchmark was proposed at the study 5 +U-VT = ﬁV T (3)
of the Earth’s deep interior (SEDI) meeting of 1998
in Tours and has been expanded and modified as a V-u=0, V.-B=0 (4)

result of discussions among the participants. Its basis
is one of the few quasi-stationary dynamo solutions
that have been reported in the literature (Christensen
etal., 1999). The stationarity allows the comparison of
well-defined numbers. Parameter values are moderate,
so that high resolution is not required to reproduce the
dynamo. The full inertia term is kept in the momen-
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Non-dimensional control parameters are the modified
Rayleigh number

AT D

Ra = Y8021 Y (5)
vs2

where « is the thermal expansion coefficient

and g, gravity at the outer radius, the Ekman
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number
V
=, 6
op2 (6)
the Prandtl number
pr="_ @)
K

where « is thermal diffusivity, and the magnetic
Prandtl number

Pm =~ (8)

n

The velocity vanishes on the rigid boundaries, relative
to the state of rotation of the respective boundary. In
cases 0 and 1, the inner and outer boundaries co-rotate.
In case 1, the regions outside the fluid shell are elec-
trical insulators and the magnetic field on the bound-
aries matches with appropriate potential fields in the
exterior that imply no external sources of the field.

In case 2, the inner core is treated as an electrically
conducting rigid sphere that can rotate around the
z-axis relative to the outer boundary, which provides
the frame of reference. Its moment of inertia is deter-
mined assuming the same density as in the liquid shell,
and its angular acceleration results from viscous and
magnetic torques. The moment of inertia is irrelevant
for the final uniform rotation of the inner core, but in-
fluences the transient spinup. In the inner core Eq. (2)
applies with the velocity field of rigid-body rotation
and the same magnetic Prandtl number, i.e. the same
electrical conductivity and magnetic permeability as
in the fluid shell. At the boundary between inner core
and fluid shell the magnetic field and the horizontal
component of the electrical field are continuous.

The Ekman number is E = 10~3 and the Prandtl
number is Pr = 1 in all cases. In cases 0 and 1, we
set the Rayleigh number to Ra = 100. In case 2,
it is Ra = 110, which is approximately two times
supercritical. The magnetic Prandtl number is zero in
case 0 (non-magnetic convection) and is Pm = 5 in
cases 1 and 2.

Because only the final quasi-stationary solutions are
compared, the initial condition is, strictly speaking,
not part of the benchmark definition. However, be-
cause non-magnetic convection is found stable against
small magnetic perturbations at these parameters and
because the dynamo solutions seem to have only a
small basin of attraction, the initial state is of some
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concern. Also the existence of multiple dynamo solu-
tions, for example with different azimuthal symmetry,
cannot be ruled out. Here, we recommend a set of ini-
tial conditions, but any other conditions that lead to
the desired solutions are also permissible. In all cases
the initial velocity is zero and the initial temperature is

T rofi . 210A
= — —n —_—
ro T J17920%
x (1 —3x2 + 3x* — x®) sin* 6 cos 4¢ 9)

where 6 is the colatitude, ¢ the longitude, and x =
2r — ri — ro. This describes a conductive state with a
perturbation of harmonic degree and order four super-
imposed. The amplitude is set to A = 0.1. In case 1,
the initial magnetic field is for ri <r < ro:

5 ri4

B, =—-[8ro —6r —2— ] coso (10)
8 r3
5 AN

Bo=—[9r — 8o — % | sing (1)
8 r3

By = 5sin(zw(r —rj))sin 26. (12)

This corresponds to a dipolar poloidal field created by
a current density in the ¢-direction which is uniform in
radius and a superimposed toroidal field of harmonic
degree two. The maximum value of both B, and By, is
5. In case 2, the initial magnetic fieldis for0 < r < rq:

4rq — 3r
B, =5——co0s6 13
r 3+1"Q ( )
9 — 8ry .
By =5——siné@ 14
T 16 (14)
By = 5sin (ni) sin 26. (15)
I'o

3. Character of the solution

Starting from the recommended initial condition,
a quasi-stationary solution is reached within approxi-
mately 15 time units in cases 1 and 2 and within 1.2
time units in case 0. The solution can be expressed by
a vector function of the form

(u,B, T) =1(r,0,¢ — wt) (16)
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Fig. 1. Case 1: left, contours of B, on outer boundary in steps of 0.25; right, contours of «, at mid-depth in the shell, interval 2. Positive

and zero contours solid lines, negative contours dash-dotted.

with w being the drift frequency. In case 2, the in-
ner core rotates at a uniform rate wj; with respect to
the outer boundary after the initial transient. The solu-
tions are symmetric about the equator (dipole parity)
and have fourfold symmetry in longitude. In order to
reduce computer time, in some calculations this sym-
metry has been exploited by restricting the spherical
harmonic expansions accordingly. This is safe because
tests show that the solution is stable against small
symmetry-breaking perturbations. Some aspects of the
solution for case 1 are visualised in Fig. 1. Convec-
tion is columnar and the magnetic field on the outer
boundary is strongly dipolar and dominated by four
flux lobes. The figure shows a result obtained with
moderate resolution and is meant for illustrative pur-
poses only. The presence of a conducting and rotating
inner core in case 2 has no strong effect of the overall
pattern of the solution.

4. Requested data

Global averages as well as local data at a specific
point are compared in this benchmark. In all cases, the
drift frequency  and the mean Kinetic energy density
in the fluid have been calculated as

1
Exin = — U2 dv (17)

2Vs Jy,

where Vs refers to the volume of the fluid shell. In
cases 1 and 2, the mean magnetic energy density in

130

the shell is calculated as

1
. — / B2dV. (18)
ZVSEPm VS

Emag =
In case 2, also the magnetic energy density E,iﬁag in
the inner core, defined equivalently to Eg. (18) for the
inner core volume Vi, and the angular frequency wjc
of differential rotation of the inner core are requested.
When participants compared preliminary results in the
course of the benchmark study, the torque acting on
the inner core turned out to be useful to identify errors.
Therefore we also list the values of the Lorentz torque
I scaled by pDv?,

Defining a point where local data are to be taken
is not trivial because it must be fixed in the drifting
frame of reference. We take a point at mid-depth (r =
(ri + ro)/2) in the equatorial plane (¢ = = /2) whose
¢-coordinate is given by the conditions u, = 0 and
(0ur/9¢) > 0. For this point we request in cases 0
and 1 the values of 7 and u,4 and additionally in case
1 the value of By.

5. Methods

Six groups have contributed results to some or
all of the benchmark cases. Here, each code is de-
scribed briefly by some keywords. A more com-
plete description can be found in the supplied
references.
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Aubert, Cardin and Dormy (ACD): Spherical har-
monic expansion, finite differences in the radial
direction (Dormy et al., 1998). The radial mesh in-
terval decreases in geometrical progression towards
the boundaries. Three-point stencil for second-order
derivatives and five-point stencil for biharmonic oper-
ators (second-order accurate). Symmetry in longitude
can be imposed.

Christensen, Wicht and Glatzmaier (CWG): Spher-
ical harmonic expansion, Chebyshev polynomials
in radial direction, alias-free transform (Glatzmaier,
1984; Christensen et al., 1999); the basic numerical
method was also used in (Glatzmaier and Roberts,
1995). Symmetry in longitude assumed in most
cases. Time step dynamically controlled, typically
1.5 x 10~ at low spatial resolution and 0.75 x 10~
at high resolution. Different versions of this code have
been run on the benchmark problems by Christensen
and Wicht and by Glatzmaier, respectively. Results
obtained by Glatzmaier are marked by an asterisk (*).

Gibbons, Jones and Zhang (GJZ): Spherical har-
monic expansion, finite-differencing in radial direction
with non-equidistant grid using the Chebyshev zeros
as grid points and a seven-point stencil for all deriva-
tives.

Kono and Sakuraba (KS): Spherical harmonic ex-
pansion, Chebyshev tau method (Canuto et al., 1987)
for radial coordinate (Sakuraba and Kono, 1999).

Tilgner and Grote (TG): Spherical harmonic ex-
pansion, Chebyshev polynomials in radial direction
(Busse et al., 1998; Tilgner, 1999).

Takahashi, Matsushima and Honkura (TMH):
Spherical harmonic expansion, finite difference with
option for equidistant or non-uniform grid (Cheby-
shev points) in radial direction. Pressure defined on
staggered grid points. Three-point stencil used for
second-order derivatives and four-point stencil for
derivatives at staggered grid points. Longitudinal
symmetry exploited.

The three codes which use an expansion in Cheby-
shev polynomials in the radial direction (CWG, KS
and TG) are structured very similarly. The three codes
using finite differences in the radial direction (ACD,
GJZ and TMH) differ for example in the order of the
difference scheme and the structuring of the radial
grid.

Most groups provide results at different resolution.
All use 8-byte words (double precision). The spherical
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harmonic expansion is truncated at degree £max and
order mmax. Most contributors include all terms with
harmonic order m < £ < €max (Mmax = €max, trian-
gular truncation), except GJZ, who truncate in most
cases at m < min(¢, mmax) With mmax < €max (trape-
zoidal truncation). The minimum necessary number
of grid points in #-direction (Gauss points), on which
non-linear products are calculated, is ¢max + 1, but
some authors use a larger number of points Ny to
reduce aliasing effects (similarly in ¢-direction). For
alias-free computations of the non-linear terms Ny
needs to be equal or greater than (3¢max + 1)/2 and
for triangular truncation of the spherical harmonics the
number of grid points in longitude needs to be twice
this. In those codes which use a spectral representation
in the radial direction, the number of radial grid points
N may exceed the number of Chebyshev modes N¢,
although in the present cases Ny ~ N has been used.

6. Results

At a qualitative level, all contributors obtain the
same generic solutions, which is the prerequisite for
a quantitative comparison and a convergence test.
In order to compare specific numbers obtained with
different codes at different resolution and in order to
monitor convergence, we define as resolution R the
third root of the number of degrees of freedom for
each scalar variable:

1/3
R = Nr/ (ﬁmax[zmmax + 1] - mzmax + Mmax + 1)1/3-
(19)

For mmax = £max this reduces to R = er/3(€max +
1)2/3. In case 2, N; refers to the combined number of
radial points in the fluid shell and in the inner core.

6.1. Non-magnetic convection (case 0)

All results for case 0 are listed in Table 1. In Fig. 2,
we compare most of the results as functions of R. Note
that for each quantity except w the range in the diagram
is less than 2% of the absolute value. That is, all results
that fall into the diagram agree within better than 2%.
All results seem to converge towards the same point.
The convergence is clearest for the fully spectral code
by CWG (circles), where results at comparatively low
resolution differ only marginally from those with high
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Table 1

Results for benchmark case 02

GI’OUp Ny Ny Lmax Exin T Ugp [

ACD 50 46 44 58.970 0.4259 —10.058 0.0602

ACD 100 46 44 58.515 0.4276 -10.134 0.1509

ACD 150 46 44 58.426 0.4279 —10.147 0.1686

ACD 250 92 44 58.379 0.4280 —10.153 0.1775

CWG 25 48 32 58.3499 0.42812 —10.1570 0.18283
CWG 33 80 53 58.3481 0.42811 —10.1571 0.18241
CWG* 49 96 63 58.3488 0.42811 —10.1570 0.18241
CWG 65 128 84 58.3480 0.42812 —10.1571 0.18241
Glz 40 38 36 (20) 58.2208 0.42808 —10.1547 0.19198
Glz 60 42 40 (28) 58.2955 0.42813 —10.1560 0.19010
Glz 100 42 40 (28) 58.3348 0.42816 —10.1558 0.18289
TMH 40 36 58.5874 0.4271 —10.0823 0.1228

TMH 100 36 58.4028 0.4279 —10.1421 0.1670

TMH 100e 36 58.5471 0.4281 —10.1585 0.1560

@ Notation: e, equidistant radial grid; mmax given in parentheses after £max When different.

resolution. Also the contributions by ACD (diamonds),
GJZ (squares) and TMH (crosses) with radial finite
differencing converge satisfactorily towards the same
values at high R. For the finite difference methods the
radial resolution has been found to be critical, and in
fact the angular resolution has been kept constant or
varied little in these calculations. ACD and GJZ report
that results for a uniform radial grid (not shown in

59 >
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this paper) are much worse than for the non-uniform
grids used here. The comparison supplied by TMH for
N; = 100 confirms this for Ej, and w, although the
differences are rather moderate. A non-uniform grid
provides better resolution in the boundary layers, and
even though the Ekman layer is not very thin at the
moderate value of the Ekman number, good resolution
of this layer seems to be essential.
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Fig. 2. Convergence of results for case 0: diamonds, ACD; circles, CWG; squares, GJZ; crosses, TMH. (a) Kinetic energy, (b) local

temperature, (c) local azimuthal velocity, (d) drift frequency.
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Table 2
Results for benchmark case 12
Group Ny No Lmax Exin Emag T Ug By w
ACD 48 46 44 29.965 601.912 0.3730 —7.864 —4.779 —3.038
ACD 90 46 44 30.637 623.204 0.3729 —7.669 —4.912 —3.102
ACD 150 46 44 30.732 625.681 0.3730 —7.634 —4.929 —3.105
ACD 200 92 44 30.758 626.284 0.3730 —7.626 —4.933 —3.105
CWG 21 40 26 30.5015 616.085 0.36281 —7.2228 —4.8456 —3.0926
CWG 25 48 32 30.7214 626.572 0.37373 —7.5941 —4.9023 —3.0852
CWG 33 64 42 30.7686 626.420 0.37390 —7.6427 —4.9358 —3.1011
CWG 33 80 53 30.7714 626.406 0.37325 —7.6211 —4.9285 —3.1016
CWG 41 96 64 30.7715 626.416 0.37337 —7.6250 —4.9288 —3.1016
CWG* 49 96 63 30.7716 626.413 0.37337 —7.6255 —4.9284 —3.1016
CWG 65 128 85 30.7734 626.409 0.37338 —7.6250 —4.9289 —-3.1017
GlJz 40 38 36 (20) 30.1263 617.462 0.36226 —7.0899 —4.8972 —2.992
GJz 40 52 50 (44) 30.5724 622.558 0.37314 —7.6201 —4.9101 —3.083
GJz 80 52 50 (44) 30.7541 625.656 0.37325 —7.6203 —4.9301 —3.100
GJz 100 54 52 (52) 30.7605 626.020 0.37336 —7.6308 —4.9232 —3.101
Gz 150 78 50 (44) 30.7677 626.282 0.37328 —7.6210 —4.9333 —3.101
KS 48 64 42 30.7709 626.434 0.37376 —7.6376 —4.9333 —3.1009
TG 33 64 42 30.7695 626.402 0.37378 —7.6387 —4.9340 —3.0997
TMH 70e 26 31.0298 623.092 0.3679 —7.3525 —4.9220 —3.0949
TMH 70 26 30.7901 627.607 0.3675 —7.3330 —4.9190 —3.0735

@ Notation: e, equidistant radial grid; mmax in parentheses after £max When different.

6.2. Dynamo with insulating inner core (case 1)

Results for case 1 are listed in Table 2 and some of
them are plotted against resolution in Fig. 3. Again

30.8

the agreement among the various contributions is very
satisfactory; the range covered in each of the diagrams
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is only 1% of the total value. The general agreement
is particularly good between the three codes using

Fig. 3. Convergence of results for case 1: diamonds, ACD; circles, CWG; squares, GJZ; plus sign, TG; triangle, KS; crosses, TMH
(uniform and non-uniform radial grid). (a) Kinetic energy, (b) magnetic energy, (c) local magnetic field component, (d) drift frequency.
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Table 3

Results for benchmark case 2

Group Ny Nric Ny Cmax Ekin Emag Eimcag w wic It

ACD 90 25 46 44 42.311 844.400 822.522 —3.834 —2.521 —91.023
ACD 150 40 46 44 42.392 845.400 821.855 —3.821 —2.598 —91.910
ACD 200 60 46 44 42.405 845.604 821.833 —3.816 —2.619 —92.212
ACD 250 70 46 44 42.409 845.694 821.885 —3.815 —2.630 —92.381
CWG 33 16 48 32 42.3295 849.003 824.255 —3.7584 —2.7393 —94.407
CWG 49 16 64 41 42.3713 845.932 823.162 —3.7984 —2.6706 —93.105
CWG 49 16 96 63 42.3882 845.605 822.667 —3.8027 —2.6594 —92.979
CWG* 49 16 96 63 42.3878 845.604 822.672 —3.8027 —2.6593 —92.978
CWG 49 20 96 63 42.3888 845.602 822.649 —3.8027 —2.6593 —92.978
CWG 49 16 128 84 42.3881 845.606 822.673 —3.8027 —2.6595 —92.979

Chebyshev expansion (circles, triangle and plus sign
in Fig. 3), which is not surprising given that the codes
are based on the same principles. For this method,
only CWG (circles) provide results at variable reso-
lution, but two codes with radial finite differencing
seem to converge against the same values for the ki-
netic and magnetic energy, respectively. For the local
values and the drift frequency convergence against a
common point is less clear than for the energies, but
the best resolved results agree within a quarter of a
percent. For the local values the need to interpolate the
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respective fields between grid points is an additional
source of error, which might explain the less system-
atic convergence behaviour.

CWG studied the influence of changing the
time-step for two different spatial grids. Reduc-
ing the step by a factor of two lead to differences
in the sixth decimal place. Therefore, a time-step
which is smaller than what stability requires does
not improve the solution significantly, at least in the
weakly time-dependent regime of the benchmark
dynamo.
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Fig. 4. Convergence of results for case 2: diamonds, ACD; circles, CWG. (a) Magnetic energy density in fluid shell, (b) magnetic energy
density in inner core, (c) drift frequency, (d) rotation frequency of inner core.
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6.3. Dynamo with conducting and rotating
inner core (case 2)

Results for case 2 have only been reported by two
contributors. The validity of the results is somewhat
reinforced by the use of two different code versions
by CWG (labelled with and without an asterisk). The
basis for both versions is the fully spectral dynamo
code by Glatzmaier (1984), but the additions for treat-
ing a conducting and rotating inner core have been
implemented independently and overall the codes dif-
fer in some details. The two solutions agree within
better than 4 x 10~° for all requested properties. The
results by ACD, who use a finite difference method in
the radial direction, are in reasonable agreement with
those by CWG (Table 3 and Fig. 4). The deviation is
largest for the inner core rotation rate, about 1% at
the highest resolution, but a quadratic extrapolation of
ACD’s results suggest that they converge against those
by CWG.

The sum of the viscous and magnetic torques on
the solid inner core is obviously zero because its
rotation rate is steady. The viscous torque is posi-
tive (prograde) while the magnetic torque is negative
(Table 3). GAG reports that the viscous torque on
the stationary inner core of case 1 is also positive
and cancels the negative viscous torque on the outer
boundary so that the net torque on the fluid shell
still vanishes, as it has to in steady state. It is inter-
esting that the signs of the viscous torques on the
two boundaries in the non-magnetic case 0 are op-
posite to what they are in case 1 and that the sign
of the drift frequency « differs between cases 0
and 1.

7. Discussion and conclusions

The comparison of codes that use finite differences
in the radial direction with fully spectral methods sug-
gests that the latter are more advantageous when high
accuracy is required. In case of the partial finite dif-
ference methods, the radial resolution is clearly the
accuracy-limiting factor. The exponential convergence
behaviour of fully spectral methods is very helpful
to pin down the solution to several significant digits,
which is one aim of the benchmark study. Further-
more, an asset of the Chebyshev representation is that
it allows one to calculate radial derivatives of the de-
pendent variables on grid points with great accuracy.
Because most computer time is used for the trans-
formation in the angular coordinates, the additional
time required for the Chebyshev transforms is far out-
weighed by the smaller number of radial grid levels
that is needed to achieve a given accuracy. However,
one must also keep in mind that the benchmark cases
are simple in the sense that the spatial spectra drop
off rapidly with wavenumber and time-dependence
is weak, which makes them ideally suited for spec-
tral methods. For chaotic dynamos at higher Rayleigh
numbers and lower Ekman numbers, which require
much higher spatial resolution, the spectral method
becomes very expensive and may be less suited than
other techniques for massively parallel computers. Un-
fortunately, a comparison study at such parameters
would be far more difficult.

The overall level of agreement between different
methods is remarkable when the resolution is suf-
ficiently high. This allows us to define with great
confidence a standard solution within narrow error

Table 4
Suggested standard solution with uncertainties

Case 0 Case 1 Case 2
Exin 58.348 + 0.050 30.733 £ 0.020 42.388 £+ 0.050
Emag 626.41 +0.40 845.60 + 0.40
Efag 822.67 + 1.60
T 0.42812 + 0.00012 0.37338 + 0.00040
Uugp —10.1571 £ 0.0020 —7.6250 + 0.0060
By —4.9289 + 0.0060
1) 0.1824 + 0.0050 —3.1017 £ 0.0040 —3.8027 £+ 0.0250
Wic —2.6595 + 0.0600
Ik —92.979 &+ 1.200
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limits for cases 0 and 1. We suggest that the best
result from CWG be considered the standard. To es-
timate the range of uncertainty we require that the
best-resolved results of two more codes (those by
ACD and GJZ) fall into this range (Table 4). Be-
cause of the slower convergence of the latter two
codes, the exact solution may be much closer to
the suggested value than what the quoted accuracy
suggests.

With only two completely independent contribu-
tions to case 2 we cannot claim the same level of
confidence as in the other cases, but the convergence
of the CWG results and the satisfactory agreement
with the ACD solution justifies the selection of the
best resolved result by CWG as a standard also
in this case. Here, the uncertainty has been fixed
to twice the difference between the best results by
CWG and ACD, but not less than the uncertainty
determined in case 1 for the same property (where
applicable).
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We consider axisymmetric magnetohydrodynamic motion in a spherical shell driven
by rotating the inner boundary relative to the stationary outer boundary — spherical
Couette flow. The inner solid sphere is rigid with the same electrical conductivity as
the surrounding fluid; the outer rigid boundary is an insulator. A force-free dipole
magnetic field is maintained by a dipole source at the centre. For strong imposed
fields (as measured by the Hartmann number M), the numerical simulations of
Dormy et al. (1998) showed that a super-rotating shear layer (with angular velocity
about 50% above the angular velocity of the inner core) is attached to the magnetic
field line % tangent to the outer boundary at the equatorial plane of symmetry. At
large M, we obtain analytically the mainstream solution valid outside all boundary
layers by application of Hartmann jump conditions across the inner- and outer-sphere
boundary layers. We formulate the large-M boundary layer problem for the free shear
layer of width M~'/? containing % and solve it numerically. The super-rotation can be
understood in terms of the nature of the meridional electric current flow in the shear
layer, which is fed by the outer-sphere Hartmann layer. Importantly, a large fraction
of the current entering the shear layer is tightly focused and effectively released from
a point source at the equator triggered by the tangency of the %-line. The current
injected by the source follows the é-line closely but spreads laterally due to diffusion.
In consequence, a strong azimuthal Lorentz force is produced, which takes opposite
signs either side of the %-line; order-unity super-rotation results on the equatorial
side. In fact, the point source is the small equatorial Hartmann layer of radial width
M~2/3 (< M~'?) and latitudinal extent M~'/3. We construct its analytic solution and
so determine an inward displacement width O(M~%3) of the free shear layer. We
compare our numerical solution of the free shear layer problem with our numerical
solution of the full governing equations for M in excess of 10*. We obtain excellent
agreement. Some of our more testing comparisons are significantly improved by
incorporating the shear layer displacement caused by the equatorial Hartmann layer.

1. Introduction

The steady flow of viscous fluid confined inside a spherical shell, which results
when the inner (radius r;) and outer (radius r;) boundaries rotate at different angular
velocities €7 and € respectively about a common axis, is referred to as spherical
Couette flow. When the spheres almost corotate rapidly, the motion measured in a
frame corotating with (say) the outer sphere is slow and satisfies linear equations.
The determination of the resulting steady flow is a classical problem in the theory of
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rotating fluids. Proudman (1956) showed that the mainstream flow outside boundary
layers is predominantly geostrophic, while its magnitude is determined by the Ekman
suction into and out of the Ekman layers attached to the inner and outer spherical
boundaries. The Ekman layer is singular on the equator of the inner sphere; this
feature is linked to the existence of a free shear layer on the tangent cylinder to the
inner sphere extending from its equator to the intersection with the outer sphere. The
nature of the flow in this tangent-cylinder shear layer was resolved by Stewartson
(1966), while the extension of this shear layer analysis to more general geometries was
undertaken by Moore & Saffman (1969). The strong shear at the tangent cylinder
was reproduced numerically by Hollerbach (1994) down to small Ekman number
E = 5 x 107, Decreasing E further to E = 1078, Dormy, Cardin & Jault (1998)
recovered the structure of the free shear layer found by Stewartson (1966).

In the case of electrically conducting fluid, the magnetohydrodynamic flow that
results in the presence of an applied axisymmetric meridional (poloidal) magnetic field
is considerably more complicated. The MHD extension to the Proudman—Stewartson
problem described above was first investigated numerically by Hollerbach (1994),
who considered an axial dipole magnetic field. The inner solid sphere (r* < r;) was
assumed to be an insulator (unlike the case of a solid sphere with the same electrical
conductivity as the fluid, which we will consider) as was the solid outer region (r* > r)).
When the applied dipole magnetic field is sufficiently weak that the Lorentz force, as
measured by the Hartmann number M, remains small compared to the Coriolis force
(specifically small Elsasser number EM?), he found that a free shear layer remained
on the tangent cylinder; the structure of this layer was determined by Kleeorin et
al. (1997). When the Coriolis and Lorentz forces are comparable, EM? = O(1), the
inner and outer boundary layers are of mixed Ekman—Hartmann type, whereas the
free shear layer evaporates. Nevertheless, when the applied magnetic field is strong,
EM? > 1, a free shear layer reappears but now aligned with the magnetic field lines
which graze either the inner or the outer boundary; elsewhere on these boundaries
the boundary layers are predominantly Hartmann in character. Models of this type
were developed by Starchenko (1997). In the case of the dipole field, the grazing field
line is the one which touches the outer spherical boundary at its equator. The strong
dipole field is the limit that interests us here and below we will expand in greater
detail on the background to our chosen model.

The rapid rotation limit E < 1 with EM? = O(1) has geophysical applications. The
numerical geodynamo simulations of Glatzmaier & Roberts (1995) have revealed the
importance of detached shear layers in rotating MHD systems. Indeed a liquid sodium
prototype of a dynamo experiment based on fluid instabilities riding on these layers
is now being built in Grenoble: a spherical cavity filled with sodium will be enclosed
between a permanent magnet and an outer container made of inox; measurement of
the electrical potential will give insight into the dynamics inside the cavity because
the outer boundary is poorly conducting. Recently there has been much discussion
about a possible differential rotation between the solid inner core and the mantle of
the Earth. There is now some evidence indicating that the speed of the inner core
surface relative to the mantle is no larger than the fluid velocity at the core surface,
as inferred from the secular variation of the Earth’s magnetic field (Vidale, Dodge &
Earle 2000). The differential rotation between the inner solid core and the outer solid
mantle, together with the detached shear layers occurring in the numerical dynamo
experiments, points to the importance of the idealized model of spherical Couette
flow in the presence of an applied magnetic field, as described above. Kleeorin et al.
(1997) adopted an applied dipole field because it is meridional and as such interacts
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strongly with the predominantly azimuthal flow driven by the differential rotation of
the boundaries. Another attractive feature of a dipole magnetic field is that it is force
free and so by itself drives no motion. Of course, in the Earth that differential rotation
may well be caused by the angular momentum transport resulting from asymmetric
convection; such complications are outside the scope of the simplified models driven
by differential rotation described above.

In order to understand processes that are predominantly magnetic in character,
we concern ourselves with the strong field limit EM? > 1. This is outside the geo-
physically relevant parameter range, but may be pertinent to certain slowly rotating
planetary objects with strong magnetic fields. Then the Coriolis force is relatively
small and whether or not the system is in rapid rotation ceases to be a significant
issue (Starchenko 1997). Much of the dynamics in that limit is captured by the simpler
problem in which the outer sphere is at rest (2, = 0). We will study that problem
in the case of small differential rotation and so will require that the inner sphere
rotates slowly. Motivated by planetary applications, we assume that the inner sphere
is electrically conducting having the same conductivity as the fluid, while the outer
boundary is an electrical insulator. Though, of course, for laboratory applications
other electrical boundary conditions are of interest too. The typical strength B of the
force-free applied dipole magnetic field and the importance of advection are measured
by the Hartmann and magnetic Reynolds numbers

L*B; L2Q;

and Ry =
JHopVN

respectively, where p is the density, v is the viscosity, p, is the magnetic permeability
and 5 is the magnetic diffusivity. We restrict attention to strong magnetic fields and
slow steady flow which correspond to the limits

M>1 and Ry <K 1. (1.2a,b)

The later assumption ensures that the magnetic field perturbations are small and is
essentially the basis on which we linearize our equations.

In our large Hartmann number limit, various boundary layers can be isolated.
Hartmann layers of width d;; = \/,LW /By = L*/M form on the inner and outer
boundaries. The free shear layer, mentioned above, forms about the magnetic field
line, which we call €, that touches the outer sphere at its equator. This layer has
characteristics similar to the free shear layer caused by current injection and removal
by electrodes in channel flow (see Miiller & Biihler 2001, Chap. 7) and has the
same width /L*6;, = L*/M"'/? as sidewall boundary layers (see Roberts 1967a). The
presence of the é-line shear layers in the shell were clearly identified by the numerical
simulations of Dormy et al. (1998) (see also Dormy 1997 and the discussion in
Starchenko 1998a,b). Surprisingly Dormy et al. (1998) found that the angular velocity
in these M~!'/?-shear layers exceeded by about 50% the angular velocity Q; of the
inner sphere. We say surprising because Lenz’s law says that the Lorentz force acts to
retard motion, which locally is evidently not true here. Indeed the situation provides
yet another ‘warning example to those who might wish to apply Lenz’s law in detail I’
(Roberts 1967a, p. 183). Dormy et al’s (1998) finding was subsequently given further
numerical support by Hollerbach (2000, 2001) and Hollerbach & Skinner (2001).
Those papers emphasize that the nature of the electromagnetic boundary conditions
play an extremely important role. Indeed their numerical results show that when both
the inner and outer spheres are electrically conducting, the super-rotation is very
large, O(M®®). The sensitivity to boundary conditions can be traced to the role played

M:

(L" =71, —1)) (1.1a,b)
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by the Hartmann jump conditions on the inner and outer boundaries. We elaborate
on this point in §6, where we offer a tentative explanation for this large power law.
A comprehensive analysis of that intriguing case is challenging and lies outside the
scope of this present paper.

Though Starchenko (1997) considered the case of a rotating shell (E < 1), he
worked in the large Elsasser number limit for which the boundary layer structures
that he isolated are largely similar to those that we consider. Indeed, he proposed
a mechanism for super-rotation. The effect he isolated is in fact small but may well
produce an O(M~!) super-rotation in the equatorial mainstream region, as we explain
in § 6. Nevertheless, being small it is not responsible for the O(1) super-rotation that
occurs in the @-line shear layer.

In this paper, we develop an asymptotic large-M theory and compare it with
numerical integrations of the complete governing equations at large but finite M. Our
development is organized as follows. In §2 we formulate our problem. We describe
the mainstream solution, first obtained by Starchenko (1997), valid outside boundary
layers and compare it to the numerical solution of the complete governing equations.
The differential rotation leads to a current flow from the inner conducting sphere
out through the fluid along the meridional magnetic field lines. On arrival at the
outer boundary it is carried to the equator inside the Hartmann boundary layer and
is returned along the %-line to the inner sphere. In §3.1 we formulate the %-line
shear layer problem and report results of its numerical solution; in §3.2 we obtain
analytic solutions for the narrow gap limit. In §4 more detailed comparisons are made
between the numerical results for the boundary layer and the complete problem. Now
it is important to appreciate that a significant fraction of the Hartmann layer current
reaches the small equatorial Hartmann layer (the shaded region on figure 7 below),
which is only a point on the scale of the %-line shear layer. The current from
this point source follows the #-line but spreads laterally causing the azimuthally
directed Lorentz force to take opposite signs on either side. The fluid is de-accelerated
(accelerated) on the polar (equatorial) side by an O(1) amount. The equator-side
acceleration provides the O(1) super-rotation.

Some small discrepancies are found in the numerical comparisons between the full
numerics and the shear layer theory. These may be traced to low-order corrections
which arise because the free shear layer intersects the outer-sphere boundary in the
vicinity of its equator over a relatively long latitudinal length O(L*M~'/4). Here a thin
Hartmann layer can still be distinguished but thickens as the equator is approached.
Eventually it becomes the equatorial Hartmann layer, which constitutes the source
mentioned above, with characteristics more in common with sidewall boundary layers;
it has width O(L"M~%/3), extends over the latitudinal length scale O(L*M~'/3) and
its existence leads to the source of the dominant correction to the free shear layer.
In §5, we obtain the analytic solution for this layer using a remarkable technique
developed by Roberts (1967bh) (see also Roberts 2000) for a closely related problem.
Our result enables us to determine a displacement thickness 6* = O(L*M~%?) for the
M~12_shear layer. By that we mean that the shear layer is effectively triggered on the
equatorial plane at a radius r, — ¢ rather than at the outer boundary r,. With the
inclusion of this correction to the shear layer solution, we find excellent agreement
with the full numerical simulations.

2. Formulation

We adopt L*, L*Q; and B; as our units of length, velocity and magnetic field
respectively; the superscript star is dropped for all dimensionless quantities.
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o

FIGURE 1. The northern hemisphere geometry. At large M, the polar 2 and equatorial & mainstream
regions are separated by the shear layer containing the magnetic field line € joining E, to Q.

Relative to cylindrical polar coordinates (s, ¢, z), our applied dipole magnetic field
is

(2.1a)

B (}5_ _ (3sz 227 —¢
By=vax L ——vo (20 =),

where
Azész/;ﬁ, <D=%Z/r3 (r = \/m) (2.1b)
It determines
sTVA| = [By|* = L (s 4+ 42%)/rS. (2.1¢)

The magnetic field line ¥: A = 1/2r, divides the fluid shell up into two domains
P A<1/2r, and &: A > 1/2r,. In the former polar domain £ the magnetic field
lines intersect both the inner and outer shell boundaries r = r; and r = r,, where
ro, —r; = 1. In the latter equatorial domain & the magnetic field lines intersecting
the inner sphere boundary cross the equator within the fluid and return to the inner
sphere without ever meeting the outer spherical boundary. The dividing line € is
important because it has grazing contact with the outer sphere at the equator E,.
There we find it convenient to introduce the alternative Hartmann number

M = %ro_zM (2.2)
based on the local magnetic field strength Bj/2r3 (s = r,, z = 0 in (2.1¢)) and the
length ;. We denote the intersection of % with the inner sphere by Q (see figure 1).

The slow steady azimuthal velocity (0,s2,0) forced by rotating the inner sphere
induces small magnetic field perturbations (0, Ry, B,0). The equations of motion and
magnetic induction are linearized on the basis that Ry, is small and their ¢-components
give

M?*s7' By -V (sB) + (V* —572) (sQ) =0, (2.3a)

sBy-VQ+ (V?—s7?)B=0. (2.3b)
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Mir2 =102 Mir2=10° M2 =10*

=

—-MsB

FiGURE 2. The full numerical solutions of the governing equations for the radius ratio r;/r, = 0.35 at
increasing values of M. Contours at uniformly spaced levels of constant positive (negative) isovalues
of Vo, V_, Q@ —1 and —MsB in the meridional plane are indicated by the continuous (dotted) lines.

On the rigid outer insulating boundary (r = r,), we require that
Q=0 B=0, (2.4a,b)
while on the inner boundary (r = r;), the no-slip condition requires that
Q=1. (2.5a)

Since the inner solid sphere is a conductor with the same conductivity as the fluid,
we therefore require that

0B .
B and o are continuous across r =r; (2.5b)
r
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with B satisfying
(V2 — s_2) B=0 in r<r. (2.6)
It is also helpful to take advantage of the symmetries corresponding to those of
the applied dipole field, A(s,—z) = A(s, z), namely Q(s,—z) = Q(s,z) and B(s,—z) =
—B(s, —z), which respectively imply
0Q

= B =0 on the equator z=0. (2.7)
z

In the large Hartmann number limit M > 1 for which our asymptotic analysis is
valid, the dissipation in the mainstream exterior to all boundary layers is negligible.
With the neglect of viscosity, the Lorentz force vanishes j x By = 0, where j =
s~ 'VsB x J) is the electric current measured in appropriate units, implying that the
current lines sB = constant are aligned with the meridional magnetic field lines.
Likewise with the neglect of Ohmic diffusion, the magnetic field is frozen to the fluid
and satisfies Ferraro’s (1937) law of isorotation, namely that the angular velocity Q is
constant on field lines. From a more formal point of view, (2.3) have solutions with
functional form

Q=F(A)+0M™"), sB=-—r*M"9A4)+0M?) (2.8a,b)

(cf. Starchenko 1997, equation (31)), in which the leading-order terms depend on A4
alone.

In order to understand the nature of the boundary layer structures, we introduce
the Alfvén variables

Vi=sQ + MB, (2.9)
which satisfy (2.3) when

By:VVe+ M (VP —s2)Vo=s"BVr (2.10)

They should be interpreted as advection—diffusion equations, which are coupled by the
source terms on their right-hand sides. The advection is manifested by B,;; when B),
directed from the inner to the outer sphere, V. (V_) is convected inwards (outwards).
As a consequence, V. (V_) is continuous across the Hartmann layer on the outer
(inner) sphere. Continuity of V, across the outer Hartmann layer together with the
boundary condition (2.4a, b) implies that the mainstream boundary condition on the
outer sphere is

sQ4+MB—0 as r1r, (2.11)

On the inner boundary, the complete solution of the Hartmann layer equations, which
satisfy the boundary conditions (2.5a, b), is

1 0B
B ~ B,+m <ar>l{1 — €Xp [—M|B,,—\(r—r,-)”, (212(1)
1 (0B
Q~ 1t 5 (m)i{l —exp [~M[Bul(r— )]}, (2.12b)

provided that

0B
M|B,i| |Bi| > ‘() , (2.12¢)

or

where B; and (0B/dr); denote the values of B and its radial derivative inside (but at
the boundary of) the solid conductor, while B,; denotes the radial component of By,
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normal to the boundary at the location (s;, z;). This yields the mainstream boundary
conditions

| (0B | (0B
B Bi -— |, Q 1 - c is 2.12d
5t VB <ar )i Ry <ar >,~ as rir (2.12d)

on the inner sphere.
The mainstream solution, that satisfies the symmetry conditions, Q(s,—z) = Q(s, z),
B(s,—z) = —B(s,z) and the Hartmann jump conditions (2.11), (2.12), is

F(A) =1 everywhere (excepton A=Ay =1/2r,) (2.13a)

and

G(A) = (2.13b)

A/Ay inregion Z: 0 <A < Ap
{ 0 in region &: Ag <A< 1/2r;
(cf. Starchenko 1997, equation (79)). In applying (2.12d), we have assumed that
(1/B;) (0B/0r); is of order unity, i.e. the radial length scale adopted by the potential
solution inside the solid sphere is the same as the latitudinal length scale on its
surface. So, since B = O(M™!), the mainstream boundary condition (2.12d) reduces
to Q =1+ 0(M™") as r | r,. Consequently, the terms neglected in our application
of the boundary conditions (2.11) and (2.12d) are both O(M~") consistent with our
assumption (2.8). Note, however, that our error estimates are larger (O(M~'/?)) near
0, where the %-line shear layer has a short O(M~'/?) length scale, but the inequality
(2.12c¢) is still met comfortably.

From (2.8b) and (2.13b) we deduce that the total electric current flowing outwards
in the polar region £ is

Jout = 27(sB) ey = — 7/ M (2.14)

(see (2.2)). Since none flows in the equatorial region &, it is all returned along the
%-line shear layer.

We performed direct simulations of equations (2.3) up to Hartmann number
2 = M/r> = 10* for the radius ratio r;/r, = 0.35. In order to achieve better
comparison with the asymptotics, we considered an initial value problem in which we
reinstated inertia into (2.3a) by replacing the zero on its right-hand side by 0Q/0t.
It is important to appreciate that this is purely a device to aid convergence and only
the final steady state is of interest. The two scalars Q and B are represented as

L L
Q=" Qr)Py, (cos0), B = Bi(r)Py(cos0), (2.15a,b)
0 1

where 0 is the colatitude. We calculated B; and ©; on a radial grid stretched so that
inner and outer Hartmann layers are well resolved. For M/r? = 10* we employed
very high resolution (5000 points in radius and harmonics up to L = 220). The
solutions in meridional planes are illustrated in figure 2. The constancy of sB on
magnetic field lines in the polar region £ implied by (2.13b) is clear. The absence
of contours of constant sB in & and £ in both £ and & is consistent with (2.13).
Evidently a free shear layer remains across the dividing field line ¥: 4 = Ay, where
the mainstream approximations break down. Of course, as this layer thins with
increasing M the global resolution of the spectral method becomes more and more
difficult to implement and the boundary layer approach is then more attractive. For
the boundary layer treatment of the shear layer, the Alfvén variables V, are more
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relevant than Q and B, which is why contours of their constant values are portrayed
also on figure 2. We discuss the nature of this free shear layer in the following section.

3. The shear layer ¢

For reasons that will become clear when we study the equatorial Hartmann layer
on the outer sphere in § 5, we introduce the notion of a %),-field line. It is defined to
be the field line €y: A = Ay := 1/2ry, where ry; < r, is chosen for our convenience
later to be a function of M with the property that ry, 7 r, as M — oo. More
specifically it is a field line that emerges from inside the equatorial Hartmann layer
and so r,—ry = O(M~2/3), which remains small compared to the shear layer thickness

o(M~172),
Points on the %)-line may be defined parametrically by
s=rul?? z=ryl(1—=0)" (3.1a)
where
{=r/rm, and (i =ri/ru. (3.1b)

An important weighted measure of distance along the line is

oc(C)z—Z/E szBM-dx=2/E s dd
E1-3¢
—2 [ GAEd-e-0VI=t (32)

where Ej: (ry,0) is the intersection of the @);-line with the equatorial plane. Thus
the weighted distance along @), from E), to its intersection Qu: (Sui, zyi) With the

inner sphere is oy := o({y;). Thus we normalize this distance by introducing the
coordinate [y, defined by
Eym
Ly = / szBM~dx// By rdx=1— @, (3.3a)
Om M O Mi

which has the property that it is zero at Q) and unity at E,,. Distance normal to &,
is measured by the stretched flux function coordinate

Ny = \/2M/06Mi(—A+AM). (33b)

Throughout the remainder of this section we consider only the limiting case ry; = r,.

3.1. The boundary layer formulation
We adopt boundary layer coordinates (I, n) = (I, ny) in the limit M — oo. They are

Li=1—=ol)/oi, n:=+/2M/oa(—A+ Ag), (3.4a,b)
where
E,
o = 2/ $By-dx =o(l) with ( =r/r,. (3.4c¢)
Q

In terms of {; the inner and outer spherical boundaries are located at

ri=G/(1=0) and r,=1/(1-0) (3.4d)
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Our choice of sign in the definition of n ensures that n is positive in £ and negative in
&. Relative to the boundary layer coordinates (I, n), the boundary layer approximations
of (2.10) yield

av. 0%V 10ds

ﬁli + ﬁf = o Ve where () =r,0? (3.5a,b)
is defined implicitly as a function of [ via (3.2) and (3.4a). The pair of parabolic
partial differential equations (3.5a) are coupled by the term on the right-hand side,
which arises due to curvature effects. The strength of the coupling is determined by

the size of the coefficient
10 3o J1—
Los _du yl=e | (3.5¢)
s ol 4 ¢ (1 -1 )
Solutions of (3.5a) are required that match with the mainstream solution (2.8).

Expressed in our boundary layer coordinates, (2.13) determines the boundary condi-
tions

s F (r2/s) (1 — \/oc,«/,ﬂn) as n 1 oo

s as n | —oo

Vi—_)

(3.6)

on 0 < I < 1, remembering that s = s(I) and .# = M /2r2.

To obtain the inner-sphere boundary conditions at [ = 0, we need to consider
the Hartmann layer at Q. Since the shear layer thickness is O(M~'/?), that is the
latitudinal length scale imposed on B at the surface of the solid inner conductor.
The potential solution has the same radial scale and so we estimate that (0B/dr); =
O(M'?B;) = 0(M~'/?). Consequently, the Hartmann jump condition (2.12d) becomes
Q =14 O(M~'/?), which determines the condition

V_+ Vi =2s0+0M"? (3.7)

at [ = 0 on the inner sphere.

The situation on the outer sphere is rather more delicate and we need to be aware
of its location &¥,: s = s,(z) relative to our boundary layer coordinates. On %, the
value 4, of A satisfies Ap — A4, = z2/2r3. Since the %-line and ., are tangent to each
other at E,, where [ = 1, we may assume that, at given [ close to unity, we may make
the approximations z ~ r,(1 — {)'/? and « ~ (1 — {)"/%. In this way we obtain, using
(3.4a), the approximate results

Ay—Ag ~ L1 =0)/r, and 1—1 ~ \/1—5/%, (3.8a,b)
which together with (3.4b) determines the approximate location
ne = o) 2" (1 — 1) (3.8¢)

of the outer-sphere boundary &,: n = n,(l). Evidently &, eats into the boundary
layer up to a distance |1 —I| = O(M~'/4), as illustrated on figure 7 below. Fortunately
this distance tends to zero as M — oo and so correct to lowest order the outer-sphere
boundary conditions can be applied at | = 1.

In the neighbourhood of the equator E,, the outer-sphere Hartmann jump condition
(2.11) requires V., to vanish, while symmetry demands that B vanishes on z = 0.
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Together they yield the boundary conditions
0 for n=0

v, = » (3.9a,b)
V.o=r, (1 — /o(i/,ﬂn) [1+Qs] for n<0

at [ = 1. Here we have introduced
Qs(n)=0Q—1, (3.9¢)

which measures super-rotation on the equatorial plane in the vicinity of E,.

In addition to the O(M~'/?) errors introduced by ignoring the Hartmann layer
corrections at [ = 0 and the higher-order matching terms as [n| - co on 0 <[ < 1,
more substantial errors O(M~'/%) are incurred at [ = 1 through not considering the
small equatorial Hartmann boundary layer (|1 — | = O(M~'/3) and n = O(M~%)),
see figure 7 below. We rectify that deficiency in §5.

We solved the boundary layer equations (3.5a) numerically subject to the lowest-
order boundary conditions

s F(r2/s) as ntoo
Vi — (3.10)
s as n ] —oo
on0<I[<1,
Vo+ V=25 (3.11)
at [ =0, and
0 for n>=0
V., = { (3.12)
Vo=r,[1+ Q] for n<0

at [ = 1 on the outer sphere, where the O(M~'/?) terms appearing in (3.6), (3.7) and
(3.9a) have been neglected. Results for the shell radius ratio {; = 0.35 employed for
figure 2 are illustrated in figure 3. The curves of constant V', clearly indicate how it
is advected from the singularity at the equator of the outer sphere E,: [ = 1 in the
direction of decreasing [. It is essentially reflected at the inner sphere at Q: [ = 0
and is returned as 2so — V_ in the direction of increasing [. The advection—diffusion
equations (3.5a) for V. are coupled by the source term (1/s)(ds/0l)V on their right-
hand side. This source term appears to be responsible for the ‘nose-like’ structures
visible on the contours of constant V7 for the large Hartmann number solutions in
figure 2; they are clearly faithfully reproduced by the boundary layer solutions shown
in figure 3.

The value —B = r,V_/2M on the outer sphere for | = 1 is of some interest. It
reduces from —B =r,/M asn } oo to —B =r,(1 + Q5(0))/2M as n | 0. The fact that
it is not zero determines the strength of the equatorial current source

Jsource = — %TC [1 + QS(O)]/ﬂ = %[1 + ‘QS(O)]Jouty (313)

which emanates from the equatorial Hartman layer, where n = O(M~/%) (see §6
below). The remaining current Jo,[1 — Q5(0)]/2 is returned directly into the shear
layer (n = O(1)) from the Hartmann layer itself, where n > M~/ This feature is
clearly portrayed by the contours of —MsB = constant in figure 3; some contours
stem from the source, while others originate from the Hartmann layer at [ = 1. There
is also evidence of this partitioning of the return current into the source Jyouree and the
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continuous distribution Jouy — Jsouree from the full numerics for the case M /r? = 10*
portrayed in figure 2.

3.2. The narrow gap limit

Though the boundary layer problem posed can only be solved numerically in general,
some analytic progress can be made in the narrow gap limit

e=(ro—ri)/ro < 1, (3.14a)
for which we may make the estimates
o 10 .
r . > —0() and < a% — 0(s) noting that 1—( =& (3.14b)

Upon neglecting the O(¢) terms in the boundary layer equations (3.5a), they then
decouple and can be solved successively. Even though the ensuing system is relatively
simple, it retains sufficient complexity to demonstrate the super-rotation phenomena.
So our prime objective here is to determine the unknown super-rotation Qg(n).

We take (3.12) as our initial data V_(n,1) = r,[1 + Qs(n)] at E, and solve the
diffusion problem on 0 < 1—1 < 1 for V,. Its value V,(n,0) at Q provides, via (3.11),
the initial data V_(n,0) = 2 — V,.(n,0) for ¥, on 0 < [ < 1. The solution to both
problems can be expressed in the form

Vi_ -1 n 1 0 ’ _(n_n/)2 ’
Z_H_ erfc(\/4 +1)i\/4(1¢ln/_95(n)exp< 4(1$l))dn.(3.15)

The requirement, that the final value V_(1,n) for n < 0 at E, is the same as the initial
value of V. (1,n) there, leads to the integral equation

(I’l B n/)2 ’
Qg(n) = 5 erfc < 8> \/ﬁ/ ) exp ( 3 > dn’, (3.16)

for n < 0, whose solution in turn determines the complete solution (3.15). In turn,
the corresponding values of sQ = (V, +V_)/2 and B = (V; — V_)/2M (see (2.9)) are
readily obtained.

For n < 0, the solution of the diffusion problem can be expressed in terms of
normal modes periodic in [ of half period | = 2. Such separable solutions exist with

Qg(n) = {Z Qrexp [ (14+1)+/2k+ 1)n }} on n<0. (3.17a)

Here the complex constants Qy are the coefficients of the Fourier expansion of a
periodic é-line function, which reverses sign under the shift | — [ 4+ 2 and is defined
by r, 'V (0,1—)—1on0<I<1land 1—r,'V_(0,/—1)on 1 << 2. Of course, the
values of Qk are unknown, but the form of (3.17a) does provide useful information
about the large —n behaviour, namely that

Qs(n) ~ Qo exp (L /mn)cos (L /an—gs) as n|—o, (3.17b)

where Q) = \Qo|exp(—i<ps). Essentially, Qg oscillates with period 4\/7? and decays
exponentially in the —n-direction.

Though (3.17a) can be used as the basis of a method of solution, it is perhaps
more instructive to solve (3.16) by successive iteration. This gives a series expansion
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A

—-MsB

FIGURE 3. The numerical solution of the boundary layer equations (3.5a) in the [, n-plane for the
radius ratio r;/r, = 0.35 of figure 2. The [-axis 0 < [ < 1 is identified by the horizontal dashed lines;
the vertical extent is —15 < n < 15. As in figure 2, positive (negative) isovalues are indicated by the
continuous (dotted) lines.

whose first two terms are

_ 0 o a2
Qs(n) = % [erfc(\%) - \/187/_werfc( \g)exp(— (n 8”) )dn’ +]

(3.18q)

which reduces to

Qg(n) = % erfc(?/g> — erfc(_Tn) [; —% erfc(?)} + - (3.18h)

The numerical solution for V,(1,n)/r, = 1 + Qs(n) obtained by taking the first two
terms of (3.18) is illustrated by the dashed curve on figure 4, which according to
(3.18b) terminates with Qg = 3/8 at n =0.

The iterated solution agrees with the numerical solution of the boundary layer
equations and they are also shown on figure 4. As n is increased from —oo, the value
of Qg decreases slightly from zero to a minimum Qg ~ —0.0070 at n ~ —4.3636 and
then increases monotonically through zero at n & —3.4376. The separation (= 0.93)
between the minimum and zero of Qg is in excellent agreement with the eighth period
J7/2(~ 0.89) predicted by the large —n asymptotic result (3.17b). Then Qg continues
to increase, terminating at n = 0 with the value Qg(0) ~ 0.4139. This lies within the
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0.9 . I \
-10.0 -71.5 =5.0 2.5 0

n

FIGURE 4. The angular velocity 1 4+ Qg(n) on the equatorial plane plotted vs. n in the narrow gap
limit ¢ < 1. The dashed line denotes the two-term solution (3.18), the continuous line denotes its
iteration to 100 terms and the stars denote the numerical solution of system (4.1).

range 0.375 < Q4(0) < 0.5 suggested by the single-term and two-term expansions of
(3.18a), which by the alternating nature of the series naturally bound the realized
value. Of greater significance is the fact that Q5 > 0 in the range —3.4376 < n < 0.
This feature is obvious even from the simple first term of the series expansion (3.18a),
while the region of small negative Qg is suggested by the two-term representation
(3.8b).

Our semi-analytic treatment of the narrow gap limit isolates the key mechanisms
responsible for super-rotation. In particular, curvature effects, which we neglected
in (3.14), are evidently unnecessary. Instead, we need to examine carefully how the
electric current circuits are closed inside the electrically conducting fluid; we discuss
this issue in the wide gap context in §4.2 below.

In the next section we describe the numerical procedures adopted to solve the shear
layer boundary layer problem. We discuss in more detail the nature of the results and
make quantitative comparisons with the numerical solution of the complete governing
equations (2.3) illustrated in figure 2 at finite M.

4. Numerical solution of the #-boundary layer equations

The numerical solution of (3.5a) subject to the boundary conditions (3.10), (3.11)
and (3.12) can be achieved by successively relaxing (3.5a.) and (3.5a_). We chose
to use a finite difference scheme, well suited for this geometry. It consisted of a
second-order scheme to compute the diffusion along n, and an up-wind first-order
scheme to compute advection in [.

4.1. Narrow gap limit
The solution of the uncoupled system
ovy | 0Py
S +
ol — on?

-0 (4.1)
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appropriate to the narrow gap limit does not raise any particular difficulties. We
only need to reduce the infinite domain in n to a finite computational domain.
Solutions were obtained subject to two distinct sets of boundary conditions at the
upper and lower n-boundaries. On the one hand, we applied Dirichlet boundary
conditions and, on the other, Robin boundary conditions (exponential decrease). We
checked that our computational domain was large enough for both approaches to
give the same results. By this device numerical solutions were obtained (see the stars
of figure 4) that are in excellent agreement with the iterated analytical solution (3.18)
of §3.2.

4.2. Wide gap limit
The numerical solution of the coupled system (3.5a) requires some additional care.

As n — +oo, our boundary conditions (3.10) require that n-derivatives vanish.

There V. solves

éVi 1 0s

ol sal”
with diffusion neglected and its solution is, of course, that defined by (3.10) as
n — —+oo. In the case of the discrete analogue of (4.2), the boundary condition (3.10)
as n | —oo is a solution but the boundary condition (3.10) as n T oo is not; this is
due to the nature of the up-wind discrete operator. Indeed, the error thus introduced
if (3.10) is used as the numerical boundary condition does not let the successive
relaxations reach a steady solution and the iterative resolution diverges. To overcome
this difficulty, we replaced (3.10) as n — +oo with the numerical solution of (4.2)
imposing V, =0 at [ =1 and V_ = 259 — V,, at | = 0. This numerical boundary
condition is consistent in the sense that it tends to (3.10) as the number of [-points
tends to infinity.

The numerical approximation of (3.5a) itself has inherent difficulties. We add
artificial diffusion (often referred to as ‘numerical diffusion’) to this equation in the
[-direction by use of the up-wind operator. This diffusion was kept small by using
a large number of points (up to 8000) in this [-direction. For that, the difference
between the numerical and exact boundary condition mentioned above is then less
that 1%. We employed 600 points in the n-direction and results for the case {; = 0.35
are illustrated on figure 3; they should be compared to the full numerical solution of
(2.3) illustrated in figure 2.

A more quantitative comparison between the boundary layer solution and the full
numerics is possible by looking at the cross-sections of the shear layer at various
values of [ as illustrated in figure 5 for the case {; = 0.35. Our boundary layer equations
have been solved subject to the conditions that all quantities tend to constants as
n — oo (see (3.10)). Nevertheless, it is quite clear that the numerical results at finite
Hartmann number veer away from those constant values as n T co. This is consistent
with the O(M~'/?) corrections present in the true boundary conditions (3.6). The
termination of the finite-M curves at certain positive values of n reflects the fact that
the cross-section has either reached the symmetry axis (I = 0.1) or the outer sphere
I =04 and | = 0.7; in the extreme case (I = 1.0) the outer boundary is reached at
n =0 in all cases. The abrupt drops in values of V_ visible in some cases for | = 0.4
and 0.7 are manifestations of the Hartmann layer on the outer boundary.

It is important to remember that contours of constant sB are electric current lines
(see above (2.8)). In the mainstream region they are almost parallel to the meridional
field lines (see (2.8)) and so produce no Lorentz force. That negative electric current

(4.2)
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FIGURE 5. For caption see facing page.

(j is directed inwards) is returned in the outer Hartmann boundary layer to the
equator. Its total magnitude on entering the shear layer is |Joy| (see (2.14)). A small
fraction |Joy|(1 — ©4(0))/2 escapes directly into the shear layer but the larger fraction
[Tsource] = [Jout|(1+25(0))/2 (see (3.3)) is returned from the small equatorial Hartmann
layer, which on the scale of the shear layer is a point source. The consequences of that
are clear in figure 3. The negative current Jyou.e €merging from the source spreads with
decreasing [ (j is directed outwards). Whether the corresponding contours of constant
sB cross the contours n =constant from below or above determines the sign of the
Lorentz force jx By;. In figure 3 the contours of —MsB have the correct inclination for
negative n to accelerate the fluid. Another measure of the domain, in which the fluid
is accelerated, is provided by figure 5. There acceleration occurs when 62Q/dn* < 0,
which is identifiable for moderate negative values of n. The cross-section [ = 1 is
particularly revealing in this respect, exhibiting features similar to those already seen
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FIGURE 5. The quantities V. /r,, V_/r,, @ and —MsB plotted vs. n at [ = 0.1, 0.4, 0.7 and 1.0
for the radius ratio r;/r, = 0.35. Numerical solutions of the governing equations (2.3) are shown
for M/r2 = 10%, 10%, 10* by continuous (except for V_/r, dashed) lines of increasing solidity; the
numerical solutions of the boundary equations (3.5a) are identified by the short-long-dashed curves.
The larger the value of M the closer the curve is to the asymptote.

in the narrow gap limit, and is well represented by the asymptotic solution. For that
the value of Qg decreases slightly from zero at n = —oo, as n is increased; it attains its
minimum Qg ~ —0.01780 at n &~ —6.4776, then increases monotonically through zero
at n ~ —5.1619 to its maximum Q2 = 0.4530 at n ~ —0.7663, then finally decreasing
and terminating at n = 0 with the value Q5(0) ~ 0.4147 close to the value found in
the narrow gap limit.

The fact that the maximum angular velocity Q is found on the equatorial plane
(I =1) not at E, (n = 0) but at a finite distance inside the fluid at n ~ —0.7663, is
a curious feature special to the finite gap. It is therefore dependent on the coupling
term (1/s)(ds/01)V+ on the right-hand side of (3.5a). The plots at [ = 0.7 on figure 5
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FIGURE 6. As for figure 5 (except for ¥_ now continuous) but plotted vs. [ on the ¢-line n = 0.

suggest that the value of V, being advected inwards from the equator acts as a
sufficiently strong source to alter the outwardly advected V_ giving it a flattened
profile at its centre. This is ultimately manifested by the interior local maximum on
the equator. Another manifestation of the same effect is identified by an ‘S’-shaped
contour of V_ at the centre of the layer close to the equator | = 1 in figure 3.

An alternative and somewhat more testing comparison is made on figure 6, where
quantities are plotted on the %-line (n = 0). There some apparently substantial
differences between the numerics and asymptotics are visible. The most obvious
failure occurs in the neighbourhood of | = 1 and can be accounted for by noting
that when |1 —[| = O(M~'/3) the %-line is inside the equatorial Hartmann boundary
layer, where the shear layer boundary layer problem that we have solved ceases to be
valid. Outside this equatorial layer it appears that our numerics converge slowly for
large M.

Returning to figure 5, we notice that the Q-profiles appear to be shifted by an
amount consistent with a boundary layer displacement induced by the equatorial
Hartmann layer. We explore this idea in the next section and isolate such a boundary
layer displacement through solving the equatorial Hartmann layer problem. We then
redraw the figure 5(a) for Q at I = 1 in figure 9 below but with each finite-M
curve displaced by its appropriate amount. In the same spirit, we draw figure 10
below equivalent to figure 6 but the results for the full numerical solution at each
given M are plotted on the properly chosen displaced %j;-line. The improvements
obtained strongly support our contention that the leading-order corrections stem
from a boundary layer displacement.
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(b)

M23

FIGURE 7. A schematic representation of the equatorial Hartmann layers and its neighbouring
boundary layers on the outer-sphere boundary .%,. Its relation to the M—'/? %-shear layer and the
outer sphere M~! Hartmann layer are shown (a) in the meridional plane and (b) relative to the I,n
boundary layer coordinates of the shear layer.
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FiGURE 8. The angular velocity profiles Q plotted vs. p in the equatorial Hartmann layer on the
equator 7 = 0 for the radius ratio r;/r, = 0.35. The curves for M /r2 = 10%, 10°, 10* are identified by
continuous lines of increasing solidity, which for small p approach the asymptotic solution (5.12)
given by the short-long dashed curves.

5. Equatorial Hartmann layer

The length scales for the equatorial Hartmann layer are dictated by the outer-sphere
boundary shape (3.8) in the immediate vicinity of E, and the form of the shear layer
equations (3.5¢). Together they suggest the change of variables

V=l =o ™t n=—u 7%, (5.1a,b)
for which the boundary &,: n = n,(l) (see (3.8¢)) is transformed to
E=p+1>=0. (5.2)

The length scales of the equatorial boundary layer are therefore |1 — | = O(M~1/3)
and n = O(M~'/%) (or equivalently r, — s = O(M~?/3)), as indicated on figure 7. With
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these estimates the coefficient (1/s)(0s/d1) (3.5¢) on the right-hand side of (3.5a) is
O(M™1/3). Therefore, the term on the right-hand side of (3.5a) is smaller than the large
derivatives on the left-hand side by a factor O(M~*/?) and may clearly be neglected,
leaving

oVy _ 0¥V
e 7 0. (5.3)

The simplest way to formulate our boundary layer problem is to solve on the
infinite interval —oo < t© < oo which includes the other half of the boundary layer in
the southern hemisphere z < 0. In this way our symmetries imply that ;. can be

defined in terms of a single function @ (p,t), which solves the diffusion equation
0 _ 2o
ot op?

on p>—1’ (5.4)

as follows:

Vi(p, 1) = 1,1 + Qs(0)] [1 — O(p, £7)]. (5.5)
The idea is simply that the value of V_ being advected in the shear layer down
towards the equatorial Hartmann layer is given by r,[1 — Q24(0)] as © T oo, namely the
leading-order approximation of it for n = O(M~'/°). This provides our initial value
unity for @ as t | —co. It also provides our boundary condition as p 1 co. Since both
B and Q vanish on the boundary, our diffusion equation (5.4) must be solved subject
to the boundary conditions

=1 on the outer sphere p = —1°
e (5.6)
—0 as ploo
and the initial condition
®=0 for p>—1> as 1| —o0. (5.7)

In order to make analytic progress, it is helpful use ¢ (see (5.2)) and 7 as our
dependent variables rather than p and 7. Then in place of (5.4), © satisfies

0,0 _06
0t 08 0&2
We see at once that the large negative-t solution has the asymptotic form

O =exp(2té) as 1| —o0. (5.9)

on ¢ >0. (5.8)

Here the exponential simply defines a very thin boundary layer, which for our MHD
problem corresponds to the Hartmann layer associated with V_ as it approaches
the equator in the shear layer from above. As t increases, the boundary layer
width, O(—1/7), thickens. Relative to the latitude A = sin"'(z/r,), this corresponds to
the radial width of the Hartmann layer thickening proportional to O(|AM|~!). The
thickening stops at width O(M—2/3), when 4 = O(M~'/3), which defines the dimensions
of the equatorial Hartmann layer as illustrated in figure 7.

The layer detaches from the boundary at © = 0 and for large positive t becomes the
shear layer in the neighbourhood of the %-line p = 0 or equivalently ¢ = 72. There it
has the asymptotic form

0= % erfc (’Zg) as t1o0 (5.10)
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on —12 < p < oo, where the constant § of order unity is determined by the solution.
To understand the nature of (5.10), we note that with § = 0 it is the solution of the
diffusion equation (5.4) on the infinite interval —oo < p < oo subject to the initial
conditions @ =0 on p >0and ® =1 on p < 0 at t = 0. This is exactly the boundary
condition which we employed at I = 1 in the previous §4, to solve for the free shear
layer. The point that we wish to stress is that, when we match the shear layer solution
to the equatorial Hartmann layer solution, the shear layer is effectively triggered on
the equator at p = § rather than at p = 0. In other words, the effective ©-line is the
% \-line, which intersects the equatorial plane at

n=—o, Pu1%s (5.11a)

it determines
(ro —rm)/ry = M35 (5.11b)
entirely in terms of the local Hartmann number (2.2) appropriate to the equatorial
Hartmann layer. We relegate the details of the calculation to the Appendix but note

that complete solution (A1) and (A2) yields the result (A12), (A13). From them we
deduce

5=2 / * A + 3A0)Bi(9) - ossy (5.11¢)
0

[Ai(0)]? + [Bi(a)]?
where Ai and Bi are the usual Airy functions.
The solution (A1), (A2) may also be used to determine the angular velocity

Q(p) = [1+2s(0)] [1 — O(p,0)] (5.12a)

on the equatorial plane, where

A(p,0) = /: {Ai(a) {Ai(p“’l“) + Ai(erw”)} +Ai(p+a)} do  (5.12b)

Ai(w~ o) Ai(wo)
in which w = exp (i27/3). We plot Q on figure 8 using the value
Qs(0) =0.4147... for the case {; =0.35 (5.13)

determined by the free shear boundary layer calculation reported in §4. The corre-
sponding values of the angular velocity computed from the full numerical integrations
at finite M are also portrayed for comparison.

In order to make a more faithful comparison with the shear layer boundary
layer solution and the numerics, we take into account the displacement thickness
determined by (5.11) in portraying the finite-M results in figures 9 and 10 below. By
that we mean that each finite-M numerical solution is determined as a function of
the shear layer boundary layer coordinates (I, ny) defined by (3.3) which are based
on the @y -line defined by Ay = 1/2ry, where ry given by (5.11b). At any given
point in the shear layer, we note that [ — [, is small, O(M~%3), so that the distinction
between [y, and [ is unimportant, while correct to lowest order we have

1/3 1/2
) 2
n—ny :_(V2> (O{) M71/65
~ —14101M~"% for the case (; = 0.35, (5.14)

which though small is relatively large and significant.
In figure 9, we redraw the equatorial plot of Q against n at | = 1 displayed in
figure 5(a). Now each finite-M solution is plotted against ny, at Iy, = 1, whereas the
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M /2 100 1000 10000 Asymptotic
Mmax —1.95 —1.40 —1.12 —0.77

Prmax 3.74 3.94 463

Psma 1.48 217 3.18

TaBLE 1. The location of the finite-M maxima of @ in terms of the boundary layer coordinates
Mmax> Pmax- Lhe asymptotic boundary layer value np,, = —0.77 is cast in terms of the equatorial
Hartmann layer coordinate pgmax-

asymptotic solution is left untouched. This plot is most revealing as it confirms that
corrections arising from the displacement thickness give excellent agreement between
the shear layer solution and the full numerics outside the thin equatorial Hartmann
layer. Though good comparisons of 2 inside the equatorial Hartmann layer are also
evident in figure 8, the lack of a clear asymptotic trend for large p can be attributed
to the fact that we are not yet in a true asymptotic regime. This is highlighted by
noting the locations n = ny,, at which Q (full numerics) and 1 + Qg (the shear layer)
are maximum on the equatorial plane and translating them into the boundary layer
coordinate values p = pm.x and psmax respectively. We list these values in table 1. Thus
the location where the curvature of the free shear layer solution is important remains
within the equatorial Hartmann layer even for the largest value of M considered.
The implication is that quadratic, as well as linear effects, are influencing the large-p
trends visible in figure 8.

On figure 10, we repeat the plots of figure 6 but with one crucial difference: each of
the finite-M numerical solutions is plotted versus [y, on its €y,-line ny = 0. Though
necessary differences between the shear layer solution and the full numerics remain
in the equatorial Hartmann layer near I, = 1, the comparisons outside are far better
than those reported in figure 6. Yet again the results confirm the reliability of the
notion of a displacement thickness that we have developed.

Some bumps on the Q-profiles can be identified near [, = 1 on figure 10, where
the @y -line ny; = 0 enters the equatorial Hartmann layer. These bumps were absent
on the @-lines n = 0 portrayed in figure 6. Thus these contrasting features provide
information about the nature of the equatorial Hartmann layer at finite M.

6. Discussion

We have successfully resolved the mainstream and boundary layer structures,
obtaining their solutions by a combination of analytical and numerical techniques.
The cornerstone of our development has been the successful implementation of
numerical methods to solve the unusual coupled advection—diffusion equations that
govern the shear layer. The solution of that problem clearly accounts in a semi-analytic
way (certainly in the narrow gap limit) for the phenomenon of super-rotation. The
numerical solution of the complete governing equations at large M is also difficult.
That results were obtained at sufficiently large M to obtain convincing agreement
with the asymptotic theory was most reassuring.

From a more general point of view, the mechanism for super-rotation described in
§4.2 hinges on the electric current flow in our system. Essentially, negative electric
current flows outwards along field lines in the polar region £ (total J,, see (2.14)), it
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FIGURE 9. As in figure 5(a), except that Q at each M is plotted vs. ny at [y = 1. Note that nyy =n
for the asymptotic shear layer solution.

is carried down to the equator in the outer-sphere Hartmann layer and returns to the
inner sphere along the %-line shear layer. A substantial fraction Jyouce (see (3.13)),
however, reaches the equatorial Hartmann layer, which effectively acts as a current
source and thus as the essential mechanism leading to super-rotation. In particular,
the current emitted from the source largely follows the %-line but spreads laterally
through diffusion. This leads to a Lorentz force, which is largely accelerating on the
equatorial side and de-accelerating on the polar side. This phenomenon is well known
in the context of channel flow, where current injected from electrodes, which are
embedded in the channel boundary, attempts to follow the magnetic field lines (see
Miiller & Biihler 2001, figures 7.1 and 7.2).

Starchenko (1997) notes that the Hartmann jump condition (2.2d) can imply super-
rotation in the fluid adjacent to the inner sphere, when (1/s;B,;)(0B/0r); > 0 (see his
equation (81)). That this is likely to happen in the equatorial region & is clear from
the contours of constant sB inside the solid conducting sphere near the equator seen
in our figure 1. Since Q is constant on meridional field lines, small super-rotation,
O(M™"), should be present throughout &. The Hartmann jump is stronger, O(M~'/2),
near Q at the end of the #-line shear layer. Nevertheless, our analysis of the shear
layer shows that current diffusion in the shear layer has the dominating O(1) effect
and that the Hartmann jump can be ignored. Thus Starchenko’s argument is not able
to account for the O(1) super-rotation that we find and explain.

Hollerbach (2000) also considers numerically the cases in which the inner and outer
spheres are either both insulating or both conducting. The key to understanding the
dynamics of these configurations is the role played by the Hartmann layers. We limit
our discussion to the later more dramatic conducting case for which the inner-sphere
Hartmann layer has solution (2.12), while a similar solution pertains to the outer
boundary. Now for our inner conducting and outer insulating problem, we can accept
a small O(M~") azimuthal magnetic field B by virtually locking the angular velocity
Q of the mainstream flow to the rotation 2 = 1 of the inner conducting sphere. When
both the inner and outer solid spheres are conducting, that is no longer possible. Now
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FIGURE 10. As in figure 6 (note that the Q scale has been stretched), except that solutions at each M
are plotted vs. )y on each %y;-line ny; = 0. Note that [y, = [ for the asymptotic shear layer solution.

both Hartmann layers have to accept an O(1) jump in the angular velocity, which is
only achieved with a corresponding azimuthal magnetic field B = O(1) (see (2.12d)).
A correct physical explanation for this increase in magnitude of B was provided
by Hollerbach (2000) in interpreting his numerical results for different boundary
conditions. His explanation relies on two facts. First, for insulating outer boundaries,
the electric current J,,, flowing outwards along meridional magnetic field lines in
the mainstream polar region £ is transmitted to the equator inside the outer-sphere
Hartmann layer, as we repeatedly stress. This leads to Lorentz forces that can achieve
O(1) angular velocity jumps for relatively small azimuthal magnetic fields. Secondly,
for conducting outer boundaries, the electric currents leak out of the Hartmann
layers into the solid conductor. So to obtain a sufficiently strong Lorentz force in the
Hartmann layer capable of supporting the angular velocity jump, the entire current
flow in the system must be increased by a large factor, O(M).

We tentatively propose the following scenario for Hollerbach’s conducting inner
and outer spheres. In the mainstream, sB continues to be constant on meridional
magnetic field lines, being zero in the equatorial region & and order unity (O(1)) in
the polar region 2 (i.e. O(M) larger than for our case (2.8b)). Then by the magnetic
induction equation (2.3b), the resulting Q is also O(1) in the mainstream outside the
shear layer % but no longer constant on field lines in the polar region 2. Furthermore,
we propose that, unlike our problem, the bulk of the relatively large O(1) electric
current flow is returned in the mainstream polar region #. This is accompanied by
sB decreasing to zero as the %-line is approached from the polar side. Provided
that the decrease is linear, we estimate that the magnetic field, inside the shear layer
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on its O(M~"?) width, is O(M~'/?). This means that his Alfvén variables would be
O(M'/?) larger than ours leading to a stronger super-rotation of magnitude O(M'/?).
This magnitude compares favourably with Hollerbach’s (2000) numerical estimate of
0(M"®). However, the general picture for the super-rotation mechanism in the shear
layer, that we have proposed, should still apply, though, interestingly, this is despite
the fact that only a relatively small fraction, O(M~'/?), of the entire O(1) current flow
follows the @-line. We stress that all these estimates stem from a preliminary theory,
which forms the basis for a complete analysis of the problem at present in progress.

Considering that Roberts (1967b) had obtained, such a long time ago, an analytic
solution for the case of an equatorial Hartmann layer with magnetic field lines bending
towards the walls on leaving the equatorial plane, it is surprising that the alternative
problem with the field lines bending away does not appear to have been addressed.
Though the method of solution in the two cases is essentially the same, the specific
details and answer are different. Significantly our derivation of the displacement width
0" for the free shear layer enabled us to make considerable improvements with our
quantitative comparisons with the full numerics. This leads us to believe that we have
resolved correctly all the major boundary layer processes.

It should be stressed that a key feature which enables progress to be made with the
equatorial boundary layer solution in §5 is the insulating boundary condition that
requires B = 0. By implementation of the zero boundary condition on both V, and
V_, the two diffusion equations (5.3) remain uncoupled. For more general boundary
conditions that is not the case. Whatever the boundary conditions, the corresponding
equatorial boundary layer solution only leads to low-order corrections; the dominant
leading-order results are not dependent on this layer.
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Appendix. The equatorial Hartmann layer solution

We adapt Roberts’ (1967b) solution to a related problem of Hartmann flow down
a circular pipe with a uniform transverse magnetic field applied (see also Waechter
1969). The common feature is the existence of points on the boundary at which the
magnetic field is tangent. The problems differ in that our field lines bend away from
the boundary into the fluid as the equator is left, whereas his effectively approach the
boundary. Put another way, his problem would have been equivalent to ours if his
fluid were outside rather than inside the pipe! So though the techniques involved in
our solution are similar to his, the details are quite different.

Roberts’ (1967b) solution relies on the preliminary change of variables

O(&,1) = exp (e€ — §7°) @(E,7), (Ala)
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which satisfies (5.8) when
0P b
AT
Guided by Roberts’ (1967b) analysis, we demonstrate that the solution of the problem
specified by (5.4), (5.6) and (5.7) is

b = 45_1 +¢0+(D1, (A2a)

(A 1b)

where

P, = /7C AG)AIC + o) exp(w"to)de  (w = exp(i2n/3)); (A 2b)
0

Ai(w"o)

here ™!, 1 and w are the cube roots of unity. Note also that &_; = & for real ¢ and
7, where the star denotes the complex conjugate. It is a trivial matter to verify that
(A 2) satisfies (A 1b) by direct substitution. It only remains to show that the boundary
conditions (5.6) and initial conditions (5.7) (also (5.9)) are met.

A key step in establishing the result (A 2) is to note that the boundary condition
(5.6) ® =1 at £ = 0 is met simply because of the identity

/OO Ai(0) [exp (0 't0) + exp(10) + exp(wto)] do = exp (37°). (A 3a)
0

This is readily established using the power series representations of the exponentials
and the identity

(3m)!
3mm!

3/ ¥ Ai(o)do = for m=0,1,2,3,... . (A3b)
0
Here the case m = 0 is given by Abramowitz & Stegun (1964, equation (10.4.47)),
while the cases m > 1 follow by mathematical induction using the property cAi(o) =
d?Ai(c)/de? and integrating by parts; Roberts (1967b) obtained a comparable result
(his equation (49)) using integral properties of Bessel functions.
Since all the Airy functions in (A 2b) decay exponentially for large positive o, it is
self-evident that the solution (A 2a) satisfies the boundary condition @ — 0 as & 1 oo.
As a preliminary step to establish the initial condition (5.7) we note the alternative
form

€D=&5,1+@0 +Q~5], (A4a)
where

. /OO Ai(g)Ai(¢ + w"0) exp (w"10) do, (A 45)

P = -y, Ai(w"a)
where v, is a positive real chosen for our convenience in (A 6) below. In obtaining
(A 4), we have cancelled the contributions from each @,-integral from 0 to w"v, on
the basis of the identity w'Ai(w™'v) + Ai(v) + wAi(wv) = 0 (see Roberts 1967b,
figure 3 and discussion below it). The idea is to evaluate the remaining integrals
(A 4b) by the method of steepest descents. For @;, we make the change of variables
¢ = w~'v, use the appropriate asymptotic form for Ai in the relevant sector on the

complex plane (cf. Roberts 1967h, figure 2 in the n = —1 context) to obtain the
asymptotic representation
vs+ioo
b, ~ / _expElv) (A 5a)
" iar (v + &)v4
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for —7 > 1, where

gv) =22V —(v+ &) + . (A 5b)
Like Roberts (1967), we start the integration from the saddle point v,, which solves
gvs) =20 — (v, + &) +1=0. (A6a)
For ¢ < 12, it determines
V2~ 1 (1 +2€2> (Vs + ) ~ —1 (1 - i) (A 6b)
from which we obtain
g(vs) ~ %13 + 7¢. (A7a)

The steepest-descent integration off the saddle in the positive imaginary direction
then determines

by ~ %exp (%13 + rf) . (A7b)
Then the sum ®_; + ®; dominate the contributions to @ and together with (A 1) yield
the initial boundary layer form (5.9) for —t¢ = O(1). This conclusion is important as
it finally establishes our claim that (A 2) is the solution to our diffusion problem.

To obtain the large positive-t behaviour we first evaluate the dominant contribution
®,, again using the large-argument asymptotic representation for Ai. It yields

* _exp(f(9)

Dy ~ | Wda (A8a)
for t > 1, where
flo) = —%(a+f)3/2+0'1. (A 8b)
The saddle point o, which solves
fllo)=—(os+E*+1=0 is o,=10>—¢ = —p. (A 9a)
It determines
flog) ~ %13 — 1. (A9b)

For p = O(t'/?), asymptotic evaluation in the neighbourhood of the saddle yields

& ~ lexp (i —1&)erfc <p> A10
7 CXp (3 ) N ( )
With (A 1a) this determines the leading-order approximation to the asymptotic solu-
tion (5.10).
To obtain the next-order term we consider @;, which we evaluate using the large-
argument expansion of Ai(¢ + wo) alone. It gives

“ Ai(e)  exp(h(a))

b ~ - do, All
YT Aiwo) Jam(E+wo) i (Alla)
where
ho) = —3(¢ + wo)*? + wor. (A11b)

Since the ratio of the two Airy functions decays exponentially as ¢ T oo, we expand
(A 11b) on the basis that p = 0(¢'/?), t > 1 and ¢ = O(1). To that end, we write
& = 14 p and retain the first three terms in the binomial expansion of [t>+(p+wa)]*/%.
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It yields
_(ptoo)

4t

Here the terms proportional to ¢ are negligible, when ¢ = O(1). In this way, we
obtain the leading-order result

h(g) ~ %‘53 —1¢ (A12)

01 p? “ Ai(o)
& ~ 1P e — = h Op = ———d A13a,b
1 o exp <3‘c té ;) Where | Alwo) o, ( a,b)
with n = 1.
Finally we note that, for p = O(t'/?), T > 1, our proposed asymptotic solution
(5.10) has the Taylor series expansion

1 p—90 1 p > ] < pz)
— erfc ~—erfc| —= | + exp|—=— ). A 14a
2 < Ja4t ) 2 <~/47: Jant P 4z ( )
This agrees with our results (A 10) and (A 13) when

0=0_1+ 01, (A 14b)

which with (A 13b) reduces to (5.11¢).
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