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The correct asymptotic theory for the linear onset of instability of a Boussinesq
fluid rotating rapidly in a self-gravitating sphere containing a uniform distribution
of heat sources was given recently by Jones et al. (2000). Their analysis confirmed
the established picture that instability at small Ekman number E is characterized by
quasi-geostrophic thermal Rossby waves, which vary slowly in the axial direction on
the scale of the sphere radius ro and have short azimuthal length scale O(E1/3ro).
They also confirmed the localization of the convection about some cylinder radius
s = sM roughly ro/2. Their novel contribution concerned the implementation of global
stability conditions to determine, for the first time, the correct Rayleigh number,
frequency and azimuthal wavenumber. Their analysis also predicted the value of the
finite tilt angle of the radially elongated convective rolls to the meridional planes. In
this paper, we study small-Ekman-number convection in a spherical shell. When the
inner sphere radius ri is small (certainly less than sM ), the Jones et al. (2000) asymptotic
theory continues to apply, as we illustrate with the thick shell ri = 0.35 ro. For a large
inner core, convection is localized adjacent to, but outside, its tangent cylinder, as
proposed by Busse & Cuong (1977). We develop the asymptotic theory for the radial
structure in that convective layer on its relatively long length scale O(E2/9ro). The
leading-order asymptotic results and first-order corrections for the case of stress-free
boundaries are obtained for a relatively thin shell ri = 0.65 ro and compared with
numerical results for the solution of the complete PDEs that govern the full problem
at Ekman numbers as small as 10−7. We undertook the corresponding asymptotic
analysis and numerical simulation for the case in which there are no internal heat
sources, but instead a temperature difference is maintained between the inner and
outer boundaries. Since the temperature gradient increases sharply with decreasing
radius, the onset of instability always occurs on the tangent cylinder irrespective
of the size of the inner core radius. We investigate the case ri = 0.35 ro. In every
case mentioned, we also apply rigid boundary conditions and determine the O(E1/6)
corrections due to Ekman suction at the outer boundary. All analytic predictions
for both stress-free and rigid (no-slip) boundaries compare favourably with our full
numerics (always with Prandtl number unity), despite the fact that very small Ekman
numbers are needed to reach a true asymptotic regime.
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1. Introduction

The classical problem of thermal convection of a Boussinesq fluid in rotating
self-gravitating spheres and shells has a long history and continues to be of interest
because of its geophysical and astrophysical applications, but also because it concerns
fundamental issues in rotating fluid dynamics. The nature of the onset of convection
in spheres in the rapidly rotating limit of small Ekman number E leads to a difficult
asymptotic problem discussed by Roberts (1965). Asymptotic solutions were proposed
by Roberts (1968) and Busse (1970), but the correct asymptotic solution for full spheres
was given by Jones, Soward & Mussa (2000 hereinafter referred to as JSM).

We summarize briefly the nature of the onset of convection in a full sphere owing to
a uniform distribution of heat sources. It has long been known, and stressed in Busse’s
pioneering papers (Busse 1970, 1975) and reviews (Busse 1994, 2002), that motion at
small Ekman number is quasi-geostrophic almost independent of the coordinate z

parallel to the rotation axis. Now in spheres (and shells), true geostrophic motion is
azimuthal; it does not convect heat and so does not constitute the mode of convective
instability. Onset of instability is characterized instead by quasi-geostrophic thermal
Rossby waves, which vary slowly in the z-direction on the length scale ro, namely the
sphere radius. To overcome the two-dimensional constraints of the Taylor–Proudman
theorem, viscous forces must be invoked on short length scales of order E1/3ro in
the cylindrical radial s- and azimuthal φ-directions. Indeed, Roberts (1968) proposed
separable solutions with azimuthal wavenumber M = O(E−1/3), which are localized
in the radial direction about some cylinder s = sL. Busse (1970), besides correcting
the symmetry of the solution with respect to the equatorial plane, explained this
phenomenon by noting that, on the one hand, the slope of the outer spherical
boundary is the reason for forcing convective flow to be three-dimensional; so this
inhibition is smallest for small s near the rotation axis. On the other, he argued
that the quasi-geostrophic motion is largely driven by the radial s-component of
gravity, which increases with s and is maximized at the equator s = ro of the outer
sphere. Evidently, the aforementioned processes compete with one another leading to
convection which is located on the cylinder with sL roughly ro/2 but quantitatively
dependent on the value of the Prandtl number P . Since viscous dissipation on the
short O(E1/3ro) length scale is so great, the critical Rayleigh number necessary to
cause the fluid to convect is large, of order E−4/3.

Soward (1977) noted that the Roberts–Busse asymptotic theory had associated with
it a fundamental difficulty, which is best resolved by anticipating a WKB-asymptotic
expansion of the convective mode in terms of a complex radial wavenumber
K(s), determined as a function of s by the solution of some dispersion relation
Ω(s, K) = constant, the frequency of the convection. According to the Roberts–Busse
theory, localized convection is associated with the location s = sL at which K(sL) = 0.
In the vicinity of this point, the group velocity ∂Ω/∂K vanishes and the WKB-
approximation breaks down and a second-order amplitude equation of the form
(3.18) below must be considered instead. This is of complex Airy equation type with
a single turning point. It has no localized solution, i.e. it has no solution that does
not diverge on at least one side of the cylinder. Herein lies the success of the JSM
approach, which follows the procedures outlined by Yano (1992) for a simplified
problem based on a variant of Busse’s (1970) annulus model. Instead of constructing
an amplitude equation of Airy function type, an equation with two turning points
is required. Criticality occurs when the turning points are almost coincident at some
location s = sc, where phase mixing ∂Ω/∂s vanishes. This turns out to be a complex
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location and it is conditions there that resolve the eigenvalue problem. The most
striking feature of the solution found by JSM meeting these so-called global stability
criteria, (∂Ω/∂s)c = 0 and (∂Ω/∂K)c = 0 (Huerre & Monkewitz 1990), is that the
critical Rayleigh number for the onset of convection found this way exceeds that
determined by the Roberts–Busse local theory, but agrees correctly with numerical
simulations. It is important to note that convection is still localized close to some
cylinder s = sM , which is, however, different to the value s = sL predicted by local
theory. For the Prandtl number unity case

P = 1 , (1.1)

which we will consider, these key radii are

sL/ro ≈ 0.5004, sc/ro ≈ 0.5342 − 0.09667 i, sM/ro ≈ 0.5915, (1.2a–c)

where the value of sL was first obtained by Busse (1970), while the values of sc

(complex, as anticipated above) and sM were determined by JSM.
In this paper, we investigate small-Ekman-number convection for a fluid shell

corresponding to the geophysical situation when there is a solid inner core, radius ri .
Within the framework of local theory, Busse & Cuong (1977) point out that the critical
Rayleigh number for localized columnar convection inside the inner sphere tangent
cylinder s = ri decreases with increasing s and reduces its magnitude discontinuously
by yet a further factor of about 1

4
as the tangent cylinder is crossed into the exterior

region s > ri . Accordingly, the minimum local Rayleigh number for the complete
shell occurs either at the local sphere minimum s = sL outside the tangent cylinder,
when the inner core radius is smaller, i.e. ri < sL, or adjacent to the tangent cylinder
s = ri when ri > sL. Our contention is that local theory is valid in the latter thin-shell
case, when the radius aspect ratio η = ri/ro satisfies

η > sL/ro . (1.3)

Then convection is localized in a thin layer outside, but next to, the tangent cylinder,
where conditions for convection are most favourable. Therefore one of our main
objectives is to determine the radial structure of these tangent cylinder modes for
E � 1 by a higher-order asymptotic theory; in so doing, we also determine the
departures of the Rayleigh number and frequency from their local theory values. We
then compare those predictions with the full numerical solutions of the governing
partial differential equations at small Ekman number.

In contrast, for sufficiently small inner core, the JSM global theory applies,
predicting convection localized in the vicinity of the cylinder s = sM (see (1.2c)) with
ri < sM < ro. The asymptotic theory for these interior modes, however, is only valid
when the intersections s− and s+ with the real axis of the anti-Stokes lines emanating
from the critical complex location sc lie within the fluid region, i.e. ri � s− � s+ � ro.
For our Prandtl number unity case (1.1), JSM determined those values to be

s−/ro ≈ 0.4634, s+/ro ≈ 0.7536. (1.4a, b)

Since the JSM global interior mode theory is only applicable in the thick shell case

η < s−/ro, (1.5)

there is an range of aspect ratios s−/ro < η < sL/ro, namely 0.4634 < η < 0.5004
when P =1, for which neither of the proposed asymptotic theories applies. What
happens in this intermediate range is a very delicate matter which lies outside the
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scope of our analysis. For that reason, we focus on the thick-shell η = 0.35 and thin-
shell η = 0.65 cases, which lie comfortably in the parameter ranges (1.5) and (1.3),
respectively, where each type of mode is clearly distinguishable.

Gilman’s (1975) early numerical solutions of the shell problem focused on Prandtl
number unity. Later studies, beginning with Zhang & Busse (1987), considered the
effect of varying P . Since a complete parameter search is a formidable undertaking,
which would in fact obscure our main points, we will follow Gilman (1975) and
restrict attention to the case P = 1 throughout this paper. Following on from those
early studies, there have been many numerical calculations concerning the onset of
instability in spherical shells (see e.g. Zhang 1991, 1992; Zhang & Jones 1993; Ardes,
Busse & Wicht 1997; also the review by Busse 2002).

As an aside we remark that, on decreasing the Prandtl number, convection tends to
be less localized and spreads radially towards the equator s = ro of the outer sphere.
It means that far smaller Ekman numbers than considered here are needed to attain
true asymptotic regimes. That is not the only issue; for, on decreasing P to very small
values, new modes located near the equator of the outer sphere may be preferred
(Zhang & Busse 1987; Zhang 1995; Zhang & Roberts 1997), which are outside the
scope of our theory.

In addition to the usually adopted internal heating case, we wish to address the
more general situation for which the temperature T (r) on the inner and outer spheres
is prescribed: Ti ≡ T (ri) and To ≡ T (ro). When the heat sources are distributed
uniformly, the temperature profile generally contains terms proportional to both r2

and r−1 (see e.g. Chandrasekhar 1961). We, however, will restrict attention to only
two particular cases, namely

T (r) =


− Ti − To

r2
o − r2

i

r2 +
r2
oTi − r2

i To

r2
o − r2

i

for internal heating, (1.6a)

riro(Ti − To)

ro − ri

r−1 +
roTo − riTi

ro − ri

for differential heating. (1.6b)

The former ‘internal heating’ case is motivated by the situation for a complete sphere
(ri = 0) for which the uniform heat source distribution leads to the temperature
gradient −βr , where β ≡ 2(Ti − To)/r2

o (see also Chamberlain & Carrigan 1986).
In the latter ‘differential heating’ case, there are no internal heat sources and the
temperature gradient is simply maintained by the temperature difference between the
inner and outer boundaries (see, e.g. Carrigan & Busse 1983).

The case of differential heating has an interesting feature, namely since the
magnitude of the temperature gradient (∝ r−2) increases so rapidly with decreasing
r , the onset of instability is always associated with a tangent cylinder mode whatever
the inner core radius. Thus, as an illustrative example, we continue to take the aspect
ratio η = 0.35 motivated by the Earth’s fluid core, for which there is continuing
interest (see, e.g. Busse 2002; Ishihara & Kida 2002) in geodynamo applications.

As well as our investigations of the cases with stress-free boundaries, we also
consider the solutions in the case of rigid boundaries at which we apply a no-slip
boundary condition. This is, of course, the true situation in the Earth’s context
as well as for experiments (Busse & Carrigan 1976; Carrigan & Busse 1983;
Chamberlain & Carrigan 1986; Hart, Glatzmaier & Toomre 1986; Cordero & Busse
1992). In that case, an Ekman layer forms at the boundary outside which the
mainstream solution on the short E1/3 azimuthal length scale is influenced at O(E1/6)
by Ekman-layer suction, as noted by Zhang & Jones (1993). We incorporate the
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Ekman-layer corrections into the stress-free asymptotics and compare the results with
the full numerics. (Incidentally, boundary-layer corrections, though not of the Ekman-
layer type, have been implemented in similar asymptotic problems by Jones, Mussa
& Worland (2003) in the context of rotating magnetoconvection.) Full numerical
investigations employing both stress-free and no-slip boundary conditions for aspect
ratios η = 0.4 and 0.8 were undertaken by Zhang & Jones (1993). Whereas the smaller
value is motivated by the Earth’s core, the latter value is appropriate to the Jovian
atmosphere. Since the gap width ratio (ro − ri)/ro is so small, namely 0.2 for η =0.8,
the equatorial boundary of the outer sphere strongly influences the solution and it is
difficult to attain a true asymptotic regime. That is why we adopted the larger gap
width ratio 0.35 corresponding to η =0.65.

We outline the organization of our paper. In § 2, we briefly summarize the governing
equations and describe the numerical methods used to solve them. In § 3, we develop
the local theory necessary to obtain our asymptotic results. The WKB-method, used
to determine the radial structure, is explained in § 3.1; it leads to a local dispersion
relation, which provides the key to the lowest-order solutions. Since the theory for
interior modes is developed elsewhere by JSM, we focus attention in § 3.2 instead on
the higher-order resolution of the tangent cylinder modes, which are confined to a
convection layer 0 � s − ri =O(E2/9); thick compared to the short azimuthal length
scale O(E1/3). The Ekman boundary layer corrections for rigid (no-slip) boundaries to
the stress-free boundary solutions are explained in § 3.3. Results for internal heating
are discussed in § 4, where the cases of small and large inner cores are developed in
§ § 4.1 and 4.2, respectively. The results of § 5 for differential heating, which possesses
a relatively steep temperature gradient, highlight the difficulty of reaching a true
asymptotic limit with an expansion parameter as small as E1/9. We comment on the
role of the thinner ageostrophic boundary layer only of width O(E1/3) on the tangent
cylinder in § 6.

2. The governing equations and their numerical solution
We consider a shell of inner and outer radii ri and ro, respectively, which rotates

at constant angular velocity ΩΩΩ . It is filled with Boussinesq fluid with coefficient of
thermal expansion α, thermal conductivity κ and kinematic viscosity ν. The gravity
field is assumed to be −gr .

The linearized equations governing perturbations to the basic state are non-
dimensionalized using the outer sphere radius ro for the unit of length, the viscous
time scale r2

o /ν for the unit of time, while for our unit of temperature we adopt
−νroT

′
o/κ , where

T ′
o ≡ dT

dr
(ro) (< 0) (2.1)

is the temperature gradient on the outer boundary. Upon introducing the dimen-
sionless parameters

E =
ν

2Ωr2
o

, R = −gαT ′
or

5
o

νκ
, P =

ν

κ
, η =

ri

ro

, (2.2a–d)

namely, the Ekman, Rayleigh, Prandtl numbers and aspect ratio, respectively, our
linearized equations of motion and continuity for the velocity u become

∂u
∂t

+ E−1 ẑ × u = −∇p + Rθ r + ∇2u, ∇ · u = 0 (2.3a, b)
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from which the vorticity equation

∂

∂t
∇ × u − E−1 ∂u

∂z
= −Rr × ∇θ + ∇2∇ × u (2.3c)

follows, while the heat conduction equation for the temperature θ reduces to

P
∂θ

∂t
= Qu · r + ∇2θ, (2.3d)

where

Q(r) =

{
1 for internal heating, (2.3e)

1/r3 for differential heating. (2.3f )

The formulation for the internal heating case is identical to that of JSM. The
differential heating case is similar except for the nature of the buoyancy source Q(r)
in (2.3d). Though both cases are solved subject to isothermal boundary conditions
θ = 0 on the inner (r = η) and outer (r = 1) boundaries, we solve separately the cases
of no-slip (u = 0) and stress-free (r · u = 0, r · ∇[r × u/r2] = 0) boundary conditions.

Like JSM, we use a radial toroidal–poloidal decomposition for the numerical
solution

u = ∇ × Tr + ∇ × ∇ × Sr (2.4)

of the velocity field and seek separable solutions proportional to

E(φ, t) ≡ exp[i(Mφ − Ωt)] . (2.5)

The algorithm, which we use for the numerical solution of the ensuing eigenvalue
problem for complex Ω at fixed M and R, differs slightly from that employed by
JSM. Specifically, we adopt a grid discretization in radius (instead of a spectral
decomposition) and the equations are time stepped until an exponentially growing
mode is identified.

Within the toroidal–poloidal framework (2.4), the governing equations are
discretized using finite differences on a radial grid which contains between 140
and 1200 points. The grid is stretched near the boundaries following a geometric
progression, so as to avoid introducing localized error terms associated with the
truncation. The number chosen to obtain accurate resolution of the boundary layers
is model dependent and guided by a convergence study of Dormy, Cardin & Jault
(1998) of a situation in which the primary flow is driven by Ekman suction. The
scalar fields T, S and θ are then expanded in terms of between 80 and 800 spherical
harmonics. The diffusion terms are managed with Crank–Nicholson time stepping, all
other terms (including the Coriolis terms) are integrated with a second-order Adams–
Bashforth scheme. Further description of our numerical algorithm can be found in
Dormy (1997), Dormy et al. (1998) and Christensen et al. (2001), albeit for different
applications. Since then, major improvements to our computer code have resulted from
the parallelization of the algorithm on distributed memory computers, which take
advantage of the radial finite-difference scheme through a domain decomposition
in the radial direction using a modified LU decomposition for the pentadiagonal
operator (see Lakshmivarahan & Dhall 1990). We emphasize that our numerical
algorithm does not solve an eigenvalue problem, but integrates the equations in time
instead. To estimate the eigenvalue numerically, we time step the linearized system
until a steady exponential growth rate can be identified accurately. By varying the
Rayleigh number, the growth rate can be adjusted until it is extremely close to
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zero (positive or negative). Once achieved, the critical Rayleigh number is readily
estimated through linear interpolation. This process is repeated until the Rayleigh
number converges. The frequency of the eigenmode can then be estimated accurately
with finite differences (see Dormy 1997). We found that this approach is efficient
throughout the parameter range investigated; indeed, accurate results were obtained
by this method even at very small Ekman numbers.

3. The asymptotic analysis
In this section, we develop the asymptotic theory used to determine the radial

structure and to solve the eigenvalue problem. The solution depends in part on the
WKB-representation which we outline in § 3.1. Two types of convective mode are
possible. One type is the interior modes which are localized in the neighbourhood of
a cylinder s = sM away from the tangent cylinder s = η of the inner sphere, such that
η < sM < 1. The other type is a wall mode which is localized adjacent (but exterior)
to the tangent cylinder with sM = η. The key, however, to the solution in both cases is
the correct treatment of an amplitude equation valid near a certain critical radius sc.
JSM developed the appropriate asymptotic theory for the interior modes for which
sc takes a complex value in the vicinity of the real value sM . Here, we describe
the corresponding theory for the tangent cylinder modes in § 3.2 with sc = sM = η,
for which the appropriate amplitude equation (3.18) differs from that considered by
JSM. Such modes with a similar amplitude equation have been encountered in other
contexts (see e.g. Meunier et al. 1997) and their nature is described in Soward’s (2003)
review.

3.1. The local dispersion relation

In the small-Ekman-number limit

E � 1, (3.1)

it is convenient to adopt cylindrical polar coordinates s, φ, z and adopt the axial
toroidal–poloidal decomposition

u = ∇ × Ψ ẑ + ∇ × ∇ × Φ ẑ (3.2a)

for the velocity. At leading order, the vorticity equation (2.3c) implies that ∂u/∂z ≈ 0.
To resolve the ensuing geostrophic degeneracy, we seek short-length-scale quasi-
geostrophic solutions localized radially in the vicinity of the cylinder s = sM for
which Ψ and Φ vary rapidly in the azimuthal φ- and radial s-directions, but slowly
in the axial z-direction. These assumptions allow us to make the quasi-geostrophic
approximation

u ≈ ∇ × Ψ ẑ + W ẑ, p ≈ −E−1Ψ (W = ẑ · ∇ × ∇ × Φ ẑ), (3.2b)

supplemented by

∇ × u ≈ Υ ẑ + ∇ × W ẑ (Υ = ẑ · ∇ × ∇ × Ψ ẑ), (3.2c)

in which z-derivatives are neglected. This provides us with sufficient accuracy for
our asymptotic analysis and is consistent with the approximations made by previous
authors (Roberts 1968; Busse 1970). Indeed, following JSM, we suppose that the
radial s-structure is of WKB-type:

K(s) ≡ exp

(
i

∫
Kds

)
(|K | � 1). (3.3)



50 E. Dormy, A. M. Soward, C. A. Jones, D. Jault and P. Cardin

Within the framework of the approximations (3.2b, c) we obtain the expressions

r · u ≈ iMΨ + zW, r · ∇ × u ≈ zΥ + iMW (Υ = A2Ψ ), (3.4a, b)

for the radial velocity and vorticity, where the local wavenumber A is given by

A2 = K2 + M2/s2. (3.5)

The idea is that the columnar convection in the vicinity of the cylinder s = sM is
localized outside the tangent cylinder s = η (i.e. sM � η). An Ekman layer, width
O(E1/2), forms at the intersection of the cylinder s = sM with the outer boundary.
The jump conditions across the Ekman layer determine the boundary condition on
the mainstream velocity. In the case of stress-free boundaries, the Ekman layer is
weak and can be ignored; whereas in the case of no-slip boundaries, the Ekman layer
induces a small radial flow. Correct to lowest order, we have the reduced boundary
conditions

r · u ≈


0 stress-free, (3.6a)

−
√

Er

2z
r · ∇ × u no-slip, (3.6b)

at r = 1 on the mainstream flow for the cases of slippery and rigid outer boundaries,
respectively. The Ekman suction boundary condition (3.6b) follows from Greenspan’s
(1968) equation (2.6.15) on the assumption that the velocity u varies on a short length
scale, here O(E1/3). Specifically, the corrections due to boundary-layer curvature have
been neglected.

In our small-Ekman-number quasi-geostrophic limit, axial z-components of the
vorticity equation (2.3c) and the equation of motion (2.3a), together with the heat
conduction equation (2.3d), yield correct to lowest order, the equations

E(A2 − iΩ)(A2Ψ ) − dW

dz
= −iMERθ, (3.7a)

E(A2 − iΩ)W − dΨ

dz
= zERθ, (3.7b)

(A2 − iPΩ)θ = Q (iMΨ + zW ), (3.7c)

respectively, where the only z-derivatives retained stem directly from the large Coriolis
acceleration. We solve these coupled equations subject to the boundary conditions
(3.6) on z =h(s), where

h(s) =
√

1 − s2 , (3.8)

and the symmetry condition W = 0 on the equatorial plane z =0.
We follow JSM and introduce the further scalings

R = E−4/3R , (M, K, A) = E−1/3(m, k, a) , Ω = E−2/3ω ,

θ = θ , Ψ = E−1/3ψ , r · u = E−2/3rvr , r · ∇ × u = E−1rζ ,

W = E−2/3w , (iMΨ/s, −∂Ψ/∂s) ≈ E−2/3(vs, vφ) ,

 (3.9)

where we have introduced the radial and azimuthal velocities vs , vφ , whose values we
plot in later figures. In this way, we can solve (3.7a, c) for θ and ψ in terms of w and
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so obtain the following relations:

θ

Q =
rvr

(a2 − iPω)
, rvr = − 1

F

[
im

dw

dz
+ a2(a2 − iω) zw

]
, (3.10a, b)

ψ = − 1

F

[
dw

dz
− imRQ

a2 − iPω
zw

]
, rζ = − 1

F

[
a2z

dw

dz
− imGw

]
, (3.10c, d)

where

F =
m2RQ

a2 − iPω
− a2 (a2 − iω), G =

(m2 + a2z2)RQ
a2 − iPω

− a2(a2 − iω), (3.10e, f )

in which

a2 = k2 +
m2

s2
, m2 + a2z2 = k2z2 +

m2r2

s2
, r2 = s2 + z2. (3.10g–i)

Substituting the expressions (3.10a–c) into (3.7b) determines the single second-order
ordinary differential equation

F d

dz

(
1

F
dw

dz

)
+

[
(a2 − iω) G − im

a2 − iPω
F d

dz

(
RQz

F

)]
w = 0. (3.11)

It must be solved subject to the reduced boundary conditions (3.6a, b), which using
(3.10b, d) become (correct to order E1/6)

dw

dz
− ia2

m
(a2−iω)zw =


0 stress-free, (3.12a)

E1/6

√
r

2z

m2 + a2z2

m2
F w no-slip, (3.12b)

at the outer boundary z = h(s), equivalently r = 1, while our required symmetry across
the equatorial plane imposes w = 0 on z = 0. In the internal heating case, the problem
(3.11), (3.12a) reduces to the Roberts–Busse formulation employed by JSM, while
in the differential heating case, there are links with the Carrigan & Busse (1983)
formulation. That latter case is, however, essentially different because they employ a
cylindrical radial gravity field, which leads to a thermal wind in the basic state before
convection occurs.

An aspect of the asymptotic formulation (3.11), (3.12) is that R and Q never appear
separately, but always as the product RQ. In that spirit, the quotient θ/Q in (3.10a)
is perhaps a better measure of the buoyancy than the temperature θ and so we will
employ it in our figure 6 below, for the differential heating case Q =1/r3 (see (2.3f )).

From one point of view, the solution of the eigenvalue problem (3.11), (3.12)
determines the complex eigenvalue

ω = ω(s, k, m, R, E), (3.13a)

which provides at fixed m, R and E, a local dispersion at given s between the complex
wavenumber k and frequency ω. The stress-free problem is independent of E giving
us the eigenvalue

ω = ωSF(s, k, m, R) (3.13b)

with corresponding eigenfunction wSF(z). Thus, we solve this problem and then deter-
mine the rigid boundary (no-slip) eigenvalue correction in the form

ω = ωNS(s, k, m, R) ≈ ωSF(s, k, m, R) + E1/6ωNS
1 (s, k, m, R) (3.13c)
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with corresponding eigenfunction correction E1/6wNS
1 (z). Essentially, we set up the

inhomogeneous problem at O(E1/6) for wNS
1 (z), but do not actually solve for the

correction. Instead, the consistency condition, that this problem has a solution,
determines ωNS

1 . This is a tedious but routine calculation which is helped somewhat
by the fact the homogeneous stress-free problem is self-adjoint.

The alternative point of view, which we wish to emphasize, is that for the physically
realized solution, the value of ω is fixed and so the dispersion relation determines the
complex value of k as a function of s. In summary, therefore, our WKB-solution has
the structure

[θ, ψ, w]T(s, φ, z, t) ≡ A(s)[θ̂ , ψ̂, ŵ]T(s, z)K(s) E(φ, t), (3.14)

where K(s) ≡ exp(i
∫

Kds) (see (3.3)) varies rapidly on the short O(E1/3) length scale,
E(φ, t) ≡ exp[i(Mφ − Ωt)] (see (2.5)). The amplitude modulation A(s) varies on the
O(1) length scale of the shell and is determined as a function of s by a higher-order
theory. Of course, that modulation is dependent on the normalization of the solution
ŵ(s, z) of the eigenvalue problem (3.11), (3.12), which itself is only determined up to
a multiplicative function of s.

3.2 The tangent cylinder modes

The asymptotic treatment of the tangent cylinder modes is relatively straightforward.
We simply start with our dispersion relation (3.13b) as determined by the lowest-order
eigenvalue problem (3.11) and (3.12a), which is independent of E. We evaluate (3.13b)
at s = η and minimize R over all real k and m subject to the constraint Im{ω} =0.
We find that this local minimum occurs at k = 0 and, in this way, we determine
the remaining critical values Rc, mc and ωc. This minimization ensures that, when
evaluated at (s, k, m, R, ω) = (η, 0, mc, Rc, ωc), we have(

∂ω

∂k

)
c

= 0, Im

{(
∂ω

∂m

)
c

}
= 0 , (3.15a, b)

where m(= M/E1/3) is regarded as a continuous variable.
Since we are looking at a mode with a radial wavenumber k = 0 on the tangent

cylinder, its WKB-structure (3.3) in the vicinity of s = η varies on a relatively long
radial length scale. Specifically, the Taylor series expansion of (3.13b) at fixed R, ω

and m determines

1

2

(
∂2ω

∂k2

)
c

k2 +

(
∂ω

∂s

)
c

(s − η) ≈ 0 (3.16a)

which gives

k ≈
[

−2

(
∂ω

∂s

)
c

/(
∂2ω

∂k2

)
c

]1/2

(s − η)1/2 , (3.16b)

where the square root is taken to have positive imaginary part. Use of (3.3) determines
the exponential behaviour

K(s) ≈ exp

{
i

[
− 8

9

(
∂ω

∂s

)
c

/(
∂2ω

∂k2

)
c

]1/2
(s − η)3/2

E1/3

}
, (3.16c)

valid for E2/9 � s − η � 1, which decays with increasing s. Importantly, (3.16c)
identifies the relatively long radial length scale O(E2/9) on which the WKB
approximation fails. On that length scale, we replace the product A(s)K(s) in (3.14)
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by W and consider the alternative representation

w ≈ W(x) ŵc(s, z) E(φ, t) with x = E−2/9(s − η) , (3.17a, b)

where ŵc(s, z) is simply ŵ(s, z), namely the solution of (3.11) subject to (3.12a) for
the critical values Rc, ωc, mc at s with the corresponding k(s). Thus the amplitude
function W(x) satisfies

−1

2

(
∂2ω

∂k2

)
c

d2W
dx2

+

(
∂ω

∂s

)
c

xW + R1

(
∂ω

∂R

)
c

W −
[
ω1 −

(
∂ω

∂m

)
c

m1

]
W = 0 ,

(3.18)
where we have assumed the expansions

R = E−4/3
(
Rc + E2/9R1 + · · ·

)
, (3.19a)

Ω = E−2/3
(
ωc + E2/9ω1 + · · ·

)
, (3.19b)

M = E−1/3
(
mc + E2/9m1 + · · ·

)
. (3.19c)

It is important to note that E ≡ exp[i(Mφ − Ωt)] in (3.17a) uses these actual values
and not the neighbouring critical values used to determine ŵc(s, z).

The required solution W(x) must have the asymptotic behaviour A(s)K(s) given
by (3.16 c) when x � 1 so as to match with our WKB-solution (3.14) valid for
s − η � E2/9. A thinner ageostrophic boundary-layer of width O(E1/3) is located
on the tangent cylinder connecting quasi-geostrophic behaviour on either side, where
|s − η| � E1/3. As we remarked in § 1, conditions inside the tangent cylinder are
unfavourable for convection. Therefore the purpose of the E1/3-ageostrophic layer
is to reduce the amplitude of the motion u and the temperature θ to zero. We will
comment further on the role of the E1/3-ageostrophic layer in § 6. For the moment we
simply note that, since only one boundary condition at x =0 is required for solutions
of the E2/9-convection layer equation (3.18), matching to solutions which tend to zero
across the thinner E1/3-ageostrophic layer, leads to the boundary condition W(0) ≈ 0
on the tangent cylinder. More precisely, the error is proportional to the ratio of the
boundary-layer length scales and so W(0) = O(E1/3/E2/9) = O(E1/9). The solution of
the Airy equation (3.18), which satisfies the zero boundary condition, is

W(x) = Ai (−λ x + ρ) , (3.20)

where ρ is a zero of the Airy function Ai(ρ) = 0. In addition, we have

λ =

[
−2

(
∂ω

∂s

)
c

/(
∂2ω

∂k2

)
c

]1/3

, (3.21a)

where the root taken is that which achieves the correct matching at large x. That
determines the requirement that

Re{λ} < 0, |Im{λ}| < π/3 . (3.21b)

We note in passing that it is the failure of (3.18) to possess solutions that decay as x

tends to both + and −∞ that necessitates the more complicated theory developed in
JSM for the internal modes that occur in the full sphere.

The set of zeros determines the spectrum of our eigenvalue problem. Since the
onset of instability corresponds to the smallest zero (in magnitude) ρ = ρ0 ≈ −2.338,
that is the one to which we restrict attention. Accordingly, (3.18) is solved by (3.20)
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when(
∂ω

∂R

)
c

R1 −
[
ω1 −

(
∂ω

∂m

)
c

m1

]
=

ρ0λ
2

2

(
∂2ω

∂k2

)
c

≡ − ρ0

2λ

(
∂ω

∂s

)
c

, (3.22a)

where use has been made of (3.21a). The real and imaginary parts determine the
solutions

R1 = − ρ0

2
Im

{
1

λ

(
∂ω

∂s

)
c

} /
Im

{(
∂ω

∂R

)
c

}
, (3.22b)

ω
gv
1 ≡ ω1 −

(
∂ω

∂m

)
c

m1 = R1 Re

{(
∂ω

∂R

)
c

}
+ ρ0 Re

{
1

λ

(
∂ω

∂s

)
c

}
, (3.22c)

where, since (∂ω/∂m)c is real, the values of ω1 and m1 cannot be determined indepen-
dently; only ω

gv
1 is fixed.

In view of the indeterminacy of the frequency corrections, we introduce the Doppler-
shifted frequency

Ωgv ≡ E−2/3ωgv = Ω − E−1/3

(
∂ω

∂m

)
c

M , (3.23a)

as measured in the frame rotating at the group angular velocity (∂Ω/∂M)c. It has the
asymptotic expansion

ωgv = ωgv
c + E2/9ω

gv
1 + · · · , (3.23b)

where, of course, we define ωgv
c ≡ ωc − (∂ω/∂m)cmc.

3.3 Rigid boundaries

The asymptotic analysis set up above and all statements about ω and its partial
derivatives pertain to the solution of the stress-free boundary eigenvalue problem
posed by (3.11) and (3.12a), which determines ω = ωSF (see (3.13 b)).

For the rigid (no-slip) boundary case, we continue to define the critical values of
all parameters and their partial derivatives by the lowest-order solution (identified by
the subscript c) of the stress-free problem. The higher-order corrections O(E2/9) are
given in part by the stress-free values above, but we add to them the O(E1/6) Ekman
layer corrections triggered by the non-zero complex value of

ωNS
1c ≡ ωNS

1 (η, 0, mc, Rc) . (3.24)

Accordingly, (3.19) is replaced by

R = E−4/3
(
Rc + E2/9R1 + · · · + E1/6R̃

)
, (3.25a)

Ω = E−2/3
(
ωc + E2/9ω1 + · · · + E1/6ω̃

)
, (3.25b)

M = E−1/3
(
mc + E2/9m1 + · · · + E1/6m̃

)
. (3.25c)

The corrections, like (3.22) above, satisfy(
∂ω

∂R

)
c

R̃ −
[
ω̃ −

(
∂ω

∂m

)
c

m̃

]
= − ωNS

1c . (3.26a)

The real and imaginary parts determine the solutions

R̃ = − Im
{
ωNS

1c

} /
Im

{(
∂ω

∂R

)
c

}
, (3.26b)
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ω̃gv ≡ ω̃ −
(

∂ω

∂m

)
c

m̃ = R̃ Re

{(
∂ω

∂R

)
c

}
+ Re

{
ωNS

1c

}
, (3.26c)

and the Doppler-shifted frequency

ωgv = ωgv
c + E2/9ω

gv
1 + · · · + E1/6ω̃gv . (3.27)

4. Uniform distribution of internal heat sources: Q = 1

4.1 Small inner core: aspect ratio η = 0.35

For the case of a sufficiently small inner core, the asymptotic solution is identical
to the full sphere case investigated by JSM and applies to the aspect ratio η = 0.35
considered here. As the Ekman number decreases, the convection concentrates on
the cylinder s = sM (see (1.2c)) and we obtain an interior mode uninfluenced by the
presence of the inner core. In the small Ekman number asymptotic limit, the onset of
convection is characterized by the asymptotic expansions

R = E−4/3
(
Rc + E1/3R1 + · · · + E1/6R̃

)
, (4.1a)

Ω = E−2/3
(
ωc + E1/3ω1 + · · · + E1/6ω̃

)
, (4.1b)

M = E−1/3
(
mc + E1/3m1 + · · · + E1/6m̃

)
, (4.1c)

as in (3.25) above except that the lowest-order corrections to the stress-free boundary-
value problem are O(E1/3) rather than the smaller O(E2/9) appropriate to the tangent
cylinder modes. We again introduce the Doppler-shifted frequency (3.23), but its
expansion, which replaces (3.27), is

ωgv = ωgv
c + E1/3ω

gv
1 + · · · + E1/6ω̃gv . (4.2)

The rigid-boundary corrections are determined as for the tangent cylinder modes
by (3.26). We checked that all our critical values agreed with JSM and noted in
particular that

Rc ≈ 4.1173 , ωc ≈ 0.4715 , mc ≈ 0.3029 , sc ≈ 0.5342 − 0.09667 i , (4.3a)

(∂ω/∂R)c ≈ 0.03658 + 0.1062 i , (∂ω/∂m)c ≈ 0.5186 . (4.3b, c)

We also determined

ωNS
1c ≡ ωNS

1 (sc, 0, mc, Rc) = − 0.74931 − 0.01281 i (4.3d)

by the perturbation method explained towards the end of § 3.1 below (3.13c). It is
important to appreciate that the entire perturbation calculation is undertaken with the
critical values, despite the fact that the position sc is complex and motion is localized
near sM . Though counterintuitive, the procedure must be implemented because the
eigenvalue problem is resolved at this complex location sc. In this way, we determine
the O(E1/6) rigid-boundary corrections in (4.1).

In summary, JSM’s full sphere parameter values together with our rigid-boundary
corrections are

Rc ≈ 4.1173 , R1 ≈ 17.7815 , R̃ ≈ 0.1206 ,

ωgv
c ≈ 0.3144 , ω

gv
1 ≈ −0.6089 , ω̃gv ≈ −0.7449 .

}
(4.4)

The critical values obtained from numerically integrating the complete set of PDEs
that govern our problem are summarized in table 1, where they are identified by
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E 10−5 10−5.5 10−6 10−6.5 10−7

Leading-order asymptotic results

Rc 1.9111 × 107 8.8705 × 107 4.1173 × 108 1.9111 × 109 8.8705 × 109

Ωc 10 15.816 21 88.510 4715.002 10 158.164 21 885.102

Mc 14.059 20.636 30.290 44.460 65.258

Stress-free boundary conditions
Numerical results

RN 2.1007 × 107 9.4610 × 107 4.3002 × 108 1.9684 × 109 9.0532 × 109

ΩN 961.920 2121.810 4635.160 10 028.470 21 722.451

MN 13 20 30 44 65

Asymptotic results
RA 2.0889 × 107 9.4328 × 107 4.2951 × 108 1.9673 × 109 9.0483 × 109

Ω
†
A 962.053 2124.543 4639.072 10 033.802 21 725.109

No-slip boundary conditions
Numerical results

RN 2.0720 × 107 9.3630 × 107 4.2700 × 108 1.9598 × 109 9.0264 × 109

ΩN 731.180 1704.860 3885.980 8702.013 19 357.031

MN 13 20 30 44 65

Asymptotic results
RA 2.0971 × 107 9.4642 × 107 4.3072 × 108 1.9719 × 109 9.0660 × 109

Ω
†
A 726.496 1705.656 3894.175 8709.165 19 369.535

Table 1. The values of R, Ω and M for the case of internal heating with small
inner core η =0.35. The subscripts c, N and A identify the critical values (see (4.3a)),
the results of the complete solution of the governing PDEs and the full asymptotic
solution, respectively. That means Rc = Rc/E

4/3, RA = (Rc + E1/3R1)/E
4/3 (stress-free) and

RA = (Rc +E1/3R1 +E1/6R̃)/E4/3 (no-slip). Similar expansions determine Ω
†
A (see (4.6)), which

is the asymptotic value of Ω evaluated with M = MN . Note that the non-integer values of
Mc reflect our asymptotic assumption that under minimization, m is regarded as a continuous
rather than a discrete variable.

the subscript N . For comparison, we first list the leading-order asymptotic results
Rc = Rc/E

4/3, Ωc = ωc/E
2/3 and Mc = mc/E

1/3. For a tighter comparison we also list
the higher-order asymptotic results R ≈ (Rc + E1/3R1)/E

4/3 in the case of stress-free
boundaries and R ≈ (Rc + E1/3R1 + E1/6R̃)/E4/3 in the case of rigid boundaries
with the no-slip boundary condition. Since the asymptotic results, identified by the
subscript A in table 1, do not determine the corrections to M and Ω independently,
we fix M by the numerical solution MN . Accordingly, we list the asymptotic value of
Ω based on M = MN , namely

Ω† = Ωgv + E−1/3

(
∂ω

∂m

)
c

MN, (4.5)

where Ωgv = ωgv/E2/3 is determined by the formula (3.23) and the parameter values
(4.3) and (4.4).

Though table 1 provides a means of comparing the asymptotic predictions with
the numerical results, an alternative and perhaps more immediate comparison is
portrayed in figure 1, where we plot R and ωgv versus E. It is important to appreciate
that at small Ekman number, the no-slip corrections are an order of magnitude larger
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Figure 1. The interior mode for the case of internal heating with small inner core η = 0.35.
Plots of the scaled Rayleigh number R ≡ R/E4/3 and the scaled Doppler shifted frequency ωgv

[see (3.23a)] vs. Ekman number. The full numerical results RN and ω
gv
N determined from the

data in table 1 are identified for the case of stress-free boundaries by the open circles and for
the case of no-slip boundaries by the solid triangles. The asymptotic results RA = Rc +E1/3R1

and ω
gv
A = ω

gv
c + E1/3ω

gv
1 for stress-free boundaries are denoted by the short dashed lines; the

asymptotic results RA = Rc + E1/3R1 + E1/6R̃ and ω
gv
A = ω

gv
c + E1/3ω

gv
1 + E1/6ω̃gv for no-slip

boundaries are denoted by the long dashed lines. The critical values Rc and ω
gv
c , to which they

asymptote, are given by the continuous horizontal straight lines.

E 10−5 10−5.5 10−6 10−6.5 10−7 R = RA

R = RN, ωgv = ω
gv
N ωgv = ω

gv
A

Stress-free boundary conditions
(RSF − Rc)/E

1/3 18.962 18.674 18.290 18.125 18.274 17.781
(ωgv

SF − ωgv
c )/E1/3 −0.612 −0.649 −0.648 −0.645 −0.621 −0.609

No-Slip boundary conditions
(RNS − RSF)/E1/6 −0.421 −0.375 −0.302 −0.224 −0.182 0.121

(ωgv
NS − ω

gv
SF)/E1/6 −0.730 −0.741 −0.749 −0.746 −0.748 −0.745

Table 2. The case of internal heating with small inner core η = 0.35 as in table 1. In the
case of the stress-free entries, the differences between the numerically computed values
of RSF = E4/3RN and ω

gv
SF = E2/3ΩN − E1/3(∂ω/∂m)cMN and their leading-order asymptotic

representations are given and compared with the predicted asymptotic differences R1 and ω
gv
1 .

In the case of the no-slip entries, the differences between their numerically computed values
of RNS and ω

gv
NS and the corresponding stress-free values are given and compared with the

predicted asymptotic differences R̃ and ω̃gv given in the final column.

than the stress-free corrections. This is evident in the plots of the Doppler-shifted
frequency ωgv, where comparison with the numerical results is excellent. That is not
the case with the Rayleigh number plots, where quantitatively the rigid boundary
corrections appear to be small. This is a consequence of the fact that the numerical

value of R̃ is relatively small in comparison with R1. It means that we would need
to go to much smaller values of E before reaching the relative sizes indicated by the
asymptotics. Further insight into the accuracy of the results may be seen from the
alternative comparisons in table 2, in which the poor convergence of (RNS −RSF)/E1/6

(see the table caption) to R̃ is accounted for as above by its small size. This feature
should be compared with Zhang & Jones (1993) small inner core (η = 0.4) results
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reported for moderate Ekman number (E = 10−4). Their figure 3 plots the critical
Rayleigh number for those parameter values as a function of the Prandtl number P . It
shows that RNS − RSF is positive for small P , negative for large P with the value zero
achieved for P roughly (but just less than) unity. Those results are totally consistent
with the small negative value of (RNS − RSF)/E1/6 determined by our full numerics.

Before continuing to the tangent cylinder modes, it is helpful to recall the nature
of the realized interior modes. As JSM explained, the radial wavenumber k(s)/E1/3

in the WKB-solution (3.3) is determined as a complex function of s by the dispersion
relation ω(s, k, mc, Rc) = ωc. The solution is localized in the vicinity of s = sM ≈ 0.5915
(see (1.2c)), where Im{k(sM )} =0. There, the amplitude of the solution is proportional
to

K(s) = exp

[
i kM

s − sM

E1/3
+

i k′
M

2

(s − sM )2

E1/3

]
, (4.6)

where kM = k(sM ) ≈ −0.3486 and k′
M = dk/ds(sM ) ≈ −1.595 + 1.710 i. It is important

to appreciate that it describes a wave on the short length scale O(E1/3), but modulated
in amplitude under a Gaussian envelope of relatively broad width O(E1/6). The fact
that both the azimuthal and radial wavenumbers mc/sM and kM are of the same
order of magnitude means that the convection rolls are tilted at a finite angle
tan−1(−sMkM/mc) ≈ 34.2◦ to meridional planes. Furthermore, the number of radial
oscillations under the envelope increases with decreasing E. These are features that
we will contrast with the nature of the tangent cylinder modes.

4.2. Large inner core: aspect ratio η = 0.65

When the inner core is sufficiently large, the critical mode is no longer an interior
mode, but confines itself to the tangent cylinder, as we explained in § 3. We take, as
an illustrative example, the case of the core aspect ratio η = 0.65.

Our minimization of R determines the critical values

Rc ≈ 3.6732 , ωc ≈ 0.5596 , mc ≈ 0.4518 . (4.7)

The partial derivatives of the frequency at these critical values required for the
higher-order theory are

(∂ω/∂R)c ≈ −0.0305 + 0.1973 i , (∂ω/∂m)c ≈ −1.7351 , (4.8a, b)

(∂ω/∂s)c ≈ 3.0614 − 0.8457 i , (∂2ω/∂k2)c ≈ −2.1820 − 1.4555 i . (4.8c, d)

We also determine

ωNS
1c = − 1.37463 − 0.46876 i . (4.8e)

We use the partial derivatives (4.8c, d) to calculate λ defined by (3.21). It is

λ = −0.97221 − 0.92639 i . (4.9)

In turn, using (3.22), (3.26) and (4.8a, b, e) we obtain

Rc ≈ 3.6732 , R1 ≈ 24.03908 , R̃ ≈ 2.37555 ,

ωgv
c ≈ 1.34352 , ω

gv
1 ≈ 2.10892 , ω̃gv ≈ −1.44718 .

}
(4.10)

These values are used to determine the asymptotic results given in tables 3 and 4, as
well as the asymptotic curves in figure 2. Comparison with the numerical results is
favourable as it was for the small inner core case discussed in the previous subsection,
but with the same type of discrepancies again evident in the values of the no-slip
Rayleigh numbers.
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E 10−5 10−5.5 10−6 10−6.5 10−7

Leading-order asymptotic results

Rc 1.7049 × 107 7.9136 × 107 3.6732 × 108 1.7049 × 109 7.9136 × 109

Ωc 1205.687 2597.573 5596.302 12 056.867 25 975.734

Mc 20.973 30.784 45.184 66.321 97.346

Stress-free boundary conditions

Numerical results

RN 2.5851 × 107 1.0958 × 108 4.7487 × 108 2.0899 × 109 9.3024 × 109

ΩN 1271.817 2756.021 5901.283 12 577.062 27 012.674
MN 24 34 49 71 102

Asymptotic results

RA 2.5689 × 107 1.1018 × 108 4.7890 × 108 2.1059 × 109 9.3547 × 109

Ω
†
A 1313.657 2804.168 5913.063 12 498.104 26 959.770

No-slip boundary conditions

Numerical results

RN 2.5740 × 107 1.0985 × 108 4.7910 × 108 2.1176 × 109 9.4472 × 109

ΩN 860.080 2040.988 4702.119 10 449.477 23 151.811

MN 24 34 48 70 101
Asymptotic results

RA 2.7307 × 107 1.1639 × 108 5.0266 × 108 2.1970 × 109 9.7035 × 109

Ω
†
A 856.015 1990.353 4639.384 10 179.275 22 757.172

Table 3. As in table 1, but for the case of internal heating with large inner core η =0.65. The
asymptotic expansions, however, are based on (3.25) rather than (4.1).

E 10−5 10−5.5 10−6 10−6.5 10−7 R = RA

R = RN , ωgv = ω
gv
N ωgv = ω

gv
A

Stress-free boundary conditions
(RSF − Rc)/E

2/9 24.491 23.574 23.171 23.078 23.166 24.039
(ωgv

SF − ωgv
c )/E2/9 1.858 1.936 2.084 2.211 2.150 2.109

No-slip boundary conditions

(RNS − RSF)/E1/6 −0.163 0.102 0.423 0.723 0.987 2.376

(ωgv
NS − ω

gv
SF)/E1/6 −1.302 −1.272 −1.373 −1.340 −1.339 −1.447

Table 4. As in table 2, but for the case of internal heating with large inner core η =0.65. As
noted in table 3, the asymptotic expansions are different.

The eigenfunctions for the numerical and asymptotic results are compared in
figure 3. To that end, we plot the equatorial values on z = 0 of the complex temperature
θ , the radial and azimuthal velocities (vs, vφ) (see (3.9)). According to the definition
(3.2) and the scalings (3.9), we have from (3.17) the asymptotic relations

θ ≈ θ̂c(η, 0) W(x) E(φ, t), (4.11a)

vs ≈ i(m/η)ψ̂c(η, 0) W(x) E(φ, t), (4.11b)

vφ ≈ − E1/9ψ̂c(η, 0) dW/dx(x) E(φ, t), (4.11c)
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Figure 2. The tangent cylinder mode for the case of internal heating with large inner core
η = 0.65; plots as in figure 1, except that the asymptotic expansions used for the analytic results
are based on (3.25) rather than (4.1).

where, as usual, E = exp[i(Mφ − Ωt)] and x =(s − η)/E2/9 is the boundary-layer
coordinate. In terms of our Airy function solution (3.20), these become

θ ≈ θ̂c(η, 0)Ai(−λx + ρ0) E(φ, t), (4.12a)

vs ≈ i(mc/η)ψ̂c(η, 0) Ai(−λx + ρ0) E(φ, t), (4.12b)

vφ ≈ E1/9ψ̂c(η, 0) λAi′(−λx + ρ0) E(φ, t), (4.12c)

where Ai′ is the derivative of the Airy function. Here, ψ̂c(s, z) and θ̂c(s, z) are related
to ŵc(s, z) by (3.10a–c) and in particular we have[

(m2
c

/
η2) − iPωc

]
θ̂c(η, 0) ≈ iQimcψ̂c(η, 0), (4.13)

where Qi = 1. Of some interest is the radial derivative of vφ determined from (4.12c),
namely,

∂vφ/∂s ≈ E−1/9ψ̂c(η, 0) λ2(λx − ρ0) Ai(−λx + ρ0) E(φ, t). (4.14)

So from the asymptotic results (4.12) and (4.14), we see that θ , vs and E1/9∂vφ/∂s

all vanish at lowest order on the equator z = 0 of the tangent cylinder x = 0, because
Ai(ρ0) = 0. These asymptotic predictions agree with the numerics; though in the case
of E1/9∂vφ/∂s only just outside thinner boundary layers that our asymptotics is unable
to resolve. This is important because it provides an independent numerical verification
of the choice of boundary condition W(0) ≈ 0 used in constructing our asymptotic
solution.

In the plots we normalize the complex value of ψ̂c(η, 0) via the characteristics of
vs . Specifically, we fix the amplitude by demanding that the maximum of |vs | is unity
for all the numerical and asymptotic cases. The resulting asymptotic values of |θ |,
|vs | and |vφ |/E1/9 plotted versus the boundary-layer coordinate x are compared with
the numerical results for decreasing Ekman number in the graphs in the left-hand
column of figure 3. In the right-hand column of figure 3 only one value of the
Ekman number, namely E =10−7, is employed for the numerics. There, in addition
to magnitudes, the real parts of θ , vs and vφ/E

1/9 are illustrated. The phase for the
numerics was chosen arbitrarily, but having selected it, the phase for the asymptotic
results is fixed by demanding that the first zero of the plotted Re{vs} for both the
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Figure 3. The tangent cylinder eigenfunctions θ , vs and vφ/E1/9 in the equatorial plane z = 0
for the case of internal heating and stress-free boundaries with large inner core η = 0.65.
(a) The numerical results for |θ |, |vs | and |vφ |/E1/9 at E = 10−6, 10−6.5 and 10−7 are plotted
vs. x = (s − η)/E2/9 and indicated by the continuous lines thickening with decreasing Ekman
number. The leading-order asymptotic results (dot-dashed lines) given by (4.12) involve the
Airy function (θ, vs) and its derivative (vφ/E1/9). (b) The real parts (thin lines) and moduli
(thick lines) for the numerical results at E = 10−7 (continuous lines) and asymptotic results
(dot-dashed lines) plotted vs. s.

numerical and asymptotic solutions coincide. That essentially determines the phase of

ψ̂c(η, 0) in (4.12b) (or more precisely ψ̂c(η, 0)E(φ, t)) which in turn fixes the phases of
θ and vφ/E

1/9 in (4.12a, c) via (4.13). Each of the graphs in this right-hand column is
plotted versus the actual radial coordinate s in order to provide a quantitative picture
of the thickness of the E2/9-convection layer.
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It should also be noted that from an asymptotic point of view, vφ is small.
Specifically, we have

vφ = O
(
E1/9vs

)
. (4.15)

Indeed, it is remarkable how well the asymptotics agrees with the numerics for
this relatively small quantity, which we might expect to respond significantly to
the presence of the thinner E1/3-ageostrophic layer. We will discuss this issue more
carefully in § 6. We also note that the divergence of the numerics from the asymptotics
as x ↓ 0 reflects the fact that there are yet smaller boundary layers on the equator of
the inner sphere that our asymptotics fails to capture.

Of course, our normalizations have been chosen to obtain the best agreement
in figure 3 between the numerical and asymptotic results for vs . Nevertheless, the
numerical trend for the other quantities θ and vφ/E

1/9 towards the asymptotic
predictions is most reassuring and we may reasonably suppose that the asymptotic
results will eventually be reached at sufficiently small Ekman number. Convergence to
the asymptotic limit is slow, because, though the smallest value of E = 10−7 attained
is truly small, the expansion parameter identified in (4.15) is E1/9; this result is
consistent with our estimation just below (3.20) that W(0) = O(E1/9). Accordingly,
our O(E1/9) errors are not actually small even when E = 10−7 and neither is the E2/9-
convection layer width identified in the graphs portrayed in the right-hand column
of figure 3. The latter observation is certainly cause for concern when comparing the
eigenfunctions because the asymptotic solutions are determined by conditions at the
tangent cylinder s = η (see (4.12)) and do not take into account the actual conditions
that prevail elsewhere s > η. Such eigenfunction discrepancies are clearly evident in
the case of the differential heating, as we will explain in the next section.

From a physical point of view, the fact that the wavenumber k (see (3.16b)) of the
WKB-solution tends to zero as s ↓ η means that the convective rolls are normal to
the inner boundary. They then bend to a finite positive angle of inclination with the
meridional planes over the radial length scale O(E2/9), as illustrated by the contour
plots on the left-hand side of figure 4. There, the numerically computed axial vorticity
is plotted in the upper figure, while the corresponding asymptotic results at the same
azimuthal wavenumber M are plotted below. The latter are proportional to the data
for vs illustrated in the right-hand column of figure 3. Compatible with numerical
and asymptotic data for vs on figure 3, the tilt angle of both sets of rolls is the
same, whereas the radial extent of the numerically computed rolls is smaller than that
predicted by the asymptotics. This may be explained by the fact that the assumptions
made in the asymptotic calculation underestimate the actual inhibiting effect of the
rapidly deceasing height z = h(s) of the outer boundary, as s increases in the relatively
thin shell 0.65 � s � 1.

In the no-slip case, we have no asymptotic eigenfunctions except in as much as they
are the same, correct to lowest order, as those for the stress-free case. Since our only
asymptotic eigenfunctions do not take into account the no-slip boundary condition,
we see no merit in comparing them with numerical results that do.

5. Differential heating: Q = 1/r3

In the case of differential heating, the temperature gradient increases very rapidly
with decreasing r and so the convection always occurs on the tangent cylinder
irrespective of the size of the inner core. In this section, we take, as an illustrative
example, the aspect ratio η = 0.35 which closely resembles the geophysical value.



Onset of convection in rotating shells 63

Figure 4. Comparison between equatorial cross-sections of the axial vorticity ẑ · ∇ × u in
the full numerics for E = 10−7 (top row), and the asymptotic eigenfunction ψ for the same
Ekman number (bottom row). Internal heating with a large aspect ratio η = 0.65 (M = 102) is
portrayed on the left; differential heating with aspect ratio η = 0.35 (M = 41) is portrayed on
the right.

Since F in our ordinary differential equation (3.11) is now a function of z, the
equation itself involves a first-order derivative in w, which prevents us from using a
shooting method. Instead, a Thomas algorithm is used to solve it with an arbitrary
inhomogeneous Neuman boundary condition.

Our minimization of R determines the critical values

Rc ≈ 0.285933 , ωc ≈ 0.337014 , mc ≈ 0.179715 . (5.1)

The partial derivatives of the frequency at these critical values required for the
higher-order theory are

(∂ω/∂R)c ≈ −0.1220 + 1.3831 i , (∂ω/∂m)c ≈ −2.2637 , (5.2a, b)

(∂ω/∂s)c ≈ 2.5039 − 2.1466 i , (∂2ω/∂k2)c ≈ −2.6568 − 1.1276 i . (5.2c, d)

We also determine

ωNS
1c = − 0.69319 − 0.38592 i . (5.2e)
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E 10−5 10−5.5 10−6 10−6.5 10−7

Leading-order asymptotic results

Rc 1.3272 × 106 6.1602 × 106 2.8593 × 107 1.3272 × 108 6.1602 × 108

Ωc 726.075 1564.281 3370.141 7260.749 15642.812
Mc 8.342 12.244 17.971 26.379 38.718

Stress-free boundary conditions
Numerical results

RN 3.0614 × 106 1.2099 × 107 4.9192 × 107 2.0511 × 108 8.7233 × 108

ΩN 706.350 1535.850 3332.026 7182.550 15 602.461
MN 10 14 20 29 41

Asymptotic results
RA 2.8224 × 106 1.1534 × 107 4.7905 × 107 2.0212 × 108 8.6544 × 108

Ω
†
A 646.705 1451.703 3174.950 6830.110 15264.679

No-slip boundary conditions
Numerical results

RN 3.2400 × 106 1.2700 × 107 5.1525 × 107 2.1376 × 108 9.0545 × 108

ΩN 550.170 1262.290 2845.529 6324.207 14018.014
MN 9 13 19 28 40

Asymptotic results
RA 3.0125 × 106 1.2262 × 107 5.0695 × 107 2.1281 × 108 9.0640 × 108

Ω
†
A 521.806 1196.975 2674.089 5869.156 13452.671

Table 5. As in table 3, but for the case of differential heating with core radius ratio η = 0.35.

E 10−5 10−5.5 10−6 10−6.5 10−7 R = RA

R = RN , ωgv = ω
gv
N ωgv = ω

gv
A

Stress-free boundary conditions
(RSF − Rc)/E

2/9 4.826 4.598 4.438 4.340 4.275 4.161
(ωgv

SF − ωgv
c )/E2/9 0.926 0.871 0.907 1.024 0.830 0.569

No-slip boundary conditions

(RNS − RSF)/E1/6 0.262 0.230 0.233 0.226 0.226 0.279

(ωgv
NS − ω

gv
SF)/E1/6 −0.826 −0.761 −0.713 −0.670 −0.655 −0.727

Table 6. As in table 4, but for the case of differential heating with core radius ratio η = 0.35.

We use the partial derivatives (5.2c, d) to determine λ defined by (3.21):

λ = −1.02657 − 0.82534 i . (5.3)

In turn, using (3.22), (3.26) and (5.2), we obtain

Rc ≈ 0.285933 , R1 ≈ 4.16053 , R̃ ≈ 0.27902 ,

ωgv
c ≈ 0.743835 , ω

gv
1 ≈ 0.56878 , ω̃gv ≈ −0.72723 .

}
(5.4)

These values are used to determine the asymptotic results given in tables 5 and 6, as
well as the asymptotic curves in figure 5. Comparison between the numerical results
is again favourable, though the comparisons between the Doppler shifted frequencies
ωgv appear to require substantially smaller values of E than actually employed to
obtain sharp agreement. Note, however, that there is a significant improvement in the
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Figure 5. The tangent cylinder mode for the case of differential heating with aspect ratio
η = 0.35; plots as in figure 2.

comparison of the no-slip values of the Rayleigh number, which may reflect the fact

that the ratio R̃/R1, though still small, is much larger than the corresponding ratio
determined by (4.4) for the internally heated case with the same core aspect ratio.

In figure 6, we compare the eigenfunctions of the numerical results and asymptotic
results, which continue to be given by (4.12). In contrast to figure 3, we plot the
buoyancy function θ/Q (see (3.10a)) rather than θ because we believe that it more
faithfully measures the role of the buoyancy forces. This distinction did not arise in
the case of internal heating with Q =1 for then temperature θ and buoyancy θ/Q are
one and the same quantity. We do, however, portray the corresponding results for
the temperature, albeit the scaled temperature θ/Qi , in figure 7. We do that because
the asymptotic solution plots for θ/Q and θ/Qi on figures 6 and 7 coincide, since
Q = Qi for all finite x in the limit E → 0. So in a true asympotic limit, the numerical
plots of θ/Q and θ/Qi should also coincide, which is evidently far from the case. The
failure illustrated by this relatively simple comparison provides evidence that we are
far from an asymptotic regime.

A little care must be taken in interpreting the amplitude and phase plot of the
buoyancy θ/Q versus the unstretched coordinate s figure 6(b)(i), as s is not a natural
coordinate for the asymptotic solution. There numerical results are portrayed for the
fixed Ekman number E = 10−7, while the asymptotic solution plotted is θ/Qi = η3θ

and not θ/Q = s3θ suggested by the horizontal axis label s. Our convention is natural
and maintains consistency with the amplitudes of both the numerical and asymptotic
results plotted against boundary-layer coordinate x =(s − ri)/E

2/9 in figure 6(a)(i).
The graphs of the temperature on figure 7 correspond to those on figure 3 scaled by
the factor Qi = 1/η3. So had we plotted θ/Q = s3θ in figure 6(b)(i), all the curves of
both numerical and asymptotic results would simply be those portrayed figure 7(b)
scaled by the factor s3/η3. We emphasize yet again the distinction between buoyancy
and temperature does not arise in the case of internal heating with Q =1, for which
plots of θ/Q and θ/Qi double up as the single plot on figure 3.

In general terms, the comparisons of the numerical and asymptotic results for
internal heating portrayed in figure 3 are sharper that those for differential heating in
figure 6 (see also figure 4), suggesting that far smaller Ekman numbers are required
in the latter case to reach an asymptotic limit. This slow convergence was also
apparent in the Doppler shifted frequency plots in figure 5. An obvious weakness
of the eigenfunctions is their failure to obtain good agreement with the wavelengths
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Figure 6. The tangent cylinder eigenfunctions for the case of differential heating and
stress-free boundaries with aspect ratio η =0.35; plots of vs and vφ/E1/9 as in figure 3.
The θ plots are replaced by the buoyancy function θ/Q, which was equivalent to θ for the
case of internal heating with Q = 1, but now θ/Q = s3θ . Since the plots in (b)(i) are portayed
using the unstretched variable s, we plot the asymptotic results for θ/Qi = η3θ to maintain
consistency with the boundary-layer coordinate plot in (a)(i).

in figure 6(b). There seem to be two likely candidates for this weakness. One is
that curvature effects (specifically their s-variations) are more pronounced for the
smaller inner core η = 0.35. The other (and related) is the strong effect introduced
by the variation of Q illustrated in the comparison between the plots of θ/Q and
θ/Qi in figures 6 and 7, which only identifies simple amplitude discrepancies. It is
also clear that the z-structure characterized by ŵ(s, z) will also be sensitive to these
s-dependencies with the consequence that much smaller values of E are required to
achieve good phase agreement between the numerics and asymptotics.

Of course, we must be wary of the role of a thinner E1/3-ageostrophic boundary
layer, but we postpone commenting on that until the next and final section.
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Figure 7. As in figures 6(a)(i) and (b)(i), except that the temperature, albeit scaled
θ/Qi ≡ η3θ , is plotted as in figure 3. The scaling is to aid comparison with figure 6.

6. Concluding remarks
The main conclusion is that our quantitative comparison between the asymptotic

theory and the numerical solution of the full set of partial differential equations is
generally excellent. To determine whether the asymptotic solutions at various orders
are acceptable involves careful consideration of the data in the tables and the various
graphical comparisons illustrated in the figures.

The scalings for the interior convective modes are much more straightforward
than the tangent cylinder modes and simply involve expansions in powers of
E1/6. The interior modes consist of localized rolls width O(E1/3), but elongated
radially of length O(E1/6). They are tilted to meridional planes at a finite angle
tan−1(−sMkM/mc) (≈ 34.2◦ for P = 1) identified below (4.6). The term rolls is perhaps
a misnomer as it reflects the nature of the instantaneous streamline pattern and not
the fluid motion. Since our thermal Rossby waves are time dependent, the streamlines
do not correspond to the particle paths.

The tangent cylinder convective modes are more awkward, involving expansions
both in E2/9 and E1/3, as well as E1/6 for the Ekman-layer corrections. Even ignoring
the latter, this means that our expansion parameter is E1/9. Their Airy function profile
(3.20) leads to a structure which is quite distinct from the interior modes. So whereas
interior modes are always tilted at a finite angle, the tangent cylinder modes are
normal to the tangent cylinder and spiral to a finite angle as they enter the interior of
the fluid. For the cases illustrated in figure 4, that tilt angle is evidently positive, just
as in the case of the interior modes. Moreover, like the interior modes, their width is
O(E1/3) but unlike them their radial extent O(E2/9) is shorter. Curiously, the number
of intersections of the rolls with meridional planes determined by the Airy function
structure (see e.g. (4.12)) is finite O(1), whereas for interior modes (4.6) identifies the
number to be O(E−1/3).

Our claim, upon which we expand below, is that the E2/9-convective layer is quasi-
geostrophic and motion is blocked by the tangent cylinder from entering the interior
ageostrophic regions. Evidently this must happen on the equatorial plane z = 0, where
fluid touches the inner sphere, and in that respect our equatorial plane plots in figures 3
and 6 are not particularly testing. For that reason, we have made similar plots in
figure 8 of the full numerical solution on the spherical surface radius r = (ri + ro)/2
and compared them with those on the equatorial plane. The most striking feature is
the almost total absence of disturbance on the spherical surface inside the tangent
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Figure 8. Plots of vs , (a) in the case of internal heating with a large inner core (as in figure 3),
and (b) in the case of differential heating (as in figure 6). The graphs show solutions of the
full equations at E = 10−7 for the case of stree-free boundaries. Results on the equator, z = 0
(given in figures 3 and 6) are identified here by the continuous lines, while the results on the
sphere (ri + ro)/2 are identified by the dashed lines.

cylinder. In addition, the close coincidence of the convective solutions at r =(ri +ro)/2
and z = 0 outside the tangent cylinder confirms the columnar quasi-geostrophic nature
of that solution.

Some comments are appropriate with regard to the tangent cylinder E1/3-
ageostrophic boundary layer. It is triggered because the boundary condition at
z = 0 on the quasi-geostrophic eigenfunction w(s, z) governed by (3.11) changes
discontinuously from the symmetry condition w(η, 0) = 0 as s ↓ η to the zero normal
velocity condition dw/dz(η, 0) = 0 as s ↑ η. This is the feature noted by Busse &
Cuong (1977) that leads to the jump of about a factor 4 in the value of the local
critical Rayleigh number (noted in the Introduction) as the tangent cylinder is crossed
inwards. Not only are conditions most unfavourable for convection within the tangent
cylinder but the axial structure changes abruptly. This latter characteristic ensures
that the s- and z-dependencies of the E1/3-ageostrophic boundary layer are no longer
separable in contrast to the quasi-geostrophic behaviour elsewhere. In other words,
instead of solving an o.d.e. in z at each s for w(s, z), a p.d.e. must be solved involving
partial derivatives with respect to both s and z.

The nature of the E1/3-ageostrophic boundary layer is determined by the properties
of our E2/9-convection layer solution (4.11) on the tangent cylinder s = ri . There,
correct to lowest order, our asymptotic solution (4.12) determines θ =0, vs =0 and
vφ =O(E1/9). The fact that only vφ/E

1/9 is non-zero is a most satisfactory state of
affairs. It means that, correct to lowest order, the zero-amplitude solution inside
the tangent cylinder has already been achieved just outside. Consequently, only a
very weak E1/3-ageostrophic boundary layer is required to make all the necessary
adjustments. This idea is supported by our numerical results for θ/Q and vs portrayed
in figures 3 and 6; remember that on the convection layer length scale the ageostrophic
layer width is x =O(E1/9), which for the numerical solutions portrayed, even with E

as small as 10−7, is larger than 0.1. Since, that is not a particularly small fractional
horizontal extent, it could well account for features on the sensitive plots of vφ/E

1/9,
whose asymptotic value on the tangent cylinder is non-zero, in contrast to those of
θ/Q and vr which vanish. Arguably the positive x-displacement of the second and
deeper minimum of the numerical results in the bottom row of graphs is O(E1/9) is a
manifestation of the ageostrophic layer. On the other hand, the abrupt divergence of
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the numerical results for vφ/E
1/9 as x ↓ 0 left of the first minimum must be associated

with yet smaller sublayers, presumably of small axial z-extent, associated with the
equator of the inner sphere.

Certainly, the above discussion lends support to the view that our terms neglected
in the E2/9-convection layer are O(E1/9). Errors of that magnitude in our asymptotics
are readily traced to the tangent cylinder boundary condition W(0) = O(E1/9) for the
solution of (3.18). Unfortunately, the O(E1/9) correction to the boundary condition
can only be obtained by a solution of the boundary-layer equations governing the
E1/3-ageostrophic layer, which lies outside the scope of our present study.

Finally, we remark that the restriction of our analysis to the case of Prandtl number
unity was simply to focus attention on the comparison of the asymptotic theory and
the full numerical results. The interesting issue of the destabilizing RNS − RSF < 0
(stabilizing RNS − RSF > 0) role of the Ekman boundary layer for large (small) P

is thus not addressed here but has been discussed elsewhere (Zhang & Jones 1993;
Zhang 1995; in plane layer geometry, Zhang & Roberts 1998).

The numerical solution of the partial differential equations were achieved on the
NEC SX-5 computer at IDRIS, projects 10633, 20633. The algorithm was parallelized
thanks to the help of Patrick Stoclet (DMPN/IPGP). The French Ministry of Research
funded visits between our teams through the ACI programme Aspects Mathématiques
de la Géodynamo. A.M. S. is also grateful for the support of INTAS grant 99-00348.
We are grateful to Professor Keke Zhang for discussions concerning the role of the
Ekman boundary layer.
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