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Oscillatory Convection in Rotating Spherical Shells: Low Prandtl Number and
Non-Slip Boundary Conditions∗
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Abstract. A five-degree model, which reproduces faithfully the sequence of bifurcations and the type of solu-
tions found through numerical simulations of the three-dimensional Boussinesq thermal convection
equations in rotating spherical shells with fixed azimuthal symmetry, is derived. A low Prandtl
number fluid of σ = 0.1 subject to radial gravity, filling a shell of radius ratio η = 0.35, differen-
tially heated, and with non-slip boundary conditions, is considered. Periodic, quasi-periodic, and
temporal chaotic flows are obtained for a moderately small Ekman number, E = 10−4, and at
supercritical Rayleigh numbers of order Ra ∼ O(2Rac). The solutions are classified by means of
frequency analysis and Poincaré sections. Resonant phase locking on the quasi-periodic branches,
as well as a sequence of period doubling bifurcations, are also detected.
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1. Introduction. The study of the thermal convection in rotating spherical geometries
is fundamental to explaining many geophysical and astrophysical phenomena, such as the
generation of the magnetic fields, or the differential rotation observed in the atmosphere of
the major planets. There is a multitude of papers devoted to studying the role of thermal
convection in the dynamics of the celestial bodies. Good reviews can be found in the literature;
see, for instance, [21] and [29] or the introductions of [6] and [19]. The difficulties related to the
experimental studies in these fields enhance the importance of three-dimensional numerical
simulations. For this reason the development and improvement of the numerical techniques
is basic for this research.

Nowadays the onset of convection in spherical shells is well described and understood
mainly with the help of numerical simulations [9, 1, 28, 17] and asymptotic theories [33, 5, 37,
9, 39, 41, 4]. Convection usually arises as rotating waves (thermal Rossby waves) traveling
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(FSMP) and by a public grant overseen by the French National Research Agency (ANR) as part of the Investissements
d’Avenir program (reference: ANR–10–LABX–0098). This work was granted access to the HPC resources of
MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference ANR–10–EQPX–29–01) of
the programme Investissements d’Avenir supervised by the Agence Nationale pour la Recherche.
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in the azimuthal direction, which break the invariance of the basic conduction state. The
difficulty of solving satisfactorily the full three-dimensional problem has led to alternative
ways of study. One is to use two-dimensional models (quasi-geostrophic) [3, 27, 32, 19] by
applying a z-averaging technique; another way is to calculate three-dimensional solutions of
symmetry and/or fixed parity to achieve parameter values as high as possible. However,
quasi-geostrophic models cannot be used for rotating spherical convection with very small
Prandtl numbers. New linear and weakly nonlinear quasi-geostrophic approximations were
developed in [25]. They are valid in spherical geometry and fulfill the mass conservation, since
they allow one to determine the radial extension of the convective motions depending on the
Prandtl number, and the horizontal components of the velocity field are not simply defined
by a stream function.

A common practice in problems described by PDEs is to obtain reduced theoretical models
from the information supplied by the numerical simulations, to explore the problem in greater
depth. For instance, in the context of magnetohydrodynamics, an amplitude equation was
derived in [31, 30] by expanding the magnetic field in terms of two axisymmetric stationary
modes, providing a simple explanation of the reversals of Earth’s magnetic field as well as
of the dynamical regimes of the magnetic field generated by the dynamo effect in the von
Kármán sodium experiment. The book by Chossat and Iooss [7], dedicated to the Couette–
Taylor problem, contains much information on the application of center manifold reduction
and bifurcation theory in the presence of symmetries to obtain amplitude equations in sev-
eral situations, multicritical points, imperfections, amplitude modulations, etc. Examples in
thermal convection can be found in [24, 35], among many others. In the first paper, a center
manifold reduction and normal form theory were used to deduce a low-dimensional system of
ODEs, reproducing the full local behavior of the PDEs around codimension-two double-Hopf
points, where the transition between axisymmetric steady solutions and nonaxisymmetric ro-
tating waves occurred. In [35] the amplitude equations and coefficients describing the dynam-
ics close to a triple-(+1) bifurcation of a numerically computed D4-symmetric periodic orbit
were obtained from the symmetries of the eigenfunctions for a thermal convection problem
with O(2) symmetry.

Most of the full three-dimensional studies of the first stages of convection in spherical
geometry are based on direct numerical simulations, mainly with stress-free boundary condi-
tions (see [42, 2, 38, 8, 36, 11], among many others), some of them to avoid solving the thin
Ekman boundary layers that appear when the non-slip condition is imposed. In this case the
numerical simulations require higher spatial resolutions and thus are computationally most
demanding. From a physical point of view, stress-free boundary conditions are appropriate
for modeling planet atmospheres, while non-slip boundaries are more adequate for the study
of the dynamics of the Earth’s fluid core and for comparison with laboratory experiments.
Moreover, rigid boundaries slow down the fluid inhibiting the generation of mean zonal flows
and enhance the growth of angular momentum and vorticity by means of the walls. The
above-mentioned references focused on the study of the physical properties of each type of
oscillatory solution found at different regions of the parameter space. For instance, in [42] it
was found that for σ = ∞ the instability of the traveling waves gives rise to amplitude or
shape modulations. Several types of oscillations with different azimuthal wave numbers were
found at low σ in [2]. In both cases the authors found a strong increase of the heat transfer
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produced by the onset of quasi-periodic flows. A more detailed study of the finite-amplitude
physical properties, including helicity or differential rotation, and of the role of the equatorial
symmetry or the onset of polar convection is performed in [38] for several Prandtl numbers.
With σ = 1 and for weak supercritical conditions the flow is strongly oscillatory, displaying
an intermittent pattern [8]. The sequence of transitions observed in the full three-dimensional
simulations of [36] was reproduced in [26] by using the quasi-geostrophic approximation. The
authors found that, as the Ekman number is decreased, the transition to oscillatory convection
occurs for marginally supercritical Rayleigh numbers.

Recently, several authors have tried to understand the transitions among flows by apply-
ing bifurcation theory, commonly employed in ODEs. For instance, the multiplicity of stable
patterns of rotating waves, their transitions to modulated waves, and their classification ac-
cording to their spatio-temporal symmetry have been studied in [11] at moderate E by means
of direct numerical simulations. The bifurcation diagrams and the stability of the traveling
waves in the slowly rotating regime, for σ = 1, were studied in [22] with non-slip boundary
conditions by means of Newton’s method. At lower E and σ, which require higher spatial
resolutions, Newton–Krylov continuation techniques and Arnoldi methods were applied suc-
cessfully in [34] to explain the coexistence of stable traveling waves due to the presence of a
double-Hopf bifurcation, and to understand the existence of amplitude- and shape-modulated
waves from the symmetry breaking of the eigenfunctions at the secondary bifurcations.

The results presented here shed light on the type of bifurcations existing between the oscil-
latory flows described in the preceding numerical studies for non-slip boundary conditions and
Prandtl number σ = 0.1. The system is integrated by fixing the azimuthal wave number m,
and, to have accurate solutions, semi-implicit backward differentiation-extrapolation formulas
(IMEX–BDF) implemented with variable step size and variable order are used. In this way it
has been possible to obtain unstable solutions by just time integration. The study of branches
of unstable traveling and modulated waves with fixed azimuthal wave number is important
because they drive the dynamics of the full three-dimensional model. For instance, the in-
termittent solutions shown in [34] can be understood in terms of a heteroclinic chain which
connects the two unstable solutions with different azimuthal symmetry (m = 4, 5) studied
here. In addition, the bifurcation diagrams presented here serve to explain the jumps between
branches and the appearance of more complex attractors, obtained without symmetry con-
straints, such as three-frequency quasi-periodic flows found in [13] when the Rayleigh number
is increased from that of the onset of convection.

Following the above-mentioned line of investigation, and aside from the use of non-slip
boundary conditions and low σ and E values, the main goal of this study is to try to understand
the oscillatory bifurcations of a large-scale system in the context of dynamical systems theory,
building empirically a simple system of three ODEs (two of them complex and one real) that
is able to capture the transitions between the periodic orbits and attracting two-tori together
with their posterior period doublings that lead to chaotic solutions.

The paper is organized as follows. In section 2 we introduce the formulation of the problem,
and the numerical method used to obtain the solutions. In section 3 the bifurcation diagrams
as a function of Ra, the frequency spectrum, and Poincaré sections of the convective flows
are analyzed. The patterns of the oscillatory type of convection are shown in section 4. The
derivation of a reduced model and the comparison of its solutions with those of the three-
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dimensional equations are performed in section 5. Finally, in section 6 the paper ends with a
brief summary of the results obtained.

2. Mathematical model and numerical integration. We consider the thermal convection
of a fluid filling the gap between two concentric spheres differentially heated, rotating about
an axis of symmetry with constant angular velocity Ω = Ωk, and subject to radial gravity
g = −γr, where γ is constant and r is the position vector. The mass, momentum, and energy
equations are written in the rotating frame of reference. The units are d = ro − ri for the
distance , ν2/γαd4 for the temperature, and d2/ν for the time. In the previous definitions ri
and ro are the inner and outer radii, respectively, ν is the kinematic viscosity, and α is the
thermal expansion coefficient.

We use the Boussinesq approximation, and the solenoidal velocity field is expressed in
terms of toroidal, Ψ, and poloidal, Φ, potentials:

(2.1) v = ∇× (Ψr) +∇×∇× (Φr) .

Consequently, the equations for both potentials, and the temperature perturbation, Θ =
T − Tc, from the conduction state v = 0, T = Tc(r), with r = |r|, are

[
(∂t −∇2)L2 − 2E−1 ∂ϕ

]
Ψ =− 2E−1QΦ − r ·∇× (ω × v),(2.2a) [

(∂t −∇2)L2 − 2E−1 ∂ϕ
]∇2Φ+ L2Θ = 2E−1QΨ + r ·∇×∇× (ω × v),(2.2b) (

σ∂t −∇2
)
Θ−Raη (1− η)−2r−3L2Φ =− σ(v ·∇)Θ,(2.2c)

where ω = ∇× v is the vorticity.
The parameters of the problem are the Rayleigh number Ra, the Prandtl number σ, the

Ekman number E, and the radius ratio η. They are defined by

(2.3) Ra =
γαΔTd4

κν
, E =

ν

Ωd2
, σ =

ν

κ
, η =

ri
ro
,

where κ is the thermal diffusivity and ΔT > 0 is the difference in temperature between the
inner and outer boundaries.

The operators L2 and Q are defined by L2 ≡ −r2∇2 + ∂r(r
2∂r), Q ≡ r cos θ∇2 − (L2 +

r∂r)(cos θ∂r − r−1 sin θ∂θ), (r, θ, ϕ) being the spherical coordinates, with θ measuring the
colatitude and ϕ the longitude. When non-slip perfect thermally conducting boundaries are
used,

(2.4) Φ = ∂rΦ = Ψ = Θ = 0 at r = ri, ro.

The conduction state in nondimensional units is Tc(r) = T0 +Raη/σ(1 − η)2r.
The equations are discretized and integrated as described in [15] and references therein.

The potentials and the temperature perturbation are expanded in spherical harmonics in the
angular coordinates, and in the radial direction a collocation method on a Gauss–Lobatto
mesh is used. The code is parallelized in the spectral and in the physical space by using
OpenMP directives (see [14]). We use optimized libraries (FFTW3 [12]) for the FFTs in
ϕ and matrix-matrix products (dgemm GOTO [20]) for the Legendre transforms in θ when
computing the nonlinear terms.
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For the time integration, high order implicit-explicit backward differentiation formulas
(IMEX–BDF) [15, 16] are used. In the IMEX method we treat the nonlinear terms explicitly
in order to avoid solving nonlinear equations at each time step. The Coriolis term is treated
fully implicitly to allow larger time steps. The use of matrix-free Krylov methods (GMRES
in our case) for the linear systems facilitates the implementation of a suitable order and time
step size control.

3. Symmetry constrained convection at Ra � 2Rac. In this section a study of the
type of solutions of (2.2a)–(2.2c) at the laminar regime is performed. The parameters are
η = 0.35, σ = 0.1 (estimated for the Earth’s outer core), E = 10−4, and Ra � 2Rac. The
critical parameters at the onset of convection, such as the critical Rayleigh number Rc, the
critical precession frequency ωc, and the critical azimuthal wave number mc, depending on E,
were obtained in [17]. At E = 10−4 they are Rac = 1.86× 105, |ωc| = 5.06× 102, and mc = 6.
According to [10] the first bifurcation, which breaks the axisymmetry of the conductive state,
is a supercritical Hopf bifurcation giving rise to a wave, traveling in the azimuthal direction.
With the preceding parameters, the preferred eigenfunctions are symmetric with respect to
the equator, and they have negative precession frequencies ωc, namely, the drifting velocities
c = −ωc/m are positive, and the waves travel in the prograde direction. Moreover, they
consist of quasi-geostrophic convective columns attached to the inner sphere and confined in
a coaxial cylinder of radius rc.

To obtain branches of periodic and quasi-periodic flows of fixed azimuthal wave number,
the numerical solutions are computed by imposing an md-fold azimuthal symmetry. This is
accomplished by retaining only the modes with wave number m = kmd, k ∈ Z, for a given
md, in the truncated spherical harmonics expansion of the unknowns. The constraint on
the symmetry allows us to find unstable flows. A perturbation without azimuthal symmetry
(md = 1) is added to some solutions to check their stability. If the perturbation grows, and
the original azimuthal symmetry is broken, then the solution is unstable.

The first solution of the m = 6 branch, corresponding to Ra = 2 × 105, is computed by
starting from an initial condition with velocity v = 0 and temperature

(3.1) TB(r, θ, ϕ) =
riro
r

− ri +
2A√
2π

(1− x2)3Pm
m (θ) cosmϕ,

with A = 0.1, x = 2r − ri − ro, m = 6, and Pm
m (θ) =

√
(2m+ 1)!!/2(2m)!! sinm θ the

normalized associated Legendre function of order and degree m. The solution tends, after
an abrupt transient, to an azimuthal traveling wave of wave number m = 6. At higher
Ra the calculations are started from the solution computed at the previous lower Ra. The
resolution is Nr = 32 and L = 27md, and it is increased from time to time in order to look
into spatial discretization errors. A detailed numerical study of the effects of the truncation
parameters at the same parameter values can be found in [18]. For instance, for values of Ra
up to 106 we obtained differences below 1% between the time-averaged physical properties
when increasing the radial resolution from Nr = 32 to Nr = 50, and the spherical harmonic
truncation parameter from L = 54 to L = 84. The initial transients are discarded until
a stationary pattern is reached or until the time-averaged properties and the fundamental
frequencies do not substantially change. To compute the other branches with m = 4, 5, 7 we
act in a similar way.
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Figure 1. (a) Time average of the kinetic energy density, K, plotted versus the Rayleigh number, Ra,
for solutions with azimuthal symmetry m. (b) Same as in (a) but for the ratio between the total and the
nonaxisymmetric mean kinetic energy densities, K/Kna. (c) and (d) The maximum and minimum of K,
respectively, also plotted versus Ra. Traveling and modulated waves are represented in cyan and magenta,
respectively. Stable and unstable solutions are indicated with solid and dashed lines, respectively.

For the sequence of solutions of each azimuthal wave number m = 4, . . . , 7 we will obtain
some physical properties such as the time- and volume-averaged kinetic energy density, K,
where the volume-averaged kinetic energy density is K = 1

2〈|v|2〉V , i.e.,

(3.2) K =
1

V
∫
V

1

2
(v · v) dv =

3
√
2

4(r3o − r3i )

∫ ro

ri

r2[v2]00(r, t) dr.

The previous volume integral can also be computed for either the axisymmetric, Ka, and the
nonaxisymmetric, Kna, kinetic energy densities defined by modifying the velocity field of (3.2).
They are based, respectively, on the m = 0 or the m 	= 0 modes of the spherical harmonic
expansion of the potentials Ψ and Φ.

In Figures 1(a),(c),(d) the time average (mean from now on), maximum and minimum
of the kinetic energy density, K, and time series are plotted, respectively, versus Ra, for
azimuthal wave numbers m = 4, . . . , 7. In Figure 1(b) the time average of the ratio of the
kinetic energy density over its nonaxisymmetric part, K/Kna, is also plotted versus Ra to
quantify the importance of the nonaxisymmetric motions. Solid lines correspond to stable
solutions, while dashed lines correspond to the unstable ones. Cyan is used for the branch
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Table 1
The frequencies f1 and f2 of the time series of the temperature perturbation Θ at the point (r, ϕ, θ) =

(ri + (ro − ri)/7, 0, 3π/8) for solutions lying on the m = 6 branch. The frequency f2 corresponds to that of the
volume-averaged physical properties such as K, Kna, etc.

Ra Ra/Rac f1 f2 Period doubling

2.50 × 105 1.347 61.749
2.55 × 105 1.374 60.634
2.58 × 105 1.390 59.973 27.356
2.63 × 105 1.417 61.181 25.141
3.00 × 105 1.616 67.788 33.933
3.33 × 105 1.794 63.826 44.371

3.34 × 105 1.800 63.661 22.176
3.71 × 105 2.000 56.757 24.795 first
3.73 × 105 2.010 56.444 25.007

3.74 × 105 2.015 56.328 12.576
3.80 × 105 2.047 55.657 12.985 second
3.82 × 105 2.058 55.447 13.117

3.83 × 105 2.064 55.323 6.5858
3.84 × 105 2.069 55.199 6.6132 third
3.85 × 105 2.074 55.091 6.6431

of periodic solutions corresponding to traveling waves whose columnar pattern drifts in the
azimuthal direction without change in the volume-averaged physical properties. Magenta is
used for the quasi-periodic solutions, which are modulated waves. In this case, in addition
to the azimuthal drift, the columnar pattern and its volume-averaged physical properties are
modulated by a second frequency.

At the appearance of the modulated waves, K decreases form = 5, 6, 7 when increasing Ra
(see Figure 1(a)) because of the larger decrease of the minimum of K when compared with the
increase of the maximum (see Figures 1(c)–(d)). At the same time the ratio K/Kna increases
sharply, meaning that the axisymmetric component of the flow is enhanced by the onset of
the modulated waves (see Figure 1(b)). As will be shown in the next section, this behavior
can be reproduced by a simple model of five degrees of freedom. In the particular case of the
unstable quasi-periodic solutions lying in the m = 5, 6 branches, we have found a sequence
of period doubling bifurcations concerning the modulating frequency. These period doublings
can be identified in the cusps of the m = 6 curve in Figure 1(d) for Ra > 3.33× 105 . Without
symmetry assumptions and when the Rayleigh number is increased from that of the onset of
convection, we first obtain the m = 6 periodic orbits (traveling waves) followed by a small
parameter region of two- and three-frequency solutions. If the Rayleigh number is further
increased, the solution jumps to the m = 5 periodic orbits branch. By further increasing
the Rayleigh number, an also small stability region of two- and three-frequency solutions is
traversed. Beyond these regimes, heteroclinic cycles connecting the unstable m = 4 traveling
waves and the unstable m = 5 modulated waves, as described in [34], are found.

In Table 1 the frequencies of the time series of the temperature perturbation Θ at the
point (r, ϕ, θ) = (ri + (ro − ri)/7, 0, 3π/8) for some solutions corresponding to the m = 6
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branch are shown. They are computed by using the Laskar algorithm of fundamental frequen-
cies [23], which allows an accurate determination of the frequencies with larger amplitude of
the spectrum. The time series have at least 105 points corresponding to a time integration
of 10 viscous time units. The frequency denoted by f1 corresponds to that of the azimuthal
drift, while the second frequency f2 is that of the modulation of the volume-averaged physical
properties.

The frequency of the m = 6 traveling waves decreases monotonically, because of the
action of the Reynolds stress due to the spiraling of the traveling waves [36]. In addition,
the convection remains confined in a cylinder whose critical radius rc becomes larger, and the
heat transfer through the outer boundary increases. The increase of the spiraling nature of
the flow also favors the zonal circulation, which increases monotonically with the Rayleigh
number, as can be seen in the ratio K/Kna in Figure 1(b). Notice that in the latter figure
the axisymmetric flow of the traveling waves carries only less than 20% of the total kinetic
energy density. This is a characteristic of the non-slip boundary conditions (see [8, 18] and
references therein). At approximately Ra1 = 2.59 × 105, the m = 6 traveling wave starts to
oscillate with an additional frequency f2. As Ra is increased, f2 decreases, reaching a relative
minimum at Ra ≈ 2.7 × 105, and increases again as for K in Figure 1(a). In contrast, f1
increases and at approximately Ra ≈ 2.8×105 starts to decrease again. As mentioned before,
at Ra > 3.33 × 105 the second frequency halves due to the period doubling bifurcation, and
successive period doublings occur with a further increase of Ra. Notice that the ratio of the
differences between the three Rayleigh numbers at which the period doubles is already 4.44,
roughly the Feigenbaum constant. In addition, the limit of the period-doubling cascade would
be approximately Ra = 3.85 × 105. We have found, as expected, chaotic attractors above
this limit. It must be stated that these solutions are attracting only when restricted to an
invariant manifold of fixed azimuthal symmetry. Without this constraint these objects are of
saddle type, eventually giving rise to transient chaotic behavior.

Aside from the analysis of the frequency spectrum, Poincaré sections can also be used
to identify two frequency solutions (invariant tori). This is shown in Figure 2, where the
Poincaré section at Θ((ro+ri)/2, 0, 3π/8) = 0 of the azimuthal component of the velocity field
vϕ(ri + (ro − ri)/7, 0, 3π/8) is plotted versus Θ at the same point. Figure 2(a) corresponds to
stable solutions of the m = 6 branch, while Figure 2(b) corresponds to stable solutions of the
m = 5 branch. The Rayleigh number increases from inner to outer curves. We have identified
a resonant solution (frequency locking) at Ra = 2.59929964 × 105 (the set of nine points in
Figure 2(a)) with f2/f1 = 4/9, and a quasi-resonant solution at Ra = 2.78302 × 105 (the set
of nine segments in Figure 2(b)) also with f2/f1 ≈ 4/9.

Figures 3(a)–(c) show the Poincaré sections corresponding to solutions at Ra = 3.71 ×
105, 3.8× 105, 3.84× 105 with the first, second, and third period doublings of the modulating
frequency, respectively, lying on the m = 6 branch. In Figure 3(d) the Poincaré section of a
temporal chaotic solution at Ra = 3.855 × 105 is also shown. After the appearance of chaos,
no relaminarized solutions were found by following the same sequence of bifurcations. The
obtention of enough points for these sections requires time integrations of about 100 viscous
time units (i.e., time series with 106 points).

The time series of the axisymmetric (red solid line) and nonaxisymmetric (black dashed
line) kinetic energy density for the four solutions included in Figure 3 are shown in Figure 4.
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Figure 2. (a) Poincaré section at Θ((ro+ri)/2, 0, 3π/8) = 0 of the azimuthal component of the velocity field
vϕ(ri+(ro−ri)/7, 0, 3π/8), plotted versus Θ at the same point. The solutions correspond to stable invariant tori
with m = 6. The Rayleigh numbers, from inner to outer curves, are Ra = 2.59×105, 2.595×105 , 2.59929964×
105, 2.6×105, 2.605×105. The set of nine points corresponds to the resonant solution at Ra = 2.59929964×105 .
(b) As in (a) but for solutions corresponding to stable invariant tori with m = 5. The Rayleigh numbers, from
inner to outer curves, are Ra = 2.75 × 105, 2.775 × 105, 2.78302 × 105, 2.8× 105, 2.825 × 105, 2.85 × 105.

In these figures the period doubling can be clearly identified. The time average of the ax-
isymmetric kinetic energy density is always smaller than that of the nonaxisymmetric, and
the positions of the relative extrema are shifted. At first sight the time series of Figure 4(d)
does not seem to correspond to a temporal chaotic solution; however, its Poincaré section and
frequency spectrum indicate clearly the chaotic behavior.

4. Flow patterns of quasi-periodic convection. In this section the time evolution of some
physical properties and flow patterns will be shown to visualize the behavior of the modulated
waves after the period doubling bifurcation.

Figure 5(a) shows the time series of the kinetic energy density of the m = 6 unstable
modulated wave with period doubled at Ra = 3.71×105. The radial profile of the azimuthally
averaged azimuthal velocity (mean zonal flow), 〈vϕ〉, on the equatorial plane for the time
instants plotted with (∗) in Figure 5(a) are displayed in Figure 5(b) (see movie M100729 01.gif
[local/web 7.35MB]). Figure 5(c) (see movie M100729 02.gif [local/web 9.89MB]) contains
curves that are equivalent to those of (b) but are for the radial profiles of the axial vorticity
〈w2

z〉1/2, which quantify the location and radial length scale of the convective cells. Near the
inner boundary the mean zonal flow is negative (retrograde), and positive (prograde) in the
middle of the shell, reaching its largest values at the time instant t2 (green curve). The value
of 〈w2

z〉1/2 is maximum near r ≈ 0.9, meaning that large-scale cells are located close to the
radial point where 〈vϕ〉 is nearly stagnant and with nearly zero modulus. When the time
evolves, the maximum of 〈w2

z〉1/2 decreases while moving to the outer boundary, and then
increases while moving to the inner. Notice the large value of 〈w2

z〉1/2 at the inner boundary
due to the existence of a thin Ekman layer. It can be understood by taking into account
that the axial vorticity at the equator is wz = −wθ. Approximating the latter in terms of
the velocity field close to the non-slip boundaries r = ri, ro, we obtain wθ ≈ −∂r(vϕ). This
radial derivative can be estimated from Figure 5(b). It is clear that the large value of 〈w2

z〉1/2

M100729_01.gif
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M100729_02.gif
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Figure 3. Poincaré section at Θ((ro + ri)/2, 0, 3π/8) = 0 of the azimuthal component of the velocity field
vϕ(ri + (ro − ri)/7, 0, 3π/8), plotted versus Θ at the same point. The Rayleigh numbers, from top to bottom
and from left to right, are 3.71 × 105, 3.8 × 105, 3.84 × 105, 3.855 × 105. First, second, and third doublings of
the period of the modulation and a chaotic solution are shown in the sequence of plots.

shown in Figure 5(c) at the inner boundary corresponds to the large radial derivative of vϕ
in Figure 5(b), in contrast to what happens at the outer boundary, where both values are
smaller.

The flow patterns of the unstablem = 6 modulated wave bifurcated at Ra = 3.71×105 are
shown in Figures 6 and 7. Figure 6 shows, from top to bottom, a sequence of five snapshots
taken at the even time instants (t = t2, t4, t6, t8, t10) shown in Figure 5. Three projections of the
axial vorticity are displayed in the plots in columns 1–3 (see movie M100729 03.gif [local/web
7.69MB]). The radius of the spherical surfaces is r = ro, although they are represented with the
same size as the other sections. The radius corresponds approximately to the location where
the columns of vorticity reach their maximum. The projections in the middle column of each
group of projections are taken on the equatorial plane, and the projections in the right column
of each group are taken on a meridional section which rotates with the drifting frequency of the
modulated wave to facilitate recognizing the ratio of the modulation to the drift frequencies.
The scale of colors is the same for all of the contour plots corresponding to each time instant,
with blue meaning negative axial vorticity. The same projections are taken for the azimuthal

M100729_03.gif
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Figure 4. Time series of the axisymmetric (red solid line) and nonaxisymmetric (black dashed line) kinetic
energy density. The Rayleigh numbers, from top to bottom and from left to right, are Ra = 3.71 × 105, 3.8 ×
105, 3.84 × 105, 3.855 × 105.

velocity (plots in columns 4–6 and movie M100729 04.gif [local/web 9.29MB]), but with the
spherical projections taken close to the outer boundary at r = ri+0.975d, where it reaches its
maximum at high latitudes. In these contour plots the time intervals are selected to follow the
period of the kinetic energy density time series of Figure 5(a). In the same manner, Figure 7
shows the contour plots of the temperature perturbation (see movie M100729 05.gif [local/web
642KB]), with the spherical projection taken at r = ri + 0.325d close to its maximum, and
the contour plots of the kinetic energy density (see movie M100729 06.gif [local/web 745KB])
projected onto a spherical surface of radius r = ri + 0.975d with a polar point of view.

The meridional sections show clearly that the z-dependence of the flow is weak, and that
it is symmetric with respect to the equatorial plane. In addition, convection inside the tangent
cylinder is nearly absent but extends to most of the remainder of the shell. The equatorial
sections of the azimuthal velocity and the kinetic energy density display a double-layered
pattern with spiraling cells. The spiral vortices shown in the equatorial section of the axial
vorticity develop close to the shear region between the double-layered structure and reach
their maxima close to the outer surface. The boundary of the two regions is located around
r ≈ ri + d/3.
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Figure 5. (a) Time series of the kinetic energy density, K. The symbols (∗) indicate the time instants at
which the radial profiles of (b), (c) are taken. (b) Radial profile of the mean zonal flow, 〈vϕ〉, on the equatorial
plane for the time instants indicated in (a). (c) Same as in (b) but for the axial vorticity 〈w2

z〉1/2. The solution
corresponds to an unstable m = 6 torus with period doubled at Ra = 3.71 × 105.

5. A simple model for weakly nonlinear quasi-periodic convection. In [40] the onset of
small-Prandtl-number convection was described at leading order as the superposition of a small
number of quasi-geostrophic-inertial modes (the number depending on σ) of same azimuthal
wave number and different radial configuration, modified by an oscillatory boundary layer
flow. In this section it will be shown that it is also possible to identify the dynamics of the
modulated waves with the nonlinear interaction of two convective modes ψ, φ ∈ C with the
same azimuthal symmetry and different radial structure and a mode u ∈ R representing the
zonal flow. The mode ψ will be associated with the rigid rotation of the traveling wave, and
the mode φ with the modulation of the modulated waves.

Our model is purely empirical, described by an ODE system for ψ, φ, u, depending on
parameters μ = μr + iμi ∈ C and λ, α, β > 0 ∈ R, with a bifurcation diagram depending
on μr of behavior similar to that obtained with the simulation of the full Boussinesq Navier–
Stokes equations restricted to manifolds of fixed azimuthal symmetry: a fixed point (the
conductive state), traveling waves, modulated waves, modulated waves with period doubling,
and a chaotic solution.
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Figure 6. The first three columns are contour plots of the axial vorticity for the five even time instants
marked with (∗) in Figure 5(a). The first column shows projections on a sphere, the second on the equatorial
plane, and the last on a meridional section. Columns 4–6 contain the same projections but for the azimuthal
velocity. As in the preceding figure, the solution corresponds to an unstable m = 6 torus.
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Figure 7. Same as in Figure 6 for the temperature perturbation in columns 1–3, and the kinetic energy
density in columns 4–6.

As ψ and φ represent modes with the same azimuthal symmetry, the equations must be
invariant under the transformations ψ̃ → ψeiγ , φ̃→ φeiγ , and ũ→ u. We retain the following
second order nonlinear interactions:

ψ̇ = μψ − αuψ,(5.1)

φ̇ = −φ− uφ− |φ|2ψ,(5.2)

u̇ = −βu+ λ|ψ|2 + |φ|2.(5.3)
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Figure 8. (a) Time averages of |ψ|2, |φ|2, u2, and K = |ψ|2 + |φ|2 + u2 plotted versus μr for solutions
of the low-dimensional model. (c) Same as in (a) but for the maximum values. (d) Same as in (a) but for
the minimum values. (b) Time average of the ratio between the total and the nonaxisymmetric kinetic energy
densities, K/Kna, plotted versus μr. The parameters are α = 250, β = 10, λ = 0.6, and μi = 100.

This equation has a fixed point ψ = φ = u = 0 that undergoes a Hopf bifurcation when
μr = 0. The solution ψ = (βμr/αλ)

1/2ei(μit+c), φ = 0, and u = μr/α is stable and will
represent a traveling wave (a periodic orbit). In addition, φ = 0 is invariant, and φ is enforced
only by the term −|φ|2ψ. With this term the equations for the modulus and the phase of
φ are coupled with the modulus and phase of ψ, giving rise to the modulated waves (two-
frequency solutions). Notice that the term −uφ should have the minus sign because otherwise
the equations admit a solution with ψ = 0 and u = |φ|2/β 	= 0 (the mode which gives the
modulation can survive without convection). We have obtained modulated waves for the
following range of parameters:

• α = 250, β = 10, λ ∈ [0.6, 1.4], μr > 680, and μi = 100.
• α = 1000, β = 10, λ = 0.0625, μr > 700, and μi = 100.

The solutions are obtained numerically using a variable order solver based on the numerical
differentiation formulas, with relative and absolute tolerances of 10−7 and 10−10, respectively.

In Figure 8(a) the time averages of |ψ|2, |φ|2, u2, and K = |ψ|2 + |φ|2 + u2 are plotted
versus μr. The maximum and minimum of the time series are shown in Figures 8(c) and
8(d), respectively. The time average of the ratio between K and the nonaxisymmetric part
Kna = |ψ|2+ |φ|2 is shown in Figure 8(b). The parameters of (5.1)–(5.3) are α = 250, β = 10,
λ = 0.6, and μi = 100. Notice that these figures are very similar to Figure 1, obtained with
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Figure 9. (a)–(d) Same as in Figure 8 but for λ = 1.

the simulation of the full Boussinesq Navier–Stokes equations. They display the decrease of
K when the traveling waves bifurcate to modulated waves together with an abrupt increase
of the ratio K/Kna. In Figure 8(d) the period doubling bifurcation can be identified by the
cusp of minK shown at the end of the curve.

Figures 9 and 10 correspond to the bifurcation diagrams obtained by changing only the
parameter λ with respect to that of Figure 8. We set λ = 1 for Figure 9, and λ = 1.4 for
Figure 10. The effect of changing λ is to change the decrease of K (and also the increase of
K/Kna) after the bifurcation of the traveling waves. For λ = 1 there is no decrease (very
similar to what happens on the m = 4 branch of Figure 1), while for λ = 1.4 there is even an
increase.

The time series of the axisymmetric (red solid line) and nonaxisymmetric (black dashed
line) kinetic energy densities for four solutions lying on the right part of Figure 8 at μr = 900,
904, 905.43, and 905.55 are shown in Figure 11. In these figures the period doubling can
not be clearly identified. As happened for the full Boussinesq Navier–Stokes equations, the
time average of the axisymmetric kinetic energy density is always smaller than that of the
nonaxisymmetric, and the positions of the relative extrema are shifted.

To depict clearly the period doubling bifurcations of the modulated waves, some Poincaré
sections at 
(ψ) = 0 of �(φ) plotted versus 
(φ) are shown in Figure 12. Two modulated
waves at μr = 679.423 and 750 together with a modulated wave after the first period doubling
at μr = 900 are shown in Figure 12(a). The Poincaré section of the solution at μr = 900
develops a loop which indicates that the period is doubled. Figure 12(b) corresponds to an
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Figure 10. (a)–(d) Same as in Figure 8 but for λ = 1.4.

amplification of the square box displayed in Figure 12(a). It also shows two solutions at
μr = 904 and 905.43 corresponding to the second and third period doublings in green and
red, respectively. In Figure 12(c) a solution with a fourth period doubling at μr = 905.52 is
shown, and finally Figure 12(d) corresponds to the Poincaré section of the chaotic solution at
μr = 905.55.

6. Summary. The regime of oscillatory Boussinesq thermal convection in fast rotating
spherical shells is investigated carefully in this paper. The model and the parameters have
been set as similar as numerically possible to those of the Earth’s outer liquid core and pre-
vious experimental studies. Non-slip boundary conditions were poorly considered in previous
numerical studies due to the numerical effort needed to solve the Ekman layers. If the Prandtl
number decreases, for a fixed low Ekman number, the drifting frequency increases with the
corresponding decreasing of the width of the Ekman layers. Moreover, low Prandtl num-
bers facilitate the appearance of oscillatory and chaotic convection at a weakly supercritical
Rayleigh number. The use of efficient time integration methods has been determinant for
integrating the short temporal scales exhibited by the flows at low E and σ.

By means of numerical simulations by constraining the azimuthal symmetry, we have ob-
tained the bifurcation diagrams of the oscillatory flows in terms of their physical properties
and studied their dynamics. We have calculated branches of traveling waves as well as mod-
ulated waves with fixed azimuthal wave number from m = 4 up to m = 7. All the modulated
waves are unstable except those with wave numbers m = 5, 6 in a small Rayleigh number
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Figure 11. Time series of the axisymmetric (solid line) and nonaxisymmetric (dashed line) kinetic energy
densities given by the low-dimensional model. The control parameters, from top to bottom and from left to
right, are μr = 900, 904, 905.43, and 905.55. The rest of the parameters are α = 250, β = 10, λ = 0.6, and
μi = 100.

interval. For these branches, and beyond the stability region, we have found a sequence of
period doubling bifurcations of the modulation frequency leading to chaos. The periodicity
and quasi periodicity of the solutions is quantified by means of an accurate analysis of the
frequency spectrum provided by the Laskar algorithm. This algorithm, together with a five
order time integration, allowed us to find resonant solutions.

The Poincaré sections have turned out to be useful in identifying the two-frequency solu-
tions, resonances, and period doubling bifurcations. By adding a nonsymmetric perturbation
to the solutions, we have studied their stability and found that the modulated waves are stable
only in a small range of the parameter Ra. For the latter solutions, convection is character-
ized by low heat transfer rates, and is strongly geostrophic. An abrupt increase of the zonal
circulations occurs due the connection between the convective cells.

We have derived a five-degree model, based on the symmetries of the solutions, that re-
produces with significative agreement the sequence of bifurcations and the type of solutions of
the Boussinesq Navier–Stokes simulations. In this reduced model only two complex numbers,
representing two modes with the same azimuthal symmetry but with different radial structure,
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Figure 12. (a) Poincaré sections at �(ψ) = 0 of �(φ) plotted versus �(φ). The control parameters from the
inner to the outer curves are μr = 679.423, 750, and 900. In the outer curve (blue) the period of the modulation
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and third period doublings, respectively. The control parameters are μr = 900, 904, and 905.43. (c) Solution
corresponding to the fourth period doubling at μr = 905.52. (d) Chaotic solution at μr = 905.55.

together with a real number, which represents the axisymmetric mode m = 0, are considered.
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