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Strong-field spherical dynamos
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Numerical models of the geodynamo are usually classified into two categories: dipolar
modes, observed when the inertial term is small enough; and multipolar fluctuating
dynamos, for stronger forcing. We show that a third dynamo branch corresponding
to a dominant force balance between the Coriolis force and the Lorentz force can
be produced numerically. This force balance is usually referred to as the strong-field
limit. This solution coexists with the often described viscous branch. Direct numerical
simulations exhibit a transition from a weak-field dynamo branch, in which viscous
effects set the dominant length scale, and the strong-field branch, in which viscous
and inertial effects are largely negligible. These results indicate that a distinguished
limit needs to be sought to produce numerical models relevant to the geodynamo
and that the usual approach of minimising the magnetic Prandtl number (ratio of
the fluid kinematic viscosity to its magnetic diffusivity) at a given Ekman number is
misleading.
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1. Introduction
The origin of the Earth’s magnetic field is a challenging problem. It is now widely

accepted that this magnetic field is generated by an internal self-excited dynamo
action in the conducting liquid core of the Earth – see Moffatt (1978) and Dormy
& Soward (2007) for an introduction. Thermal energy is converted to kinetic energy
via convective motions, which in turn are able to amplify electrical currents, and part
of the kinetic energy can thus be converted to magnetic energy. The amplification of
electrical currents in the conducting fluid is then saturated by the back-reaction of the
Lorentz force on the flow. The nature of the transition from a purely hydrodynamic
(non-magnetic) solution to the dynamo solution as well as the saturation mechanisms
remain largely open questions.

The geodynamo problem involves the resolution of a set of fully nonlinear coupled
equations describing magnetohydrodynamics (MHD) in a rotating reference frame.
In the rapid rotation limit, the system of governing equations becomes stiff and
cannot be handled numerically as such. For this reason, all numerical simulations are,
despite the use of state-of-the-art computational resources, performed in a parameter
regime far off the relevant values. This stiffness of the equations is directly related
to extreme values taken by ratios of typical time scales or typical length scales in
the problem. In numerical simulations, however, the controlling parameters assume
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much more moderate values, and the corresponding time scales or length scales are
necessarily harder to distinguish.

Most numerical models rely on the Boussinesq approximation (incompressible fluid,
except inasmuch as the buoyancy force is concerned) and rely on an imposed
temperature gradient across the Earth’s core to drive thermal convection. Such
numerical models, produced to date, appear to fall in two categories. For moderate
values of the control parameter, the Rayleigh number, the produced magnetic field is
largely dipolar axial, similar in that respect to the Earth’s magnetic field. It can exhibit
time variations, but does not reverse polarity (Christensen, Olson & Glatzmaier 1999;
Kutzner & Christensen 2002). At larger values of the Rayleigh number, a secondary
bifurcation occurs, leading to a ‘multipolar’ and fluctuating dynamo phase (Kutzner
& Christensen 2002).

The nature of the dynamo onset (i.e. the bifurcation from the purely hydrodynamic
state to the first dynamo mode) has been studied in detail in Morin & Dormy (2009).
We reported supercritical, subcritical and isola bifurcation diagrams depending on the
values of the parameters. A mechanism for the subcritical bifurcations, in terms of
helicity enhancement, has been proposed by Sreenivasan & Jones (2011) (see also
Dormy 2011). The transition at larger forcing between the dipolar and multipolar
phases has been identified as being controlled by the relative strength of the curl of
inertial forces to that of either the viscous or the Coriolis term (see Oruba & Dormy
2014b).

These two branches have also been reported in the presence of a uniformly heated
fluid as mean dipole (MD) and fluctuating dipole (FD) (Simitev & Busse 2009). The
hysteretic nature of this transition and the existence of a domain of bistability has been
stressed by many authors (Goudard & Dormy 2008; Simitev & Busse 2009). Schrinner
et al. (2012) show that, in the presence of stress-free boundary conditions, the same
transition occurs, and that the strong hysteresis is associated with the particular nature
of geostrophic flows. A similar behaviour is to be expected in the presence of rigid
boundary conditions, when viscous effects are small enough.

The present paper focuses on a different mode, characterised by a regime in which
both inertia and viscosity are negligible, and the Lorentz force relaxes the constraints
imposed by rapid rotation.

2. Governing equations

Thermal convection and magnetic field generation in the Earth’s core are modelled
in the present study using the most classical set of equations. The rotating
incompressible MHD equations are coupled to the heat equation under the Boussinesq
approximation. Convection is driven by an imposed temperature difference across a
spherical shell (of inner radius ri and outer radius ro). Magnetic field generation by
dynamo action requires a flow with an appropriate geometry and sufficient amplitude,
which can be achieved if the control parameter (measuring the efficiency of the
thermal driving) is increased away from the onset of convection. The parameter space
for such dynamos has been extensively studied by Christensen and collaborators
(e.g. Christensen et al. 1999), providing a detailed description of the ‘phase diagram’
for dynamo action in this set-up (i.e. the region in the parameter space for which
different dynamo solutions are produced). The governing equations are solved in a
spherical shell (ri/ro = 0.35) and in a rotating reference frame. The reference frame
is such that the velocity vanishes on both spheres (no-slip boundaries), a temperature
difference is maintained for all time across the shell, and both the inner and the outer
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domains are assumed electrically insulating. The equations governing the velocity u,
magnetic field B and temperature field T are then, in non-dimensional form,

E
Pm
[∂tu+ (u · ∇)u] =−∇π+ E1u− 2ez × u+ Ra qTr + (∇× B)× B, (2.1)

∂t B=∇× (u× B−∇× B), ∂tT + (u · ∇)T = q1T, (2.2a,b)

with ∇ · u=∇ · B= 0. (2.3)

In the above equations L= ro − ri has been used as length scale, τη = L2/η as time
scale, and (Ωµ0ρ0η)

1/2 as magnetic field scale. This non-dimensional form is well
suited for strong-field dynamos (e.g. Fearn 1998). The following non-dimensional
numbers have been introduced: the Ekman number E = ν/ΩL2, the magnetic
Prandtl number Pm = ν/η, the Roberts number q = κ/η, and the Rayleigh number
Ra = αg1TL/κΩ , where g = go/ro with go the gravity at r = ro (note that the
Rayleigh number is here modified from its most standard definition to account for
the stabilising effect of rotation). It is also useful to define the Prandtl number
Pr= ν/κ ≡ Pm/q. In the present work, E is set to 3× 10−4 and Pr to unity; thus it
follows that q= Pm in the sequel.

These equations are numerically integrated using the Parody code, originally
developed by the author and improved with several collaborators (see Dormy 1997;
Schrinner et al. 2012). The numerical resolution in the simulations reported here
is 132 grid points in radius, with spherical harmonic decomposition of degrees up
to `max = 256 and modes up to mmax = 64. The models were integrated for up to
10 magnetic diffusion times. In order to ensure the validity of the new solutions
presented here, these simulations were also kindly reproduced by V. Morin using
the Magic code, developed by Glatzmaier and modified by Christensen and J. Wicht.
Both codes have been validated through an international benchmark (see Christensen
et al. 2001).

3. Weak- and strong-field dynamos

Following the same approach as Morin & Dormy (2009), we study the bifurcation
from the purely hydrodynamic solution to the dynamo state using the Rayleigh number
as control parameter. At fixed E and Pm, the Rayleigh number needs to exceed a
given value for a dynamo solution (non-vanishing field) to exist. We report here direct
numerical simulations performed at large values of the magnetic Prandtl number Pm.
One may object that such a parameter regime is irrelevant to dynamo action in liquid
metals (characterised by a small magnetic Prandtl number). We will however argue
that considering large values of Pm can compensate for the excessive role of inertial
terms in numerical dynamo models, and is a necessary consequence of the large values
assumed by the Ekman number.

Figure 1 presents the bifurcation diagrams obtained for Pm = q = 14 and Pm =
q = 18. The magnetic field strength, as measured by the classical Elsasser number
Λ=B2/(2Ωρµη) is represented versus the Rayleigh number, normalised by its value
at the onset of thermal convection Rac (here Rac = 60.8). Each point on this figure
corresponds to a time-averaged fully three-dimensional simulation. The time variability
of the dynamo mode is reported using the standard deviation.

Figure 1 is characterised by a supercritical bifurcation (as reported in Morin &
Dormy (2009) for their ‘large’ values of the magnetic Prandtl number, i.e. Pm = 6).
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FIGURE 1. Weak- and strong-field branches for E = 3 × 10−4 and for (a) Pm = 14 and
(b) Pm= 18. Symbols indicate the time-averaged Elsasser number (u, stable;E, unstable);
the time variability of the dynamo mode is reported using the standard deviation (indicated
with error bars). The insets present the same graphs in lin–log scale, so that the weak
branch is more clearly visible.

(a) (b)

FIGURE 2. (Colour online) Radial component of the magnetic field produced at the
surface of the model for Pm=18 and Ra/Rac=1.73 on the weak-field (a) and strong-field
(b) branches. The field is characterised by a strong axial dipolar component on both
branches.

However, this first dynamo branch rapidly destabilises to a second branch of much
stronger amplitude. This strong-field branch can be maintained for decreasing values
of the Rayleigh number. The magnetic field is dominated by the axial dipole on both
branches (see figure 2). The strong-field branch on figure 1(a) is hysteretic to the onset
of the dynamo itself: once on this branch, the control parameter can be decreased
below the critical value for dynamo bifurcation, while maintaining a dipolar magnetic
field.

This new branch completes the sequence of bifurcation diagrams introduced in
Morin & Dormy (2009), and the complete three-dimensional bifurcation diagram
(including the results of Morin & Dormy (2009)) for E = 3 × 10−4 and Pr = 1
is reported on figure 3 versus Ra/Rac and Pm. The corresponding two-dimensional
bifurcation diagrams, for lower values of Pm, are available in Morin & Dormy (2009).
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FIGURE 3. (Colour online) Three-dimensional bifurcation diagram for a fixed Ekman
number E = 3 × 10−4. Solid lines mark linear interpolation between realised direct
numerical simulations. Dashed lines offer a plausible interpretation of the unstable
branches.

On such a three-dimensional diagram, the dynamo bifurcation can also be envisaged
at fixed value of Ra/Rac and varying Pm.

Figure 3 demonstrates how the transition between the different types of bifurcation
takes place for different values of Pm. The study of Morin & Dormy (2009) indicates
that, as E is decreased (in the moderate range numerically achievable), the overall
bifurcation diagram remains largely unaltered but shifted towards lower values of Pm
and larger Ra/Rac.

Transitions between these two branches of dynamo solutions are obtained by
varying only slightly the control parameter at the edge of a given branch. This
can produce either a runaway field growth (figure 4a), or a catastrophic collapse
(figure 4b) of the magnetic field. The time at which the forcing (as measured by the
Rayleigh number) has been modified (by less than 3 % in each case) is indicated by
an arrow on each graph.

No significant changes on the typical length scale of the flow can be reported
by comparing the weak- and strong-field branches. This is probably due to the fact
that the viscous length scale is not very small at the value of the Ekman number
considered here (3 × 10−4). Smaller values of the Ekman number are undoubtedly
needed if one is to appreciate a change in the typical length scale of the flow. One
can note however that the Nusselt number is 80 % larger on the strong-field branch
than on the weak-field branch.
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FIGURE 4. Transition between the weak- and strong-field branches for E= 3× 10−4 and
Pm=18 (same as figure 1b). Runaway growth from the weak- to the strong-field branch as
Ra/Rac is increased (arrow) from 1.78 to 1.83 (a) and catastrophic decay to the weak-field
branch as it is decreased (arrow) from 1.73 to 1.68 (b). The lower branch (left part of
(a) and right part of (b) corresponds to small, but non-vanishing, magnetic fields.

4. Force balance

The bifurcation diagram presented on figure 1 is reminiscent of a longstanding
theoretical expectation originally introduced as the ‘weak’- and ‘strong’-field branches
(see Roberts 1978; Roberts & Soward 1992). The existence of these two branches
in the limit of vanishing viscous forces was introduced through the investigation of
magneto-convection studies (for reviews, see Fearn, Roberts & Soward 1986; Proctor
1994).

Soward (1979) investigated the onset of magneto-convection in the cylindrical
annulus configuration with sloping boundaries. He found that in most cases the critical
Rayleigh number first starts to increase with the Elsasser number, until Λ∼O(E1/3),
before decreasing. This pointed to the probable existence of a weak-field branch,
and the occurrence of a turning point marking the end of the weak-field branch
when Λ∼O(E1/3). Simultaneously, Fearn (1979a,b) performed a similar study in the
spherical geometry. There again, the Rayleigh number for the thermal Rossby mode
may first increase with increasing Elsasser number, yet it eventually decreases to
reach a minimum for Λ∼ O(1). A more recent study of magneto-convection (Jones
et al. 2003) focused on the ‘weak-field’ regime and confirmed its existence.

The above asymptotic scenario assumes a small value of both E and Pm, whereas
direct numerical simulations in the self-excited dynamo regime require overestimated
values of both numbers.

In order to test the above ideas in the numerical simulations, we need to investigate
the dominant force balance relevant to these dynamo modes. Figure 5 presents
an instantaneous cross-section of the zonal velocity on both branches for a given
parameter set (Pm = 18, Ra/Rac = 1.73). The contour intervals are equally spaced
between the minimum and the maximum value for each figure. The zonal flow is
nearly three times larger on figure 5(a), so that the contour intervals are not identical
on the two plots. On the one hand, the weak-field branch saturates while the zonal
flow remains essentially geostrophic; the flow is characterised by quasi-geostrophic
convection columns. The zonal flow on the strong-field branch, on the other hand,
strongly departs from bidimensionality, demonstrating that the rapid rotation constraint
has been relaxed. On figure 5(b), a localised jet appears near the equator, which marks
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(a) (b)

FIGURE 5. Azimuthal velocity in a meridional cross-section for an arbitrary time on the
weak-field branch (a) and on the strong-field branch (b) for the same parameter set (Pm=
18, Ra/Rac = 1.73).

a clear departure from geostrophy. The flow is in general less anisotropic along
the direction of the axis of rotation. If this corresponds to the weak-field versus
strong-field branches as introduced by Roberts, it implies that the Lorentz forced
has achieved a balance with the Coriolis term and thus relaxed the rapid rotation
constraint. This dominant balance is usually referred to as the ‘magnetostrophic
balance’.

The Elsasser number Λ was introduced to measure an order of magnitude of the
relative strength of the Lorentz force with respect to the Coriolis force. It achieves this
aim remarkably well in asymptotic studies, for the huge distinction between the strong-
field balance, characterised by Λ∼O(1), and the weak-field branch, characterised by
Λ∼ O(E1/3). In numerical works, however, as small parameters (such as the Ekman
number) are not asymptotically small, the measure provided by this non-dimensional
number is then not accurate enough. Finer estimates of this force balance can then be
constructed. Introducing {·} as an ‘order-of-magnitude’ operator, we can write

{(µρ)−1∇× B× B}
{2Ω × u} = B2

2ΩµρU`B
, (4.1)

where U is a typical, say root mean square (r.m.s.), value for the velocity field, B
a typical value for the magnetic field, and `B the typical magnetic dissipation length
scale (see also Oruba & Dormy 2014a).

The classical definition of the Elsasser number is obtained by assuming `B∼ L and
a statistical balance between induction and diffusion of the magnetic field,

{∇× (u× B)} ∼ {η∇×∇× B}, (4.2)

which yields U ∼ η/L. Then (4.1) provides the standard expression for the Elsasser
number Λ=B2/(2Ωρµη). This expression provides a sensible description of the force
balance for asymptotic studies, yet finer estimates appear to be needed for numerical
studies.
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FIGURE 6. Fluctuation of the modified Elsasser number on both branches for the same
parameter set (Pm= 18, Ra/Rac = 1.73).

Branch Ra Ra/Rac Pm Rm `B Λ Λ′

Weak 105 1.73 18 195 0.097 1.14 0.06
Strong 105 1.73 18 145 0.082 13.6 1.14
Strong 125 2.05 18 207 0.075 27.2 1.75
Strong 112 1.84 14 150 0.083 11.05 0.89

TABLE 1. Typical estimates of the Elsasser number and the modified Elsasser number
(Λ′=ΛL/(Rm`B), see text) on the weak- and strong-field branches. The modified Elsasser
number offers a finer measurement of the force balance.

One can note, for example, that U∼ η/L amounts to assuming Rm∼O(1). A finer
description of the force balance (4.1) can be obtained by estimating U via Rm η/L.
Inserting this definition in (4.1) yields

Λ′ = B2L
2ΩρµηRm `B

=Λ L
Rm `B

. (4.3)

Table 1 presents a comparison of the classical Elsasser number Λ and the modified
Elsasser number Λ′ on both branches. The magnetic Reynolds number Rm is here
defined on the r.m.s. velocity, and the typical magnetic dissipation length scale `B is
defined, as in Oruba & Dormy (2014a), as

`2
B =

∫
V

B2 dV∫
V
(∇× B)2 dV

. (4.4)

Figure 6 presents the time variation of the modified Elsasser number on the weak-field
branch (dashed) and on the strong-field branch (solid line) for the same parameter set,
Pm= 18, Ra/Rac = 1.73.

The modified Elsasser number, offering a finer description of the force balance,
reveals that the Lorentz force is significantly weaker than the Coriolis force on the
weak-field branch and that the two terms are indeed of comparable amplitude on the
strong-field branch.

The orders of magnitude derived above indicate that the anticipated balance between
the Coriolis and Lorentz forces is plausible. To achieve a finer validation than simple
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FIGURE 7. (Colour online) Meridional cross-sections on the strong-field branch at a given
time for the same parameters and same phase as in figure 5(b). On the left side is
presented −2∂u/∂z · er, and on the right side (∇ × ((∇ × B) × B)) · er using the same
colour range.

orders of magnitude, we can assess whether the two terms tend to balance each other
locally in space. To this aim, one can consider the curl of the momentum equation
(2.1), neglecting both the inertial term and the viscous term,

−2
∂u
∂z
∼ Ra q∇× (Tr)+∇× ((∇× B)× B). (4.5)

If we now consider the radial component of the above equation, i.e. its toroidal
component, the first term on the right-hand side disappears. The remaining two terms
were computed numerically at a given instant in time and on a cross-section in an
arbitrary meridional plane. These quantities are presented on figure 7.

Deviations between the two cross-sections can imply only non-vanishing inertial
and/or viscous effects. Estimations of these terms reveals that the viscous term
accounts for the differences visible on the figures (inertia being one order of
magnitude smaller). The comparison reveals such effects (in particular, in viscous
boundary layers), but otherwise clearly demonstrates that the radial component of
the curl of the Lorentz force balances that of the Coriolis force, as expected in the
strong-field limit.

The viscous force will of course not always be negligible in the parameter regime
considered here. It can be more important at some places or times. To illustrate
this, the quantities represented on figure 7 are represented at a later time in the
form of three-dimensional isosurfaces on figure 8. The blue and red isosurfaces,
respectively, correspond to ±90 % of the peak values. While deviations from
magnetostrophy are obvious, in particular comparing the centre of each figure, the
dominant magnetostrophic balance is highlighted. Deviations are here primarily due
to viscous forces. Boundary layers have not been represented in these figures.
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(a) (b)

FIGURE 8. (Colour online) Three-dimensional isosurfaces of the radial component of the
curl of the Coriolis force (a) and the Lorentz force (b).

Figures 7 and 8 highlight the balance between the non-gradient part of the Lorentz
and Coriolis terms. Differences are primarily due to viscous effects and remain small
(but non-vanishing) on average. The r.m.s. value of the sum of the two quantities
plotted in these figures, averaged in time, exceeds by a factor 5 that of their difference.

5. Discussion
Numerical models of self-excited dynamos usually correspond to two distinct

branches, either viscous–dipolar or inertial–multipolar (e.g. Kutzner & Christensen
2002; Jones 2011; Oruba & Dormy 2014b). This work introduces a third dynamo
branch in the parameter regime that is numerically achievable with present computa-
tional resources. What if this new branch was relevant to the geodynamo?

5.1. Physical interpretation
In numerical models, at moderate Ekman numbers, inertial forces increase too rapidly
with the control parameter (the Rayleigh number) to allow for a strong-field branch
balance (the magnetic field amplitude does not increase rapidly enough, and inertial
forces enter the dominant balance before the Lorentz force). In order to observe at a
given Ekman number the third branch introduced in this work, one needs to increase
the magnetic Prandtl number in order to decrease the prefactor of inertial forces.
This results in a larger magnetic Reynolds number for a given value of the Rayleigh
number.

Using large values of the magnetic Prandtl number thus allows for the runaway
field solution anticipated theoretically. We observe that the Lorentz force becomes
large enough (while inertia remains small enough not to modify the nature of dynamo
action) in order for the Lorentz force to relax the constraints of rapid rotation.

The three-dimensional bifurcation diagram (figure 3) can be tentatively sketched
near the region in which the strong- and weak-field branches coexist (see figure 9).
The change of branch as Ra is varied at fixed Pm corresponds to a fold of the
surface of solutions. It is clear from such a representation that, in the two-dimensional
parameter space (E, Pm), one can continuously move from the lower to the upper
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FIGURE 9. Sketch of a tentative two-dimensional bifurcation diagram near the region of
existence of the weak- and strong-field branches. The fold in the surface accounts for the
observed two branches of solutions.

branch, avoiding the fold singularity. The corresponding intermediate models would
presumably involve a continuous decrease of viscous forces. These intermediate
solutions (at lower values of Pm) will then have characteristics continuously varying
from that of the weak branch to that of the strong branch. It follows that some
numerical models obtained at lower values of Pm will necessarily have some
characteristics of the strong-field branch. Such is the case in particular for models
with a large magnetic Prandtl number (though not large enough for the bistability
to occur) and large Rayleigh number (so that viscous effects are reduced), but not
too large (to avoid the inertial, non-dipolar, branch). In such a model, time-averaged
force balance can tend to magnetostrophy (e.g. Aubert 2005; Sreenivasan, Sahoo &
Jones 2014).

It should be stressed as well that large values of Pm have been studied in a few
earlier numerical works (e.g. Gubbins et al. 2007; Olson et al. 2011), though without
pointing to the existence of a weak- and a strong-field branch.

5.2. Distinguished limit
We have seen in Morin & Dormy (2009) that the nature of the dynamo bifurcation
strongly depends on the parameters (in particular, Pm at fixed E). The current
approach to geodynamo modelling consists either in trying to explore the whole
range of magnetic Prandtl number at fixed Ekman number, or, too often, in trying
to decrease the value of the magnetic Prandtl number as low as possible for a given
Ekman number (the viscous dipolar solution being lost for Pm lower than a critical
value Pmc). The present work suggests that, in order to preserve the relevant force
balance, both E and Pm being small parameters in the Earth’s core, they could
be related in numerical studies via a distinguished limit, involving only one small
parameter ε. Ideally, the nature of the dynamo bifurcation should be preserved in the
limiting process.

In order to propose such a scaling, one could be guided by the scaling for the
minimum magnetic Prandtl number Pmc as a function of the Ekman number E. This
relations stems from numerical simulations in the viscous branch; it is however the
only regime that has been widely covered in numerical simulations. The available data
are illustrated in figure 10. Decreasing Pm at otherwise fixed parameters amounts to
decreasing the magnetic Reynolds number. The dipolar viscous branch is thus lost for
Pm < Pmc, which decreases with decreasing values of the Ekman number (Kutzner
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FIGURE 10. (Colour online) Minimal value of the magnetic Prandtl number Pmc below
which the dipolar viscous branch is lost for a given Ekman number. Triangles correspond
to numerical data produced by Christensen & Aubert (2006), and the dashed line to their
empirical fit Pmc ∼ E3/4. The solid line corresponds to the Pmc ∼ E2/3 scaling (Dormy &
Le Mouël 2010).

& Christensen 2002; Christensen & Aubert 2006). It follows a scaling of the form
Pmc∼Eα, in which α needs to be determined. Christensen & Aubert (2006) proposed
an empirical fit with α = 3/4. Dormy & Le Mouël (2010) proposed, on the basis of
exponential growth associated with a locally time-dependent shear, a scaling of the
form α = 2/3, which seems to match the numerical data equally well and is guided
by a plausible argument. For simplicity, we will use this latter scaling for illustration
purposes below, but the same reasoning would apply with a different exponent.

In order to introduce a single small parameter ε to control both quantities, one can
write E ∼ AεB and Pm ∼ CεD. Without loss of generality, one can set A = 1, up to
a redefinition of ε. In order to preserve the nature of the dynamo bifurcation in the
limiting process, we propose Pm3 ∼ E2, and it follows that

E∼ ε3, Pm∼Cε2. (5.1a,b)

This distinguished limit ensures that both E and Pm tend to zero with ε and that they
are related in such a way that the nature of the solution, i.e. its dynamo property,
should be preserved in the limiting process. The coefficient C can be estimated via
sensible estimates for the Earth’s core, such as E ' 10−14 and Pm ' 10−6: the first
equation naturally provides ε' 2× 10−5, while the second yields C' 2× 103, which
is a rather large prefactor. Applying (5.1) to the numerical models presented in this
work (with E= 3× 10−4), in turn yields Pm' 10. This distinguished limit thus yields
values of the magnetic Prandtl number larger than unity (similar to those used in our
numerical studies) for the Ekman number investigated here.

The idea behind such distinguished limits is not to aim at a large magnetic
Prandtl number limit, as both the Ekman number and the Prandtl number vanish
asymptotically in the limiting process. For the moderate values of the small parameter
ε, achievable with current computational resources, the proposed distinguished limit
however suggests that the use of values of Pm larger than unity is relevant.

As computational resources increase, one should be able in the near future to
investigate the behaviour of this strong-field branch for lower values of the Ekman
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number, and thus lower values of the magnetic Prandtl number. This will allow
investigation of interesting and important issues, in particular on the evolution of the
relevant length scale as the magnetic Prandtl number becomes less than unity.

6. Conclusions
A dominant magnetostrophic balance can be established in direct numerical

simulations of rotating spherical dynamos. Magnetostrophy is not satisfied everywhere
and for all time.

The weak- and strong-field branches anticipated from asymptotic studies of
magneto-convection are approached in direct numerical simulations for some
parameter values. In order for inertial forces to be small enough to allow this regime,
it is necessary to relate the magnetic Prandtl number to the Ekman number in the
form of a distinguished limit. Further studies will need to decrease the Ekman number
to ensure a clear distinction between the small-scale flow on the viscous branch and
the large-scale flow on the strong-field branch. The next important challenge for direct
numerical models would be to maintain dynamo action for Ra/Rac < 1 as expected
theoretically. The role of the Prandtl number (fixed to unity here) in controlling the
relative strength of the advection versus diffusion of heat also deserves further studies.
Further numerical studies of this branch could include varying Pr. For instance the
limit of large Pm with small q would allow for significant nonlinearities in the energy
equation, while controlling the amplitude of inertial effects.
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