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Figure C35 Efflux from the top of a “penny shape” volume
encompassing the boundary layer. This compensates the
volume flux deficit in the boundary layer through the sides of
the volume.
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Basic ideas

It might be said that the term boundary layer means different things to
different people. To someone observing fluid flowing past a flat plate,
it might seem that there are two distinct regimes of motion. Far from
the plate, the flow might seem too fast for the eye to follow, markers
carried by the fluid appearing blurred as they speed past the plate; near
the plate however the flow is so sluggish that it is easily followed by eye.
The observer may call this the boundary layer, and the region beyond the
free-stream or the mainstream, and he may feel that the interface between
the two is reasonably sharp, so that he can call it the edge of the boundary
layer. The theoretician will see no such sharp interface but will employ a
mathematical technique, sometimes calledmatched asymptotics that simi-
larly distinguishes an inner region near the plate from the outer region
beyond. For him, the edge of the boundary layer is a region where the
two solutions are required to agree with one another, i.e., to match.
To be successful, the asymptotic approach requires that the kine-

matic viscosity, n, is small, as measured by an appropriate nondimen-
sional parameter, such as the inverse Reynolds number in the case of
the flow past the plate, or the Ekman number, E, for the situations
we encounter below. The thickness, d, of the boundary layer is then
small compared with the characteristic scale, L, of the system, so that
e ¼ d=L is small and vanishes with n; this does not imply that it is
proportional to n.

The inner and outer solutions are developed as expansions in
powers of e. The relative size of successive terms in the expansions
is determined by the matching process. Provided e is sufficiently small,
only a few terms in each expansion are needed to obtain useful solu-
tions of acceptable accuracy. In what follows, we shall retain only
the first, or “leading” term in the expansion of the inner solution, u,
but will require the first and second terms in the expansion of the outer
solution, U. The primary (leading order) part, U0, of the outer solution
is independent of n and can therefore only satisfy one condition at a
stationary impermeable boundary G, namely U0? � n � U ¼ 0, where
n is the unit normal to G, directed into the fluid. The components
U0k of U0 that are tangential to G will then in general be nonzero on
z ¼ 0, where z measures distance from G in the direction of n. The
task of the boundary layer is to reconcile U0k at z ¼ 0 with the no-slip
condition: u ¼ 0 on G. This means that uk must, through the action of
viscosity, be reduced from U0k to zero in the distance d. To achieve
this deceleration, the viscous term in the momentum equation,
� nr2uk, must be finite and nonzero. Since this force is of order
nuk=d

2, it follows that d is proportional to n1=2.
To derive the inner expansion, the stretched coordinate, z ¼ z=d, is

introduced to replace the distance z from G. The boundary layer is
then characterized by z ¼ Oð1Þ and ]z � ]=]z ¼ Oð1Þ, so that
]z � ]=]z ¼ Oð1=dÞ 	 1=L. In contrast, =k is much smaller; as in
the mainstream, it is O(1/L). The matching principle asserts that the
inner and outer expansions should agree with each other at the edge
of the boundary layer, which is defined as a region where z � L but

z 	 1. [For example, if z ¼ OðLdÞ1=2, then z=L ¼ Oððd=LÞ1=2Þ # 0

and z ¼ OððL=dÞ1=2Þ " 1 as e # 0.]
A significant consequence follows from mass conservation and the

matching principle. Since variations in density across the thin bound-
ary layer can be ignored at leading order, mass conservation requires
that = � u ¼ 0. At leading order, this gives
]zu? þ =S � uk ¼ 0: (Eq. 1a)

=S is the surface divergence, which may be defined, in analogy
Here
with the better known definition of the three-dimensional divergence,
as a limit. For any vector Q depending on position xk on G and direc-
ted tangentially to G,
=S �Q ¼ lim
A!0

1
A

I
g
Q � Nds: (Eq. 1b)

g is the perimeter of a small “penny-shaped disk” on G of area A;
Here
ds is arc length and N is the outward normal to g lying in G. This is
shown in Figure C35, which also gives the disk a small thickness
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z ¼ ‘. Since Nd s ¼ ds � n, where the vector element ds of arc length
is in the right-handed sense with respect to n, an application of
Stokes’ s theorem to Eq. (1b) gives
=S � Q ¼ lim
A !0

1
A

I
g
d s � ðn � QÞ ¼  lim

A!0

1
A

Z
A
d S � ð= � ðn � QÞÞ;

e d S ¼ n d S is the vector element of surface area on A. From
wher
which it follows that
=S � Q ¼ n � = � ðn � QÞ: (Eq. 1c)

 is generally a more convenient form of the surface divergence
This
than (1b).
Since G is impermeable, u? ¼ 0 on  z ¼ 0 and Eq. (1a) gives (on

taking Q ¼ R z
0 u k  dz )
u?ð zÞ ¼  n � = �
Z z

0
uk  d z � n

� �
: (Eq. 1d)

ow choose the “top ” face of the penny in Figure C35 to be at the
We n
edge of the boundary layer, i.e., d � ‘ � L . Then, by the asymptotic
matching principle, the left-hand side of Eq. (1d) is both u?ðz " 1Þ
and U?ð z # 0 Þ. Since the right-hand side of Eq. (1d) is Oð dÞ , this con-
tribution to U is small compared with U0, i.e., it refers to the second, or
“secondary,” term U1 in the expansion of U. This also establishes that
the ratio of the secondary and primary terms in the expansion of U is
Oð d Þ and not, as might have been supposed a priori, Oð nÞ ¼ Oðd2 Þ .
It follows from (1d) that, for z ¼ 0,
U1? ¼ n � = � Qk � n
� 	

; (Eq. 2a)

e Qk  is now the volume flux deficit in the boundary layer:
wher
Qk ¼ d
Z 1

0
ðuk � U kÞd z; or Q k ¼

Z z=d "1

0
ð uk � UkÞ d z:

(Eq. 2b ; c)

second of these equivalent forms, which will be used later, pro-
The 
vides a convenient way of reminding us that the z-integration is only
across the boundary layer and not across the entire fluid. In each
expression, Uk  is evaluated at z ¼ 0 and therefore depends on x k  only.
Equation 2a provides a crucial boundary condition on U1. Further

boundary conditions are not needed and in fact could not be imposed
without overdetermining the solution. Not even the term nr 2 U0

appears in the equation governing U1, since this term is Oðn Þ ¼ Oðd 2 Þ,
i.e., is asymptotically small compared with U1. For flow past a flat plate,
the source (2a) at the boundary has the effect of displacing the effective
boundary by an amount of order d, which is then often called “the dis-
placement thickness ” ; e.g., see Rosenhead (1963, Chapter V.5). For the
Ekman and Ekman-Hartman n layers considered in “ The Ekman layer ”
and “The Ekman-Hartmann layer ” below, the effect of the secondary
flow is more dramatic.
Ekman layers arise at the boundaries of highly rotating fluids;

Ekman– Hartmann layers are their generalization in magnetohydro-
dynamics (MHD). The Ekman-Hartmann layer must reconcile both
the mainstream flow U and the magnetic field B to conditions at a
boundary G, where we assume that u ¼ 0 and b ¼ BG . It follows from
= � b ¼ 0 that b?  is the same everywhere in the boundary layer. It
therefore coincides with BG ? at the wall and with B0 ? at the edge of
the boundary layer. The remaining components of b change rapidly
through the boundary layer: b ¼ B0 at its “upper ” edge and b ¼ B G ,
at its “lower” edge. This occurs because the current density, jk  , in the
boundary layer is large. In analogy with Eq. (2a), there is a secondary cur-
rent flow J1? between the boundary layer and the mainstream given by
J1? � J G? ¼ n � = � I k � n
� 	

; (Eq. 3a)

e Ik  is the electric current deficit:
wher
Ik ¼ d
Z 1

0
ð jk � J kÞd z; or I k ¼

Z z= d!1

0
ð jk � J kÞ dz :

(Eq. 3a; b)

e exterior region, z < 0, is electrically insulating, JG ¼ 0, so
If th
bringing Eq. (3a) even closer to Eq. (2a). When attention is focused
on the mainstream magnetic field alone, I is the symptom of the
boundary layer that has most significance, and it is thought of as a
“ current sheet. ” In a similar way, the volumetric deficit Q may be
regarded as a “ vortex sheet. ”

The theory necessary to evaluate Q and I will be described in “ The
Ekman layer.” It will be found that, as far as the effects of viscosity are
concerned, the relevant boundary layer scale is the Ekman layer thick-
ness, dE ¼ ðn =O Þ1 =2 ¼ E 1= 2 L, where E ¼ n =O L2 is the Ekman number
and O is the angular speed of the system.
Geoph ysical overtone s

The mathematical concepts introduced above need to be handled with
care when applied to a complex object like the Earth ’s core. Various
intricate physical effects can occur in the core and a mathematical
model by essence requires some simplifying assumptions. Let us first
note that the dynamics of the Earth’s core is often modeled by a set
of coupled physical quantities: the magnetic field, the fluid velocity,
and a driving mechanism (usually thermal and/or chemical). This intro-
duces (see Anelastic and Boussinesq approximations) at least three dif-
fusivities. The magnetic diffusivity largely dominates the two others. It
follows that boundary layers (associated with low diffusivities) can
develop both based on the smallness of viscosity (as discussed above)
and on the smallness of say the thermal diffusivity (compositional diffu-
sivity being even smaller). The thickness of such thermal (composi-
tional) boundary layers, dk, depends on the thermal (compositional)
diffusivity (or the relevant turbulent diffusivity), k, of core material.
These layers are conceptually significant in understanding how heat
enters and leaves the FOC. We shall not consider them in this article
and refer the reader to Anelastic and Boussinesq approximations.

Assume that L ¼ 2� 106 m is a typical large length scale of core
motions and magnetic fields (see Core motions). If the molecular vis-
cosity n is 10�6 m2=s, then E is about 10�15. This suggests that an
asymptotic solution to core MHD is fully justified as far as the effects
of viscosity are concerned. A mainstream solution would be expected
away from the boundaries and a boundary layer would develop near
the mantle and near the solid inner core.

This line of thought is also the basis for the determination of core
surface motions from observations of the main geomagnetic field
and its secular variation. On the assumption that electric currents gen-
erated in the mantle by the geodynamo are negligible, the observed
fields can be extrapolated downwards to the CMB and used to provide
information about the fluid motions “at the top of the core,” using
Alfvén’s theorem. A difficulty however remains: the fluid in contact
with the mantle co-rotates with it by the no-slip condition. There is
no relative motion! Realistically, one can hope only to determine the
mainstream flow at the edge of the boundary layer. The connection
between the fields at the CMB to the fields at the edge of the boundary
layer was considered by Backus (1968), who presented an analysis of
Ekman-Hartmann type. Hide and Stewartson (1972) made further
developments of the theory.

The boundary layer thickness, dE, obtained from the above estimate
of the Ekman number is however only about 10 cm and it is natural to
wonder whether such a thin layer can have any effect whatever on the
dynamics of a fluid body that is about ten million times thicker!



Figure C36 Side (left) and top (right) views of the Ekman layer
profile. The velocity executes a spiral from zero velocity on the
boundary to the mainstream velocity U at the edge of the
boundary layer. Copyright 2007 from ‘Mathematical Aspects of
Natural Dynamos’ by E. Dormy and A.M. Soward (eds.).
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Turbulence provides amelioration. It is widely accepted that the
molecular viscosity is inadequate to transport large-scale momentum
in the core, its role being subsumed by small-scale turbulent eddies.
These, and the associ ated momentum flux, are highly anisotropic
through the action of Coriolis and Lorentz forces (Braginsky and
Meytlis, 1990). Nevertheless, a crude ansatz is commonly employed:
the molecular n is replaced by an isotropic turbulent viscosity having
the same order of magnitude as the molecular magnetic diffusivity, that
is to say about 1 m2/s. Then E � 10 �9 and the asymptotic approach
still seems secure. Even ignoring the possible intrinsic instability of
the boundary layer (see “Stability of the Ekman-Hartmann layer ” ), it
is reasonable to suppose that the small-scale eddies would penetrate
the boundary layer so that a better estimate of dE would be 100 m.
That such a layer would have a dynamical effect on the dynamics of
the core then seems less implausible.
There are, however, skeptics who believe that, even if the boundary

layers are 100 m thick, they are still too thin to be of geophysical inter-
est. Kuang and Bloxham (1997) removed them by replacing the no-
slip conditions on the core-mantle boundary (CMB) and inner core
boundary (ICB) by the conditions of zero tangential viscous stress.
This step obviously eliminates viscous coupling between the fluid
outer core (FOC) and mantle and between the FOC and the solid inner
core (SIC). Then, in the absence of other coupling mechanisms, the
rotation of the mantle and the SIC does not affect the dynamics
of the FOC and spin-up does not occur (see “The Ekman layer ” ).
Geophysical justification for the step rests on estimates indicating that,
owing to the large electrical conductivity of the SIC and despite the
relatively small electrical conductivity in the mantle, the magnetic cou-
ples between the FOC and both the mantle and the SIC still greatly
exceed the viscous couples, which can therefore be disregarded by
adopting the zero viscous stress conditions. In this article we shall
ignore such complications and adopt the “ traditional approach ” where
no-slip conditions apply at both boundaries. See also Core –mantle
coupling .
Although the smallness of E makes the asymptotic approach to

MHD very attractive, purely analyt ic methods are not powerful enough
to provide the solutions needed; numerical methods must be employed.
One might nevertheless visualize a semianalytic, seminumerical
approach in which the computer finds an inviscid mainstream flow U
and magnetic field B that satisfy the boundary conditions (2a) and
(3a). This too is not straightforwar d, since solutions for n ¼ 0 raise
important numerical difficulties and to restore n to the mainstream would
be tantamount to repudiating the boundary layer concept.
At this stage it is natural to wonder what use asymptotic methods

have in core MHD. In the present state of algorithmic development
and computer capability, the answ er may seem to be, “Not much! ”
The boundary layer concept is, however, valuable in locating regions
requiring special attention in numerical work, such as free shear layers
and boundary layer singularities (“Free shear layers” ). Moreover, the
only way of verifying that the numerical simulations have reduced
the effect of viscosity on core dynamics to a realistic level is by con-
fronting them with the expectations of asymptotic theory.

The Ek man layer

Consider an incompressible fluid of uniform density, r , moving stea-
dily with velocity u, relative to a reference frame rotating with con-
stant angular velocity V. In this reference frame, the Coriolis force
per unit volume, 2 rV � u, is balanced by the pressure gradient
� =p and the viscous stresses rnr 2 u , where n is the kinematic visc-
osity. The normal component of this balance gives, to leading order in
the boundary layer expansion, =?  p ¼ 0, which implies that the pres-
sure, p , throughout the boundary layer coincides with the pressure,
P, in the mainstream at the edge of the boundary layer. The tangential
components give dominantly
Reproduced by permission of Routledge/Taylor & Francis
Group, LLC.
2 O?  n � uk ¼ �=kð P = rÞ þ n ] zz uk; (Eq. 4)
which shows that only the component, O? � V � n , of angular velo-
city normal to the boundary is significant at leading order. We assume
here that O? 6¼ 0.

Inside the Ekman layer governed by Eq. (4), the interplay between
the additional viscous forces needed to meet the no-slip boundary con-
dition causes the flow to be deflected from the direction of U, leading
to the well known Ekman spiral of the velocity u(z ) as z = d increases
from zero to infinity; see Figure C36.

As a consequence of the Ekman spiral there is a transverse mass
transport, which is quantified by the volume flux deficit
Qk ¼ 1
2d E ½� U0 þ ðsgnO ?Þ n � U0 �; where dE ¼ pð n=jO?jÞ

(Eq. 5a; b)

appropriately redefined Ekman layer thickness which, over curved
is the
boundaries such as the CMB and ICB, depends on xk through O?. The
velocity U1? follows directly from Eq. (2a); see also Greenspan (1968,
p. 46):
U1? ¼ n � u ¼ 1
2n � =� fdE½n� U0 þ ðsgnO?ÞU0�g; (Eq. 6a)

h, when the mainstream velocity U0 is geostrophic and boundary
whic
is planar normal to the rotation vector ðn�V ¼ 0Þ, takes the simpler
form
U1? ¼ n � u ¼ 1
2dEðsgnO?Þn � =� U0: (Eq. 6b)

relates the normal flow to the vorticity =� U0 of the primary
This
mainstream flow (see also Pedlosky, 1979).

The phenomenon described by Eq. (6) is often called Ekman pump-
ing or Ekman suction depending on whether u? > or < 0. It should
again be stressed that the secondary flow induced by the mainstream
boundary condition (6) is scaled by the boundary layer thickness dE
and is therefore small. It is worth emphasizing however that this mod-
ification of the effective boundary conditions introduces dissipation
into the mainstream force balance, and this generally provides the
dominant dissipation mechanism for a sufficiently large-scale flow.
More precisely, for all flows in the mainstream characterized by a
length scale larger than LE1=4, dissipation within the boundary layers
will dominate over the bulk effects of viscosity. Indeed, Ekman pump-
ing/suction is a particularly significant process in determining the
evolution of the angular momentum of a rotating fluid, which occurs
on the spin-up timescale, ts-u ¼ E�1=2=O ¼ E1=2L2=n, i.e., on a time-
scale intermediate between the rotation period 2p=O (the day) and the
viscous diffusion time L2=n (which, for the molecular n, would exceed
the age of the Earth).
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The theory of the Ekman layer adumbrated above assumes that
conditions are steady. It can be adapted to time-dependent situations pro-
vided they do not change too rapidly, i.e., provided that they occur on
timescales longer than the rotation period 2 p= O. When considering the
effects on core flow of the lunisolar precession, in which V changes
on the diurnal timescale, the present theory is inapplicable.

The Ek man-Har tmann layer

The situation described in “The Ekman layer ” is now generalized to
MHD; the fluid is electrically conducting and a magnetic field is pre-
sent. In the mainstream, the electric current density, J , is given by
Ohm’s law:
J ¼ s ðE þ U � B Þ; (Eq. 7a)

e E is the electric field and s is the electrical conductivity. The
Figure C37 Streamwise component of the velocity in the
boundary layer for different values of the Elsasser number,
illustrating the smooth transition from an Ekman-type boundary
layer to the Hartmann-type boundary layer.
wher
Lorentz force per unit volume, J � B , is therefore of order s B2 U . In
the Earth ’s core, this is comparable with the Coriolis force
2 rV � U. The Elsasser number, L ¼ s B2 = rO , is therefore of order
unity. The asymptotic limit of interest is therefore E # 0 with L ¼ Oð1Þ .
Since L ¼ M 2 E , where M ¼ BL ð s= rn Þ1= 2 is the Hartmann number, it
follows that M  E � 1=2 " 1 as E # 0.
Both B and the magnetic field, b , in the boundary layer obey

Gauss ’s law, and to dominant order = � b ¼ 0 gives, as before (“Basic
ideas” ), ]z b ? ¼ 0, from which b ? ¼ BG? ¼ B 0? , at the edge of the
mainstream. We shall suppose that B0? 6¼ 0. Ohm’s law in the boundary
layer is essentially the same as (7a) but, in our notation, it is written as
j ¼ sð e þ u � bÞ: (Eq. 7b)

gain suppose steady conditions so that E ¼ �=F and e ¼ �= f,
We a
where F and f are the electric potentials in the mainstream and
boundary layer. The above expressions in terms of electric potentials
correspond to a low magnetic Reyno lds number description. It is
important to remember we are here concerned with the magnetic
Reynolds based on the boundary layer scale. This is a very small quan-
tity in the case of the Earth ’s core. To leadin g order, the normal com-
ponent of Eq. (7b) is e? ¼ �] z f ¼ 0 and this shows that, throughout
the boundary layer, f coincides with F both at the edge of the main-
stream and on the boundary itself. This generally depends on xk  , so
that a current JG ¼ s G E G flows in the stationary wall, if its conductiv-
ity sG is nonzero. To leading order, the components of Eq. (7b) paral-
lel to G together with Ampère ’s law, m j ¼ = � b , where m is the
magnetic permeability, imply
m �1 n � ]z bk ¼ s ð�= k  f þ u0 k � B 0?Þ: (Eq. 8)

 last term in Eq. (7b) also contributes U1 ? � b0k  but, as this is
[The
asymptotically smaller than the term u0k � B0 ? retained, it has there-
fore been discarded.]
The determination of the boundary layer structure requires the

equation of motion to be satisfied too. This differs from Eq. (4) by
the addition of the Lorentz force. This may be decomposed into a mag-
netic pressure gradient and the divergence of the Maxwe ll stress bb= m.
The magnetic pressure can be absorbed into p to form a total pressure
which, by the same argument as before, is constant across the bound-
ary layer to leading order. The components of the equation of motion
parallel to G are governed by
2 O?  n � ðuk � U 0kÞ ¼ �ðB 2?= rm�Þðu k � U0kÞ þ n] zz u k  (Eq. 9)

ilman and Benton, (1968) and Loper, (1970).
see G
Equations 8 and 9 determine the structure of the Ekman-Hartmann

layer which, in the limit L # 0, becomes the Ekman layer considered
in “ The Ekman layer ” (see Figure C37 ). For L " 1, the Coriolis force
is unimportant and the theory reduces to that governing the Hartmann
layer, which is a well known boundary layer that arises in the study of
MHD duct flow at large Hartmann number; see, e.g., Roberts (1967),
Müller and Bühler (2001). It is then found that
uk ¼ U 0k½ 1 � exp ðz = dH Þ� (Eq. 10a ; b)

e dH ¼ pð rn =s Þ=j B?j is the Hartmann layer thickness. For a flat
wher
boundary, there is no flux deficit and U1? therefore vanishes.

Equations (8) and (9) also show that
L ¼ B 2?= rm� O? ¼ ðd E = dH Þ  2 (Eq. 11)

onvenient redefinition of the Elsasser number measuring the rela-
is a c
tive importance of Lorentz and Coriolis forces in determining the bound-
ary layer structure. For small L , the Ekman spiral persists together with
the associated boundary layer pumping. As E increases through Oð1 Þ
values, these effects decrease until at large L the flow becomes unidirec-
tional without any associated boundary layer pumping.

Free shea r layer s

Supposing that the Earth ’s fluid core occupies the spherical ri �
r � r0 , we redefine the Ekman and Hartmann numbers by
E ¼ v= r 20 O ¼ d 2E =r 
2
0 and M 2 ¼ r 20 jB j2 =rnm � ¼ r 20 =d 

2
H

(Eq. 12a ; b)

ctively, and redefine the Elsasser number (11) as L ¼ M 2 E . In
respe
what follows, ð r ; y; jÞ will be spherical coordinates in which the cola-
titude y is zero at the north pole. We shall also employ cylindrical
polar coordinates ð s; j; zÞ .

As explained earlier, Ekman-Hartmann layers are generally present
on both the CMB, r ¼ r0 and the ICB ðr ¼ r i Þ. Since horizontal varia-
tions are negligible in comparison with the very rapid variation across
the layers, the curvature of the spherical boundaries does not affect our
earlier results as these depend only on the components of V and B
normal to the boundaries. Where these vanish, the theory adumbrated
in “The Ekman layer ” and “The Ekman-Hartmann layer ” breaks down,
and boundary layer singularities arise. To focus on these, we at first
consider only the nonmagnetic case, M ¼ 0. At the equator of the
inner sphere, where the Ekman layer is singular, Eq. (2a) ceases to
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apply and a new force balance is struck, and a new type boundary
layer arises called the equatorial Ekman layer. This is intimately linked
to a free shear layer, which surrounds the tangent cylinder, i.e., the
imaginary cylinder touching the inner sphere at the equator and having
generators parallel to the rotation axis (see Inner core: tangent cylin-
der ). This shear layer exhibits a complicated asymptotic structure that
is best illustrated by the Proudman-Stewartson problem (Proudman,
1956; Stewartson, 1957, 1966), which concerns the slow steady axi-
symmetric flow induced by rotating the solid inner core at a slightly
faster rate than the outer solid mantle. The flow pattern that occurs
in this fundamental configuratio n illustrates the interplay between the
various boundary and shear layers. It is important to stress that these
layers do not take into account magnetic effects. Such effects are
important in the Earth core and lead to a variety of shear layers whose
details are not discussed here (see Kleeorin et al. 1997).
The mainstream flow is dominantly geostrophic and azimuthal:

UG ¼ U G ðs Þbw, where bw denotes the unit vector in the j -direction.
Outside the tangent cylinder, s ¼ ri , the fluid co-rotates with the outer
sphere, and there is no Ekman layer on the CMB. Within the tangent
cylinder, UG (s) adjusts its value so that the Ekman suction,
� Ur ð ri Þ ¼ OðE 1= 2 UG Þ , into the Ekman layer on the ICB equals the
Ekman pumping, Ur(r o), out of the Ekman layer on the CMB. This
generates a secondary flow Uz ð sÞbz in the mainstream that has only a
z- component. It depends on s alone; such flows are termed geos-
trophic . In the northern (southern) hemisphere it is negative (positive).
As the tangent cylinder is approached from within, UG tends to the

inner sphere velocity. The jump in the geostrophic velocity across the
tangent cylinder is smoothed out in an exterior quasigeostrophic layer
ð s > ri Þ in which the effects of Ekman pumping on the outer core
boundary  OE 1= 2 ]s UG is now balanced in the axial vorticity equa-
tion by lateral friction n]sss UG in a layer of width Oð r0 E 1=4 Þ , the
Stewartson E 1=4 -layer. There is a comparabl e but thinner E 2=7 – layer
inside ðs < ri Þ, whose main function is to smooth out ] s UG and so
achieve continuity of stress.
These quasigeostrophic layers do not resolve all the flow disconti-

nuities. The secondary mainstream flow, Uz ðs Þbz, feeds the Ekman
layers on the ICB with fluid. In each hemisphere, the associated mass
flux deficit, Qk  , is directed towards the equator and builds up as the
equator is approa ched. Mass conservation demands that this fluid be
accounted for, and this is one of the main functions of the shear layer
at the tangent cylinder. The fluid is ejected towards the CMB as a jet
in an inner ageostrophic layer of width Oð r0 E 1 =3 Þ , the Stewartson
E 1=3 -layer.
As the equator is approached, the Ekman layer becomes singular:

from (5b), dE  Oðjy � p= 2 j� 1=2 E 1= 2i ri Þ ! 1, as  y ! p= 2, where
Ei ¼ n= r 2i O ¼ E ðr 0 = ri Þ 2 is the Ekman number based on the inner core
radius. When j y � p =2 j ¼ OðE 1 =5i Þ however, this expression for dE
becomes of the same order as the distance, Oðð y � p= 2 Þ2 r i Þ , of the
point concerned in the Ekman layer from the tangent cylinder. This
defines the lateral extent, Oð E 1 =5i ri Þ, of the equatorial Ekman layer,
i.e., the distance over which the solution (5a) fails. The radial extent
of the equatorial Ekman layer is Oð E 2= 5i ri Þ .
The MHD variant of Proudman-Stewartson problem reveals var-

ious other shear layers (Hollerbach, 1994a; Kleeorin et al., 1997;
Dormy et al., 2002), while a nonaxisymmetric version exhibits
even more structure (Hollerbach, 1994b; Soward and Hollerbach,
2000). Other investigations have been undertaken in plane layer
(Hollerbach, 1996) and cylindrical (Vempaty and Loper, 1975, 1978)
geometries.
Stabili ty of the Ekman- Har tmann layer

The laminar Ekman-Hartmann layer profiles are determined by the lin-
earized equations 8 and 9. This corresponds to a small Re approxima-
tion, where Re ¼ UL = n is the Reynolds number and L is some
characteristic length, possibly the core radius r0, but perhaps smaller.
In view of the low viscosity in the Earth ’ s liquid core, and of its large
size, Re is naturally huge. In the boundary layers, however, the
relevant length scale is the boundary layer width d. Thus the corre-
sponding Reynolds number ReBL ¼ U d = n (often referred to as the
“ boundary layer Reynolds number” ) is much less than Re0 ¼ Ur 0 = n
for the full core. Since the width of the Ekman-Hartmann layer is based
on the normal components O?  and B ?  of both the rotation and the mag-
netic field, ReBL depends on position, xk  . Both these components
decrease with latitude (at any rate for a magnetic field having dipole
symmetry) and so the boundary layer width d increases as the equator
is approached, just as we explai ned in connection with the equatorial
Ekman layer. Consequently the boundary layer Reynolds number ReBL
increases in concert.

Evidently the boundary layer Reynolds number ReBL is much smaller
than Re0 and for geophysical parameter values it may be sufficiently
small to justify the linear approach described in the previous sections.
In that circumstance a linear stability analysis may be undertaken to
determine a critical value of ReBL (say Re c, which the boundary layer
becomes unstable (usually as a traveling wave). It is well known that
boundary layer profiles with inflection points are generally prone to
instability (e.g., Schlichting and Gersten, 2000). So, on the one hand,
the Hartmann layer (10), which lacks an inflection point, is extremely
stable to disturbances up to high values of ReBL while, on the other
hand, the Ekman and Ekman Hartmann profiles, which spiral, can
develop instabilities at moderate Rec.

Much effort has been devoted identifying the critical Reyno lds num-
ber Rec and the associated traveling wave mode of instability, whose
orientation is determined by its horizontal wave vector kk  . Compre-
hensive Ekman layer stability studies have been undertaken in both
the case of vertical rotation Vk ¼ 0 (Lilly, 1966) and oblique rotation
Vk 6¼ 0 (Leibovich and Lele, 1985).

The Ekman-Hartmann layer stability characteristics have been
investigated in the context of the Earth ’s liquid core. For a model with
normally directed magnetic field and rotation ð Vk ¼ B k ¼ 0 Þ, it has
been shown for Earth core values of O and B (Gilman, 1971) that ReBL
is less than the critical value Re0 necessary for an instability to grow.
Since ReBL is so small, the linearization leading to Eqs. (8) and (9)
is justified. The more general orientation with Vk 6¼ 0 and Bk 6¼ 0
appropriate to the local analysis of a shell with an axisymmetric dipole
magnetic field has also been studied. Desjardins et al. (2001) show
that, while the Ekman-Hartmann layer is stable in the polar caps,
an equatorial band extending some 45� both north and south of the
equator could develop instabilities.

Emmanuel Dormy, Paul H. Roberts, and Andrew M. Soward
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CORE, ELECTRICAL CONDUCTIVITY

Core processes responsible for the geomagnetic field dissipate energy by
two competing mechanisms that both depend on the electrical conductiv-
ity, se, or equivalently the reciprocal quantity, resistivity, re ¼ 1=se. The
obvious dissipation is ohmic heating. A current of density i (amperes/m2)
flowing in amediumof resistivityre (ohmm) converts electrical energy to
heat at a rate i2re (watts/m3). Thus one requirement for a planetary
dynamo is a sufficiently low value of re (high se) to allow currents to flow
freely enough for this dissipation to bemaintained. In a body the size of the
Earth, this means that the core must be a metallic conductor. However, a
metal also has a high thermal conductivity, introducing a competing dissi-
pative process (seeCore, thermal conduction). The stirring of the core that
is essential to dynamo action maintains a temperature gradient that is at or
very close to the adiabatic value (see also Core, adiabatic gradient) and
conduction of heat down this gradient is a drain on the energy that would
otherwise be available for dynamo action.

Heat transport by electrons dominates thermal conduction in a metal
and the thermal and electrical conductivities are related by a simple
expression (the Wiedemann-Franz law; see Core, thermal conduction).
Thus, while the viability of a dynamo depends on a conductivity that
is high enough for dynamo action, it must not be too high. In reviewing
planetary dynamos, Stevenson (2003) concluded that high conductivity
is a more serious limitation. It is evident that if the Earth’s core were
copper, instead of iron alloy, there would be no geomagnetic field.

The conductivity of iron

By the standards of metals, iron is a rather poor electrical conductor.
At ordinary temperatures and pressures its behavior is complicated
by the magnetic properties, but these have no relevance to conduction
under conditions in the Earth’s deep interior. We are interested in the
properties of nonmagnetic iron, which means iron above its Curie
point, the temperature of transition from a ferromagnetic to a paramag-
netic (very weakly magnetic) state (1043 K), or in one of its nonmag-
netic crystalline forms, especially the high pressure form, epsilon-iron
(2-Fe). Extrapolations from high temperatures and high pressures both
indicate that the room temperature, zero pressure resistivity of nonmag-
netic iron would be about 0.21 mO m. This is slightly more than twice
the value for the familiar, magnetic form of iron and more than ten times
that of a good conductor, such as copper. This is one starting point for a
calculation of the conductivity of the core. A more secure starting point
is the resistivity of liquid iron, just above its zero pressure melting point
(1805 K), 1.35 mO m, although this is only marginally different from a
linear extrapolation from 0.21 mO m at 290 K, because melting does not
have a major effect on the resistivity of iron.

Effects of temperature and pressure

For a pure metal, resistivity increases almost in proportion to absolute
temperature, but increasing pressure has an opposite effect. Phonons,
quantized thermal vibrations of a crystal structure, scatter electrons,
randomizing the drift velocities that they acquire in an electric field.
The number of phonons increases with temperature, shortening the
average interval between scattering events and increasing resistivity.
Pressure stiffens a crystal lattice, restricting the amplitude of thermal
vibration, or, in quantum terms, reducing the number of phonons at
any particular temperature. It is convenient to think of the vibrations
as transient departures from a regular crystal structure and that elec-
trons are scattered by the irregularities. Although this is a highly sim-
plified view it conveys the sense of what happens. Temperature
increases crystal irregularity and pressure decreases it.

The temperature and pressure effects are given a quantitative
basis by referring to a theory of melting, due in its original form to
F.A. Lindemann. As modified by later discussions, Lindemann’s idea
was that melting occurs when the amplitude of atomic vibrations
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