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ABSTRACT

Numerical studies of convection driven dynamos in rotating spherical
shells exhibit a transition from steady dipolar to reversing multipolar
dynamos as the forcing is increased. The dipolar-multipolar transition
has so far been characterized using purely hydrodynamic parameters
(Christensen and Aubert,Geophys. J. Int. 2006, 166, 97–114, Soderlund
et al., Earth Planet. Sci. Lett. 2012, 333–334, 9–20, Oruba and Dormy,
Geophys. Res. Lett. 2014, 41, 7115–7120). Motivated by these earlier
descriptions, we investigate the hydrodynamic transitions occurring
at the critical parameters. We show that the loss of dipolarity
in dynamos is associated with a purely hydrodynamic transition,
characterized by a breaking of the flow equatorial symmetry. Contrary
to earlier expectations, we show by varying the Prandtl number that
the transition is not necessarily associated with a degradation of the
flow helicity.
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1. Introduction

Numerical models for the Geodynamo are usually performed in the context of thermal
convection in a rapidly rotating shell. Numerous studies have been undertaken, both in
purely hydrodynamic and magnetohydrodynamic configurations (see Christensen 2010,
Jones 2011, Nataf and Schaeffer 2015, for reviews). Kutzner and Christensen (2002) first
pointed out the existence of a transition in such numerical dynamo models, between a
dipolar and a multipolar regime. At low forcing, they observed a regime characterized
by a large-scale steady dipolar magnetic field, superseded, for more vigorous forcing, by
a small-scale multipolar field exhibiting chaotic reversals of the dipolar component. The
existence of this transition has been argued to be a possible reason for reversals of the
Earth’s magnetic field (Christensen 2010). Further numerical studies revealed that the
transition occurs sharply at a given local Rossby number, measuring the relative strengths
of Coriolis and inertial forces. This has been reportedwith no-slip (Christensen andAubert
2006) as well as stress-free boundary conditions (Schrinner et al. 2012). Schrinner et al.
(2012) also demonstrated that the same transition could be achieved varying the aspect
ratio at fixed forcing. Recently, Soderlund et al. (2012) pointed out that the transition
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was also related to the relative strength of inertial to viscous forces. These two apparently
contradictory results were reconciled in Oruba and Dormy (2014b) by means of a three
terms balance between the non-gradient parts of the Coriolis, viscous and inertial forces
at the transition.

Following the idea that the dipole collapse is well described by purely hydrodynamic
parameters, the appearance of the multipolar regime was associated in Soderlund et al.
(2012) (see also Soderlund et al. 2014) to the degradation of the flow helicity. Their work
shows, in a study covering two orders ofmagnitude in Ekmannumber E, both themagnetic
Prandtl number Pm and the Prandtl number Pr being fixed (Pm = 5 and Pr = 1),
that dipolar fields regimes exhibit a strong relative helicity when compared to multipolar
solutions. This observation should be related to the study of Sreenivasan and Jones (2011)
which indicate that a dipolar magnetic field can act to enhance the helicity of the flow.

In this article, we compare magnetohydrodynamic dynamos and purely hydrodynamic
simulations. We argue that the loss of dipolarity is associated with a purely hydrodynamic
transition: the breaking of the flow equatorial symmetry. By varying the Prandtl number,
we also show that the transition is not necessarily related to a degradation of the flow
helicity.

2. The dynamo and hydrodynamic models

We consider a spherical electrically conducting fluid shell thermally driven by an imposed
difference of temperature between the inner and outer spheres, rotating about an axis
of symmetry with constant angular velocity Ω = Ω ez , and subject to a radial gravity
profile g = −g0r/r0 er . Numerical models used in this study correspond either to purely
hydrodynamic thermal convection simulations (hydrodynamicmodels), or to self-exciting
dynamo simulations (dynamomodels). The latter correspond to a wide database gathering
simulations kindly provided by U. Christensen and additional simulations published in
Schrinner et al. (2012). The governing equations for the velocity, v, the temperature,T , and
magnetic field, B, can be written in their non-dimensional form by using the gap width
L = ro− ri as unit of length, the difference of temperature�T between the inner and outer
boundaries as unit of temperature, L2/κ as unit of time, and

(
κΩρμ

)1/2 as unit for the
magnetic field, κ being the thermal diffusivity, ρ the density of the fluid, μ the magnetic
permeability and ri and ro the inner and outer radii, respectively. In the rotating reference
frame and under the Boussinesq approximation, this yields

E
Pr

[
∂tv + (

v·∇)
v
] = −∇π + E∇2v − 2 ez × v

+ RaET
r
ro

er + (∇ × B
) × B, (1a)

∂tT + v·∇T = ∇2T , (1b)

∂t B = ∇ × (
v × B

) + Pr
Pm

∇2B, (1c)

∇·v = 0, ∇·B = 0. (1d)

System (1) involves four non-dimensional parameters, the Rayleigh number Ra =
g0α�TL3/νκ , the Prandtl number Pr = ν/κ , the magnetic Prandtl number Pm = ν/η,
and the Ekman number E = ν/ΩL2, with ν being the kinematic viscosity, η the magnetic
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diffusivity, α the thermal expansion coefficient, and g0 is the gravity at the outer bounding
sphere. Mechanical boundary conditions are no-slip, and the outer domain is insulating.
Most dynamo simulations are performed with an insulating inner core; a few of them
involve a conducting inner core with the same conductivity as the fluid.

Thehydrodynamicmodel corresponds to system (1) in the absence ofmagnetic field (see
Garcia et al. 2014, formore details on the simulations being performed). In both numerical
codes, equations are integrated using pseudo-spectral methods. They are discretized using
spherical harmonics in the angular coordinates, and either a collocationmethod or a finite-
difference approach in the radial direction. In both configurations, the aspect ratio χ (χ =
ri/ro) is set to the value of 0.35 (relevant to the Earth’s outer core). The parameter range
covered by the dynamodatabase is Pr ∈ [0.1, 100], E ∈ [10−6, 10−3] andPm ∈ [0.04, 66.7],
and hydrodynamic models correspond to Pr ∈ [0.025, 1] and E ∈ [8.16 × 10−6, 10−4].
The typical estimates for the Earth’s outer core are Pr = 0.1, E = 10−14 and Pm = 10−6.
Computational limitations impose, for all existingmodels, severe constraints on the Ekman
number and themagnetic Prandtl number. The Prandtl number can bemore easily varied,
but most numerical work focuses on the Pr = 1 case.

Here we cover a wide range of Prandtl number (between 10−1 and 102). As noted above,
the relevant value of the Prandtl number for thermal convection in the Earth’s core can
be estimated to Pr = O(10−1). If however compositional convection is being considered,
the same equations remain relevant, but the equivalent ratio to the Prandtl number, then
called the Schmidt number, can be estimated to be O(102) (see Pozzo et al. 2012, 2013).
There is thus a strong geophysical motivation to try and understand the effect of varying
Prantl numbers.

3. The dipolar-multipolar transition in dynamomodels

The dipolar-multipolar transition occurs roughly at a fixed value of the local Rossby
number, defined as Ro� = Ro/�, where Ro is the usual Rossby number defined as the
time average of Ro = 〈v2〉1/2 (the brackets denote the volume average over the shell),
and � is a typical length scale. Christensen and Aubert (2006) introduced a proxy for the
typical length scale, �̃u = π/n̄, where n̄ is the mean spherical harmonics degree n in the
time-averaged kinetic energy spectrum. More recently, Oruba and Dormy (2014a) used
the time-averaged length scale

�2u = 〈v2〉
〈(∇ × v)2〉 . (2)

The length scales �̃u and �u allow to define the local Rossby numbers Ro
�̃u

and Ro�u ,
respectively. The third quantity that will be considered in the following is RoE−1/3, as
introduced in Oruba andDormy (2014b), which traduces the three-terms balance between
the non-gradient part of the Coriolis, viscous and inertial forces at the transition. This last
parameter has the advantage of not involving any a posteriori measured length scale.
The dipolarity of the magnetic field fdip, defined as the time-averaged ratio of the mean
dipole field strength to the field strength in harmonic degrees l = 1 − 12 at the outer
boundary (see Christensen and Aubert 2006), is represented in figure 1(a)–(c) for these
three parameters. Oruba andDormy (2014b) prensented very similar figures, but restricted
to the case Pr = 1 . As already pointed out in Christensen and Aubert (2006) and Oruba
and Dormy (2014b), the loss of dipolarity (fdip < 0.5) roughly corresponds to Ro

�̃u
� 0.1,
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(a)

(c) (d)

(b)

Figure 1. Dipolarity as a function of (a) the local Rossby number Ro
�̃u as defined in Christensen and

Aubert (2006), (b) the local Rossby number Ro�u as defined in Oruba and Dormy (2014b), (c) the
parameter RoE−1/3 (same reference) and (d) the parameter RoE−1/3

th . (Colour online)
Notes: Black points correspond to Pr = 1, blue points to Pr < 1 and red points to Pr > 1. The stars highlight the larger
value for the Prandtl number: Pr = 100.

Ro�u � 1 and RoE−1/3 � 1. The dependence on the Prandtl number is here highlighted
with a colour code.

Figure 1(a) corresponds to a direct estimate, from the numerics, of the convective length
scale. Figure 1(b) is a little bit more general in that it only involves a ratio of energy to
enstrophy to estimate the length scale. Figure 1(c) is even more general, in that it does
not involve any measured length scale, but an a priori estimate of the convective length
scale based on the Ekman number. It should be noted that the dispersion with the Prandtl
number appears towiden as onemove frommeasured length scale (figure 1(a)) to estimated
length scale (figure 1(c)). For this reason, we will introduce a fourth estimate of the length
scale, which does not only involve the viscous length scale E1/3, but also takes into acount
the thermal driving. A refined estimate is difficult for such intricate situation, so we will
simply introduce a thermal convection length scale relying here on the estimate for the
azimuthal length scale at the onset of convection as derived by Busse (1970) (see also Zhang
1992)

�th ∼
(
E

(1 + Pr )

Pr

)1/3
≡ E1/3th . (3)
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384 F. GARCIA ET AL.

(a) (b)

Figure 2. Scaled characteristic length scales (a) �̃uE−1/3 and (b) �̃uE
−1/3
th , vs. the flux-based Rayleigh

number, Ra
Q . (Colour online)

Notes: Black points correspond to Pr = 1, blue points to Pr < 1 and red points to Pr > 1. The stars highlight the extreme
value Pr = 100. Full (resp. open) symbols denote dipolar (resp. multipolar) dynamos.

Figure 1(d) presents the transition, once this correction is included, and the outcome
is of similar quality as figure 1(a). This suggests that when the Prandtl number is varied
away from unity, �th offers a better a priori description of the typical length scale of the
convective flow (even away from the onset of convection) than E1/3. This can be further
validated by considering figure 2, which presents the convective length scale of the flow as
measured in the numerics with �̃u rescaled with E1/3 and E

1/3
th respectively, as a function of

the so-called flux-based Rayleigh number, denoted as Ra
Q (introduced in Christensen and

Aubert 2006). While a dispersion exists on both graphs, probably due to magnetic effects,
the length scale ordering with the Prandtl number is severely reduced when E−1/3

th is used.

4. The equatorial symmetry breaking in hydrodynamicmodels

As shown in the previous section, the change between a dipolar and multipolar topology
of the magnetic field is controlled by purely hydrodynamic parameters, namely Ro

�̃u
,

Ro�u , RoE−1/3 and RoE−1/3
th . This transition was never reported to depend on magnetic

parameters (magnetic Prandtl number, Elsasser number, ...). This fact is consistent with
the observation that the Lorentz force appears to have a relatively small importance on the
flow in this parameters regime (Soderlund et al. 2012). This motivates this study which is
based in a direct comparison with purely hydrodynamic simulations.

A natural question to ask is then whether a purely hydrodynamic transition occurs in
the flow at similar values of Ro

�̃u
, Ro�u , RoE−1/3 and RoE−1/3

th as those for which the loss
of dipolarity is observed in dynamo solutions?

Except at very low Prandtl numbers (Garcia et al. 2008), thermal convection near the
onset is known to be symmetric with respect to the equator (Busse 1970, Jones et al. 2000,
Dormy et al. 2004). This symmetry will eventually be broken as the Rayleigh number is
increased toward sufficiently large values. This prompted us to investigate the equatorial
symmetry in our simulations.We therefore introduce the time and volume averaged kinetic
energy density contained in the symmetric part of the flow, denoted as Ks, which will be
compared with the total kinetic energy density,K . Figure 3 shows the variation of this ratio
vs. the parameters controlling the dipolar-multipolar transition, introduced in section 3.
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(a)

(c) (d)

(b)

Figure 3. Ratio of the mean kinetic energy contained in the equatorially symmetric modes over the total
mean kinetic energy, vs. (a) the local Rossby number Ro

�̃u
, (b) the local Rossby number Ro�u , (c) the

parameter RoE−1/3 and (d) the parameter RoE−1/3
th . (Colour online)

Notes: Black points correspond to Pr = 1, blue points to Pr < 1. The symbols mean • Pr = 0.1, E = 10−4; � Pr = 0.1,
E = 3.16 × 10−5;� Pr = 0.1, E = 8.16 × 10−6;� Pr = 0.025, E = 10−5; and�, Pr = 1, E = 3.16 × 10−5.

A breaking of the equatorial symmetry (Ks/K < 1) clearly occurs beyond a critical value.
As in figure 1, panel 3(d) offers a similar description of the loss of symmetry as panel 3(a),
without involvingmeasured length scales. The comparisonwith figure 1 also shows that for
each set of parameters, the threshold value is comparable to that of the dipolar-multipolar
transition. In addition, the Pr dependence of critical values at the transition is indeed
similar for both transitions.

In order to further characterize the breaking of the equatorial symmetry in purely
hydrodynamic models, we investigate the forces balances at work, in terms of their non-
gradient part. The time-averaged and volume-averaged non-gradient part of the Coriolis,
∇ × FC , viscous, ∇ × FV , and inertial, ∇ × FI forces are represented in figure 4, as a
function of Ra/Rac , for the five sets of parameters [Pr, E] of the hydrodynamic database.
A vertical line indicates the loss of the equatorial symmetry, defined by the criterium
Ks/K < 0.9. For all sets of parameters, the symmetric flow is characterized by a dominant
balance between the non-gradient part of the Coriolis and viscous forces, as is the case in
the dipolar dynamo regime. The non-gradient part of inertial forces ∇ × FI progressively
increases until reaching a three terms balance at values of Ra/Rac slighlty smaller than the
threshold value corresponding to the loss of equatorial symmetry (denoted by the solid
vertical line). Beyond this value, the three terms balance no longer holds, the inertial forces
becoming dominant, as in the multipolar dynamo regime (see also figure 5). The change
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386 F. GARCIA ET AL.

(a) (b) (c)

(e)(d)

Figure 4. (a) RMS curl of forces integrals∇×FI (∗, Inertial),∇×FC (�, Coriolis) and∇×FV (•, viscous)
in purely hydrodynamic simulations, for (a) [Pr = 0.1,E = 10−4], (b) [Pr = 0.1,E = 3.16 × 10−5], (c)
[Pr = 0.1,E = 8.16 × 10−6], (d) [Pr = 1,E = 3.16 × 10−5] and (e) [Pr = 0.025,E = 10−5]. (Colour
online)
Notes: The vertical line indicates the critical value for the loss of the equatorial symmetry (see figure 3).

in curl of forces balance occurs for Ks/K < 0.9. It thus seems that small deviations (of less
than 10%) in the symmetry of the flow can occur before the change in the dominant forces
occurs.

To further highlight the role of inertia after the breaking of the equatorial symmetry,
we compare in figure 5 both regimes of their typical length scale �̃u rescaled with E1/3, and
with E1/3th , plotted as a function of the flux-based Rayleigh number.

In the symmetric regime, as expected, both quantities are roughly constant. Figure 5(b)
clearly shows that E1/3th offers a much better a priori description of the convection length
scale than E1/3 (figure 5(a)). As the solutions loose their equatorial symmetry, their
characteristic length scale starts to decrease with increasing Ra

Q. The points in this regime
appear to collapse on a single line corresponding to a Ra

Q
−1/5 scaling. This corresponds,

as identified by Garcia et al. (2014), to the inertial scaling Ro ∼ Ra
Q
2/5, derived from the

IAC balance (Aubert et al. 2001, Jones 2011). The Ra
Q

−1/5 scaling thus reflects the Ro−1/2

scaling, steming from the balance between the non-gradient part of Coriolis and inertial
forces beyond the transition.

It is interesting to establish a deeper comparison of both transitions in terms of their
dependence on the Prandtl number. For this purpose, for each data set corresponding to
a given value of Pr, we compute the critical values of Ro

�̃u
, Ro�u , RoE−1/3 and RoE−1/3

th at
which the transitions occur. This results in figure 6, where black (resp. red) points denote
the dynamo-multipolar (resp. hydrodynamic) transition.

The first important thing to be noticed is that, as pointed in the previous section, both
transitions occur at similar values of the control parameters (see for example the Pr = 0.1
and Pr = 1 cases in figure 6, for which both dynamo and hydrodynamic data are available).
The transition values on all four graphs are not expected to vary significantly between the
hydrodynamic simulations and the dynamo simulations, as it is now well established that
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(a) (b)

Figure 5. Scaled characteristic length scales (a) �̃uE−1/3 and (b) �̃uE
−1/3
th , vs. the flux-based Rayleigh

number, Ra
Q . (Colour online)

Notes: Black points correspond to Pr = 1, blue points to Pr < 1. Full (resp. open) symbols denote symmetric (resp.
non-symmetric) flows. The solid line represents the RaQ

−1/5 scaling. Same symbols as in figure 2.

in these models, the typical length-scale of convection is not significantly altered by the
presence of the magnetic field. Also note that in a similar way as in figures 1 and 3,
figure 6(d) offers a description of the transition comparable to that of figure 6(a), without
involving measured length scales. The second important point is that both transitions
exhibit the same dependence on Pr. As identified in section 3, the critical values of Ro

�̃u
,

Ro�u , RoE−1/3 and RoE−1/3
th monotonically decrease with increasing Pr. The behaviour

however depends on whether Pr is less than unity, or not. For Pr < 1, it is almost flat; in
the low Prandtl number limit, the critical values thus roughly correspond to the values at
Pr = 1, i.e. Ro

�̃u
� 0.1, Ro�u � 1, RoE−1/3 � 1 and RoEth−1/3 � 1. This is not the case

at larger Prandtl numbers, for which the critical values decay significantly as Pr increases.
The fact that the critical value for transition still exhibits a Pr dependence on all four
panels probably indicates that more than one length scale is present in the convective flow,
for example a radial and an azimuthal length scale (e.g. Zhang 1992), and that the ratio
between these length scales may vary with the Prandtl number. We only rely here on an
estimate, based on the azimuthal length scale at the onset, and which appears to provide
an adequate description of the flow.

5. Dynamomechanisms

It is interesting to understand how changes in the flow are related to changes in dynamo
action. A useful tool to analyse the dynamo mechanisms is to use mean-field formalism.
This has been investigated in Schrinner et al. (2012). They have shown that the loss of
dipolarity was related to a sudden collapse of the γ -effect, and not to an alteration of the
α-effect. A proxy often used to measure the α-effect is the kinetic helicity. Schrinner et al.
(2007) however showed that the kinetic helicity does not provide a good approximation
in the case of geodynamo models. The link between the α-effect and helicity requires
either that the magnetic diffusion time is long compared to the induction time, or that the
turnover time is long compared to the correlation time (e.g. Moffatt 1978; Moffatt 2014).
Whereas Schrinner et al. (2012) do not report a collapse of the α-effect, Soderlund et al.
(2012) noted a significant degradation of the relative kinetic helicity at the transition to
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(a)

(c) (d)

(b)

Figure 6. Pr dependence of the dipolar-multipolar transition in dynamo simulations (in black), and
of the loss of equatorial symmetry in hydrodynamic simulations (in red). It shows the value of (a) the
local Rossby number Ro

�̃u
, (b) the local Rossby number Ro�u , (c) the parameter RoE−1/3 and (d) the

parameter RoE−1/3
th at the transition, as a function of Pr. (Colour online)

Notes: The black error bars indicate the ranges from the last dipolar point (fdip > 0.5) to the first multipolar one (fdip < 0.5),
and the others those from the last symmetric point (Ks/K > 0.9) to the first non-symmetric one (Ks/K < 0.9). The dots
stem from a linear interpolation.

multipolar dynamos. Besides, numerical studies have stressed that the presence of a mean
helicity in a numerical model is not necessarily related to that of a large-scale dipolar field
(Livermore et al. 2007).

In order to further clarify the helicity behavior at the transition, we investigate hydro-
dynamic simulations performed at Pr = 1 and at lower Prandtl numbers, Pr = 0.1 and
Pr = 0.025. Following Soderlund et al. (2012), we consider the instantaneous axial helicity

Hz = vzωz , (4)

and compute its volumetric average over the mainstream flow, i.e. excluding the boundary
layers, denoted as 〈 · 〉 in following. As 〈Hz〉 vanishes in the case of symmetric flows, we
consider the quantity |Hz |, defined as

|Hz | = 1
2

(
〈Hz〉NH − 〈Hz〉SH

)
, (5)
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(a) (b)

(c) (d)

Figure 7. Instantaneous quantities (a) 〈vzvz〉, where vz is the axial velocity, (b) 〈ωzωz〉, ωz being the
axial vorticity, (c) the axial helicity |Hz |, and (d) the relative helicity |Hrel

z |, vs. the Rayleigh number Ra.
(Colour online)
Notes: Black points correspond to Pr = 1, blue points to Pr < 1. Full (resp. open) symbols denote symmetric (resp.
non-symmetric) flows. Same symbols as in figure 2.

where the subscripts NH (resp. HS) denote the average over the northern (resp. southern)
hemispheres. We also consider the relative axial helicity defined as

|Hrel
z | = |Hz |

(〈vzvz〉〈ωzωz〉)1/2 , (6)

where the axial helicity has been normalized by itsmaximumpossible value. Figure 7 shows
the instantaneous quantities 〈vzvz〉, 〈ωzωz〉, |Hz | and |Hrel

z |, as a function of the Rayleigh
number Ra. The three former quantities exhibit a monotonic increase, as Ra increases. The
relative axial helicity |Hrel

z | however exhibits a very different behaviour (see figure 7(d)). In
the case Pr = 1, |Hrel

z | sharply decreases very close to the transition, this behaviour was first
observed and reported in Soderlund et al. (2012) (see also their corrigendum Soderlund et
al. 2014). This behaviour is however not reproduced when Pr = 0.1, and the degradation
of |Hrel

z | is nearly absent at Pr = 0.025.
When Pr = 0.1, |Hrel

z | is less than 30% in the symmetric regime. This fraction is even
lower for Pr = 0.025. These flows however do maintain an equatorial symmetry and
sustain a dipolar field. This corroborates the point of Schrinner et al. (2007) that helicity is
not a proxy for the α-effect in these configurations.

At Pr = 1, as pointed out by Soderlund et al. (2012), the transition is associated with a
degradation of relative helicity in the flow. However, this picture does not hold in the low
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(a) (b)

(d)(c)

Figure 8. Contour plots of the instantaneous local relative axial helicity Hz/(〈vzvz〉〈ωzωz〉)1/2,
corresponding to hydrodynamical solutions obtained for E = 3.16 × 10−5 and for four different
sets of parameters [Pr,Ra]. Each panel shows, from left to right, spherical (at radius ro, viewed from the
north pole), equatorial andmeridional sections (this last projection ismade at the azimuthal anglewhere
axial helicity is maximum; it is indicated by the dashed lines in the other projections). Panels (a) and (b)
correspond to equatorially symmetric solutions obtained for [1, 2.51 × 107] and [0.1, 6.15 × 106],
respectively. Panels (c) and (d) show asymmetric solutions corresponding to [1, 8.35 × 107] and
[0.1, 1.23 × 107]. (Colour online)
Notes: The gray scale is the same for all the contour plots corresponding to each solution, with white (red) meaning positive
axial helicity.

Prandtl number regime. Besides, if by helicity we denote the axial helicity, instead of the
relative axial helicity, this quantity keeps increasing beyond the transition.

Figure 8 complements figure 7, by showing the local relative axial helicity Hz/(〈vzvz〉
〈ωzωz〉)1/2 of the hydrodynamical solutions obtained for two different values of Pr, i.e.
Pr = 1 and Pr = 0.1, the Ekman number being fixed (E = 3.16 × 10−5). Depending
on Ra, equatorially symmetric (figure 8(a),(b)), or asymmetric (figure 8(c),(d)) solutions
are obtained. Figure 8(a),(c) corresponds to Pr = 1. At moderate forcing (figure 8(a)),
the pattern of the relative axial helicity is roughly anti-symmetric accross the equator. It
exhibits large-scale vortices elongated in the axial direction, mainly developped within
a relatively wide annulus, coaxial with the axis of rotation and tangential to the inner
sphere (see the meridional section). As the forcing is increased (figure 8(c)), the equatorial
symmetry is broken and the relative axial helicity is then clearly degraded. This picture is
however different at Pr = 0.1 (figure 8(b),(d)). In that case, the relative axial helicity of
the equatorially symmetric solution is nearly negligible in the bulk of the fluid. Helicity is
concentrated in a small-scale structure, also elongated in the axial direction and tangent to
the inner sphere (figure 8(b)). The asymmetric solution (figure 8(d)) is characterized by a
weak axial helicity, as in the Pr = 1 case.

As noted by Christensen et al. (1999), the breaking of symmetry in both cases (figure
8(c),(d)) appears concomitant of the onset of convection inside the tangent cylinder. In
their study, they noticed that with a strong magnetic field (in terms of Elsasser number),
the Lorentz force appeared to help the onset of convection inside the cylinder tangent to
the inner core.
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6. Discussion and conclusions

We investigated the transition from steady dipolar to reversing multipolar dynamos
observed in numerical simulations in several earlier studies. Motivated by the previous
descriptions of this transition in terms of hydrodynamic quantities (Christensen and
Aubert 2006), we compared full dynamo simulations to purely hydrodynamic simulations
in a rotating spherical shell.

Such an approach, which suggests that in the dynamo models considered here, the
Lorentz force saturates the dynamo but is not responsible for the key transitions in the
flow, is supported by earlier studies (e.g. Soderlund et al. 2012).

The main result of our paper is that the loss of dipolarity in dynamo simulations is
concomitant of a purely hydrodynamic transition, characterized by the breaking of the
flow equatorial symmetry. Further investigations of the loss of symmetry and dipolarity
in dynamos are deserved. We should stress the earlier study of Christensen et al. (1999)
which was however limited to a boolean quantification of symmetry that does not allow
a precise comparison with the loss of dipolarity. Based on our simulations, we argue that
both transitions appear to correspond to the same forces balance, that is to say, the breaking
of the leading order geostrophic balance by the inertial forces. They are characterized by
the same critical values of the parameters controlling the transition. This relation between
the transitions is observed for five hydrodynamic database sets in which the Prandtl and
Ekman numbers roughly vary two orders of magnitude.

The threshold values do exhibit the same dependence with the Prandtl number Pr. In
both configurations, they are independent on Pr for low Prandtl numbers (Pr < 1), but
decrease when Pr increases to large values (Pr > 1). This points to a sole mechanism to
describe both transitions. The remaining Pr dependence of the transition highlights the
complexity of the length scales involved in convective flows (Zhang 1992, Jones et al. 2000,
Dormy et al. 2004).

We have also shown that the transition is not necessarily associated with a degradation
of the helicity in the flow. Indeed, beyond the transition, the axial helicity keeps increasing
monotonically as the forcing increases. More importantly, the decrease of the relative axial
helicity observed in Soderlund et al. (2012) at Pr = 1 does not hold in the low Prandtl
number limit.

The symmetry breaking associated with inertial effects is directly related to the over-
estimated role of inertia in numerical models for the geodynamo. It is because of these
strong inertial effects, that the Lorentz force could be neglected in studying the transition. It
has recently beenpointedout (Dormy2016) that reducing inertial effects could lead tomore
geophysically relevant forces balances. Indeed reducing inertial effects (by considering
larger magnetic Prandtl numbers) opens the way to transitions associated with magnetic
effects, such as the runaway field growth reported in Dormy (2016), see also Dormy et al.
(in press).

The loss of equatorial symmetry in numerical models could however be important to
understand geodynamo reversals. A key feature of themultipolar regime is the occurence of
chaotic reversals of the dipolar component.Our result, which relates the dipolar-multipolar
transition to the breakdown of the flow equatorial symmetry, points to the connections
of polarity reversals and a breakdown of the flow equatorial symmetry (see Petrelis et al.
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2009). Further studies are deserved to understand how this symmetry is broken in an
Earth-like parameter regime (i.e. with less inertial effects).
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