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Abstract. In this paper we study the nonlinear stability of Ekman–Hartmann-type boundary
layers in a rotating magnetohydrodynamics flow in a half-space and between two planes. We prove
rigorously that if the Reynolds number defined on boundary-layer characteristics is smaller than a
critical value, the boundary layer is nonlinearly stable. It is shown that the normal component of
the magnetic field increases the critical Reynolds number for instability.

AMS classification scheme numbers: 35Q35, 76U05, 76W05

1. Introduction and physical motivation

The stability of boundary-layer shear flows in magnetohydrodynamic rotating systems is of
some general interest. We will concentrate our efforts in this study to the parameter range
relevant for the Earth’s core. The magnetohydrodynamic flow (MHD) in the Earth’s core
is believed to support a self-excited dynamo process generating the Earth’s magnetic field.
Although one has very few means of access to the deep interior of our planet, most of the
parameters characterizing the dynamics in the core are quite well known [20, 21]. One can try
to model the core by a spherical shell� filled with a conducting fluid of densityρ, kinematic
viscosityν, conductivityσ , which rotates rapidly with angular velocity�0. We will only
consider here phenomena occuring close to the outer bounding sphere. Important parameters
are the Ekman numberE, the Rossby numberε, the Elsasser number3 and the magnetic
Reynolds numberθ defined introducing a typical velocityU and magnetic fieldB as

E = ν�−1
0 L−2, ε = U�−1

0 L−1, 3 = B2ρ−1�−1
0 µ−1

0 η−1, θ = ULη−1. (1)

The Earth’s core is believed to be in the asymptotic regime of small Ekman number
(E ' 10−15) and Rossby number (ε ' 10−7).

Here we present the analytical study of a simplified problem. The stability of an Ekman–
Hartmann layer is investigated at the boundary with a half-spaceR2 × [0,+∞[. We will
consider the limit of small Rossby numberε at fixed Elsasser number3. It is natural to let
εθ go to zero as it appears to be the rescaled size of the self-induced magnetic field. Finally,
we will let the Ekman number go to zero, and enforce it to be of sizeε2, in order to have a
bounded and nonvanishing Ekman pumping term.
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The stability of the Ekman–Hartmann layer at the core–mantle boundary is a critical issue
in understanding how it may affect the main flow and thus the dynamo process. The stability
of this layer is often assumeda priori in numerical works.

As the resolution of the Ekman–Hartmann boundary layers is difficult to achieve
numerically [11], some models use free-slip boundary conditions to suppress those layers.
Recently, Kuang and Bloxham [18] have highlighted the important effects of the boundary
layers on the main flow (and field) in a computation of a hyper-viscous dynamo flow at moderate
Ekman numbers.

Some other models suppress inertial and viscous effects in the momentum equation, this
leads to the ‘magnetostrophic’ equilibrium, with the consequence of the Taylor constraint [23].
This simplification can be used to study the induction in the Earth’s core [15], but leads to an
underdetermination of the geostrophic flow. In practice one needs to restore viscous effects in
boundary layers only, through pumping, giving a prescription for this flow.

Let us now describe the stability result. We define a boundary-layer Reynolds number by

ReBL = u ε√
E

(2)

whereu is a typical value of the rescaled velocity (and therefore of order 1). This number is
the product of the typical value of the viscosity by the size

√
E of the Ekman layer, divided by

the viscosityE/ε. Notice that we build this Reynolds number on the size of the Ekman layer at
3 = 0 and not on the size of the Ekman–Hartman layer. This point of view clearly emphasizes
the stabilizing role of the magnetic effects and the fact that the stability is controlled by only
two dimensionless parameters, namely3 and the particular combinationε/

√
E (and of course

on the colatitude).
As E is of orderε2, ReBL remains constant in the limiting process under consideration.

We prove that the Ekman–Hartmann boundary layer islinearlyandnonlinearly stableprovided

ReBL < Res(3, θ0) (3)

whereθ0 is the colatitude, and give an explicit formula forRes . Of course this does not
prove that the layer is unstable forReBL > Res sinceRes is a poor bound. However, this
bound seems physically nonempty, andRes is plotted in figure 1. We recall that asu being
by definition of order 1 and asε ∼ 10−7 andE ∼ 10−15, ReBL is of order 1 and therefore
completely falls within the values ofRes given by figure 1.

This estimate on the critical Reynolds number is, however, far from being optimal. In the
Ekman case (3 = 0) for θ0 = 0, instabilities appear nearReBL = 55 [19], and moreover the
magnetic field has a stabilizing effect. In [8], using the methods introduced by Lilly [19] in
the pure Ekman case (3 = 0) we have computed the critical Reynolds number as a function
of θ0 and3 for which linear instability occurs for the complete MHD problem.

The stabilizing effect of the magnetic field as well as the destabilizing effect of low latitudes
can also be deduced from such an analysis.

2. The governing equations

Let� be a three-dimensional domain, with smooth boundaries (typically a ball, a half-space
or region between two parallel planes), which will be called the core,�c being the mantle to
fit geophysical terminology.

In �, we consider the following MHD model, where we assume the fluid to be
incompressible. We do not consider buoyancy effects here (see [16] for a discussion of the
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Figure 1. Res as a function of Elsasser3 and colatitudeθ0. The stabilizing role of the normal
component of the magnetic induction is clearly illustrated.

linear thermal Ekman layer). We neglect displacement currents in Maxwell’s equations, and
take into account the Coriolis effect

ρ(∂tu + u · ∇u)− µ1u +∇p + ρ�0e× u = j ×B,
j = µ−1

0 curlB, curlE = −∂tB, j = σ(E + u×B),
div B = 0, div u = 0.

(4)

e denotes a constant unit vector, direction of rotation,j denotes current density which is
related through Ohm’s law to the electric fieldE and the magnetic fieldB. The electrical
conductivityσ , the fluid dynamic viscosityµ and densityρ are positive constants. As a result,
we can eliminatej andE in the above system and obtain

(∂tu + u.∇u)− ν1u +
∇p
ρ

+�0e× u = 1

ρµ0
curlB ×B,

∂tB = curl (u×B) + η1B,

div B = 0, div u = 0.

(5)
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Where the magnetic diffusivityη is defined as(σµ0)
−1 and the kinematic viscosityν is defined

asν = µ/ρ.
Outside the shell, the mantle�c is considered as an electrical insulator and the magnetic

field is assumed to be harmonic:

curlB = 0, curlE = −∂tB, div E = 0, divB = 0. (6)

At the core–mantle boundary∂�, we impose the velocity of the fluid to vanish and the normal
component of the Poynting vectorE ×B to be continuous.

Introducing typical quantities

u = Uu′, B = BB′, E = EE′, p = πp′, x = Lx′, t = T t ′,
and dropping the primes, we adimensionalize(5) as follows:

L

UT
∂tu + u · ∇u +

π

ρU2
∇p +

�0L

U
e× u− ν

UL
1u = B2

ρµ0U2
curlB ×B, L

UT
∂tB

= curl (u×B) +
η

UL
1B, divB = 0, div u = 0. (7)

Taking

T = L

U
, E = BU, π = ρU�0L, ε = U

�0L
, E = ν

�0L2
, Pm = ν

η
,

and

3 = B2

ρ�0µ0η
, θ = Pmε

E
= UL

η
,

we rewrite(7)

∂tu + u.∇u +
∇p
ε

+
e× u
ε
− E
ε
1u = 3

εθ
curlB ×B

∂tB = curl (u×B) +
1

θ
1B, divB = 0, div u = 0,

(8)

and in�c, we have

curlB = 0, curlE = −∂tB, div E = 0, divB = 0. (9)

The numbersε,E,Pm,3, θ are respectively called Rossby, Ekman, magnetic Prandtl, Elsasser
and magnetic Reynolds numbers.

Next, we split the magnetic fieldB into two parts a large-scale, time-independent field
B0 = e′ and a scaled perturbationb such that

B = e′ + θb,
so that(8) becomes in�

∂tu + u · ∇u +
∇p
ε
− E
ε
1u +

e× u
ε
= 3

ε
curl b× e′ + 3θ

ε
curl b× b (10)

∂tb + u · ∇b = b · ∇u +
curl (u× e′)

θ
+
1b

θ
, div b = 0, div u = 0, (11)

and in�c

curl b = 0, curlE = −θ∂tb, div E = 0, div b = 0. (12)

The boundary conditions with an insulator can be written as

u = 0 and (E × b) · n is continuous. (13)

Notice in particular that on the fluid’s side, we have curlb = E.
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We consider in the following the orderings forE,3, θ, ε:

ε→ 0, 3 = O(1), εθ → 0E ∼ ε2. (14)

Notice that this includesθ → 0, θ = O(1) or θ → +∞ with εθ → 0.
These limits are relevant to the Earth’s core [10, 11]. Typical values for the Earth’s core

areε ∼ 10−7,3 = O(1), εθ ∼ 10−4, E ∼ 10−15, which fit (14).

3. Statement of the results

Let us first consider the case� = R2 × [0,+∞[ (half-planez > 0) and lete ande′ be the
vectors given in(e1, e2, e3) basis by

e = (− sinθ0, 0, cosθ0)

and

e′ = e′

‖e′‖ with e′ = (sinθ0, 0, 2 cosθ0),

where we identify(e1, e2, e3) with (eθ , eφ, er) at a given colatitudeθ0. The normalized
imposed magnetic fielde′ is assumed to be dipolar, even though any other case could
have been considered. LetU∞ = (u1,∞, u2,∞) be a given velocity at infinityz = +∞.
Let (us(x, y, z), bs(x, y, z)) be the Ekman–Hartmann layer (see section 4.2 for analytic
expressions) which matches the boundary conditions atz = 0 and satisfies(us,1, us,2) = U∞
at z = +∞.

Theorem 3.1.The Ekman–Hartmann layers are stable provided

‖U∞‖ ε√
E
6 Res(3, θ0),

whereRes is given analytically in section 4.4. More precisely, under this condition, if(u, b)

is another solution of (10), (11)

sup
t>0

∫ (
|u(t)− us |2 +

3θ

ε
|b(t)− bs |2

)
6
∫ (
|u(0)− us |2 +

3θ

ε
|b(0)− bs |2

)
.

Let us now turn to the mathematical approach of the problem. By mathematical approach,
we mean partial differential equation (PDE) type mathematics. The aim is to describe the
convergence of solutions of (10), (11) in the limit (14), dealing with all the nonlinearities and
boundary conditions. We would like to emphasize here the differences between the approaches
of PDE people and physicists: mathematicians try to prove convergence oftime dependent,
fully nonlinear solutions of (10), (11) to solutions of some reduced systems (without small
parameters) on arbitrarly large time intervals (rarely globally in time), the limit system being
also fully nonlinear (as complex as two-dimensional Euler’s equations). On the other side,
physicists are more interested inglobal in timestability of time independent boundary-layer
profiles(the stability in Lyapunov or dynamical sense). Each theorem is followed by a small
comment to make the link with physical concerns.

In what follows,� = R2× [0, 1], and to simplify the analysis,e = e′ = e3, perpendicular
to the boundary of� (a similar analysis could probably be done for different vectorse ande′

provided they are not tangent to∂�). In section 4 we make the formal analysis of the limit
ε→ 0. As usual in antisymmetric perturbations of parabolic systems, we have to distinguish
between well-prepared an ill-prepared initial data [6, 14]. We prove, for well-prepared initial
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data, thatjε = curl bε goes to 0 and thatuε converges to a two-dimensional vector fielduint0
independent onz, satisfying a damped Euler equation

∂tu
int
0 + (uint0 · ∇)uint0 + βuint0 +∇pint0 = 0, (15)

div uint0 = 0, (16)

whereβuint0 is a damping term, the sum of a viscous Ekman type pumping and a magnetic
effect.

β =
√

2E

ε2 tan τ
2

with

tan
τ

2
= 1

3 +
√

1 +32
.

In section 4.2 we construct the Ekman–Hartmann layer, following for instance [1],
and in section 4.3 we construct an approximate solution(u

app
ε , j

app
ε ) starting fromuint0 , an

approximate solution which satisfies (10), (11) up to very small (inε) error terms. It is
classical that forβ = 0, Sobolev norms of solutions of (15), (16) have a double exponential
behaviour in time. But forβ > 0 we prove the following.

Theorem 3.2.Let β > 0 and lets > 2. There exists a positive function0s such that every
solutionuint0 of (15), (16) satisfies

|uint0 (t, .)|L∞(R2) 6 0s(|uint0 (0, .)|Hs+1(R2))e
−βt . (17)

This theorem is just the mathematical expression of the damping effect of the Ekman–Hartmann
pumping: if the limit flow is initially smooth, it remains smooth and decreases exponentially
in time. This is an improvement with respect to [14], since we can now get convergence results
which areglobal in time, which was not the case in [14].

Let us now introduce the function

4(k) =
√

1 + k2
√
k

∫ +∞

0
z(| cos(zk)| + | sin(zk)|)e−z dz, (18)

the critical Reynolds number for stability

Res(3) = 1

4
(

1
3+
√

1+32

) (19)

and the boundary-layer Reynolds number ofuint0 at timet ,

ReBL(t) = |uint0 (t, ·)|L∞(R2)

ε√
E
. (20)

We prove in section 5 the following convergence results.

Theorem 3.3.Let uint0 (0, x, y) be a givenHs(R2) function, withs > 5. Let uint0 (t, x, y)

be the global solution of (15), (16) with initial datauint0 (0, x, y). Let uε0 and bε0 be given
sequences ofL2(�) andL2(R3) functions, respectively, such that

‖uε0(x, y, z)− uint0 (0, x, y)‖2L2(�) +
3θ

ε
‖bε0(x, y, z)‖2L2(R3)→ 0 as ε→ 0,

and letuε, bε be global weak solutions of (10), (11) with initial datauε0 andbε0. Then

‖uε − uint0 ‖L∞([0,T ],L2(R2)) +
3θ

ε
‖bε‖L∞([0,T ],L2(R2))→ 0

for everyT such that

sup
06t6T

ReBL(t) < Res(3). (21)
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This is just the mathematical formulation of the stability of Ekman–Hartmann layers, expressed
in a time dependent framework of theorem 3.1.

We emphasize the fact that we are only considering so-called ‘well-prepared initial data’
(that is sequences of initial datauε0 which converge to az independent functionuint0 asε→ 0).

Notice that the boundary layers do not appear in theL2 norm: we require no control of
uε0 near the boundaries. In particular, there is no need to imposeuε0 to behave like Ekman–
Hartmann layers as described in section 4.2 nearz = 0 andz = 1. Using the decay result of
section 5.1, condition (21) can be replaced by a condition on the initial datauint0 , which gives
the following.

Theorem 3.4.Let uint0 (0, x, y) be a givenHs(R2) function, withs > 5. Let uint0 (t, x, y)

be the global solution of (15), (16) with initial datauint0 (0, x, y). Let uε0 and bε0 be given
sequences of respectivelyL2(�) andL2(R3) functions such that

‖uε0(x, y, z)− uint0 (0, x, y)‖2L2(�) +
3θ

ε
‖bε0(x, y, z)‖2L2(R3)→ 0 as ε→ 0,

and letuε, bε be global weak solutions of (10), (11) with initial datauε0 andbε0. Then

‖uε − uint0 ‖L∞([0,+∞[,L2(R2)) +
3θ

ε
‖bε‖L∞([0,+∞[,L2(R2))→ 0

provided

0s−1(|uint0 (0, ., .)|Hs(R2))
ε√
E
< Res(3). (22)

Physically, this ensures the global stability of the solution using the exponential decreasing of
the maximum norm of the limit velocities.

We complete this study by proving in the spirit of [4, 9] (in the particular caseb = 0 to
shorten the proof) that weak solutions of (10), (11) are in fact strong and unique forε small
enough.

Theorem 3.5.Let s > 5. Letuint0 (0, x, y) be a givenHs(R2) function satisfying the stability
criterion (22). Letuint0 (t, x, y) be the corresponding global solution of (15), (16) and let us
construct the sequence of approximate solutionsu

app
ε as in section 4.3 up to orderε2. There

existsε0 > 0 andC0 > 0 such that ifε < ε0 and ifu0 satisfies

|∇(u0 − uappε )(0, x, y, z)|L2(�) +
| (u0 − uappε

)
(0, x, y, z)|L2(�)

ε2
6 C0 (23)

then denoting byu the global weak solutions of the rotating Navier–Stokes equations with
initial datau0, we haveD2u ∈ L2((0,+∞)×�) and∇u ∈ L∞(0,+∞;L2(�)). Moreover,
u is unique.

This has important physical consequences, as it guarantees that if att = 0 the velocity field is
smooth, it remains smooth for all time.

A similar result (weak solutions are in fact strong) in the case of the quasigeostrophic
system with periodic boundary conditions and for ill-prepared initial data has been proved by
Chemin in [4]. Notice, however, that here we deal with vanishing viscosity and that the initial
conditions have large gradients in the boundary layers. In particular, the condition of smallness
of ε which arises in [4] is never fulfilled in our case and we have to replace it by a condition
of type (23).
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4. Asymptotic behaviour

4.1. The limit system

As usual when we have two parameters which go to 0 (namelyε andεθ ), the asymptotic
expansion depends on particular links between these two quantities, and leads to many cases.
In order to avoid technicalities and to get a simple asymptotic expansion we will restricit
ourselves to one particular case and assume thatθ = ε. The general case (no link betweenθ
andε) can be treated in a similar way, and leads to similar first order and similar boundary-layer
behaviour.

As usual in boundary-layer theory, we look for approximate solutions of the form

uε,app =
∑
k>0

εk
(
uintk (t, x, y, z) + uBLk

(
t, x, y,

z

λ

)
+ uBL,upperk

(
t, x, y,

1− z
λ

))
, (24)

and similarly we introducebintk , bBLk andbBL,upperk , jintk defined byjintk = curl bintk and similarly
for jBLk andjBL,upperk , whereλ denotes the size of the boundary layer that will be precised
later on. Letuintk = (uintk , vintk , wintk ) and similarly foruBLk anduBL,upperk . In (24) we enforce
uBLk anduBL,upperk to be rapidly decreasing in their last argument. Putting (24) in (10), (11)
and identifying the terms inε−1 andθ−1 in the interior of the domain we get

e3× (uint0 +3jint0 ) +∇pint0 = 0, (25)

∂zu
int
0 + curl jint0 = 0, (26)

which leads to

jint0 = 0 (27)

and

wint0 = 0, uint0 depends only onx, y (28)

(‘magnetostrophic flow’). Now equalling the terms inε−1 andθ−1 in the boundary layers gives
that

pBL0 = 0, bBL3,0 = 0 (29)

as usual in fluid boundary layers (the pressure does not vary much in the layer).
Equalling the terms of orderε0 in (10) we get

∂tu
int
0 + (uint0 · ∇)uint0 + e3× (uint1 +3jint1 ) +∇pint1 = 0

and taking the 2D curl of it, withωint0 = ∂1v
int
0 − ∂2u

int
0 (which only depends onx andy), we

have

∂tω
int
0 + (uint0 · ∇)ωint0 = ∂zwint1 +3∂zj

int
3,1 (30)

which after a vertical integration, sinceωint0 and u0 do not depend onz, gives the two-
dimensional limit equation

∂tω
int
0 + (uint0 .∇)ωint0 = wint1 (x, y,1)− wint1 (x, y,0) +3jint3,1(x, y,1)−3jint3,1(x, y,0). (31)

For3 = 0 we recover the case of Ekman layers [12], as studied in [14]. We have now to
computewint1 andj int3,1 on z = 0 andz = 1. For this we will study the boundary layers which
appear nearz = 0 andz = 1. We will prove in the next section that

wint1 (x, y,1)− wint1 (x, y,0) +3jint3,1(x, y,1)−3jint3,1(x, y,0) = −βωint0
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with

β =
√

2E

ε2 tan τ
2

where

tan
τ

2
= 1

3 +
√

1 +32
.

This will lead to the limit system onωint0 (t, x, y)

∂tω
int
0 + (uint0 · ∇)ωint0 + βωint0 = 0 (32)

with div uint0 = 0,wint0 = 0,ωint0 = ∂1v
int
0 − ∂2u

int
0 andjint0 = 0. Notice that (32) has global

strong solutions for smooth initial data.

4.2. Boundary layers

Let us focus on the boundary layer nearz = 0. Letζ = z/λ and letuBL0 = (uBL0 , vBL0 , wBL0 ),
uBL1 = (uBL1 , vBL1 , wBL1 ), bBL0 = (bBL1,0 , b

BL
2,0 , b

BL
3,0), b

BL
1 = (bBL1,1 , b

BL
2,1 , b

BL
3,1), j

BL
1 =

(jBL1,1 , j
BL
2,1 , j

BL
3,1 ) with

lim
ζ=+∞

uBL0 = lim
ζ=+∞

uBL1 = lim
ζ=+∞

bBL0 = lim
ζ=+∞

bBL1 = lim
ζ=+∞

jBL1 = 0.

By incompressibility condition,∂ζwBL0 = 0 hence

wBL0 = 0.

Moreover, in the boundary layer, (10) and (11) give

−vBL0 −
E

λ2
∂2
ζ u

BL
0 =

3

λ
∂ζ b

BL
1,0 , ∂2

ζ b
BL
1,0 + λ∂ζu

BL
0 = 0, (33)

and

uBL0 −
E

λ2
∂2
ζ v

BL
0 =

3

λ
∂ζ b

BL
2,0 , ∂2

ζ b
BL
2,0 + λ∂ζ v

BL
0 = 0, (34)

hence, eliminatingbBL1,0 andbBL2,0 , we obtain

−∂ζ vBL0 −
E

λ2
∂3
ζ u

BL
0 = −3∂ζuBL0 , (35)

∂ζ u
BL
0 −

E

λ2
∂3
ζ v

BL
0 = −3∂ζvBL0 . (36)

It follows A = ∂ζ uBL0 + i∂ζ vBL0 ∈ C is solution of

∂2
ζ A = A

λ2

E
(3 + i). (37)

Definingτ by

cosτ = 3√
1 +32

, and sinτ = 1√
1 +32

,

recalling thatA→ 0 whenζ → +∞ and choosing

λ =
(
E

3

)1
2
√

cosτ

cosτ2
=
√

2E tan
τ

2
, (38)
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we obtain

A(t, x, y, ζ ) = A(t, x, y,0) exp
(
−ζ

(
1 + i tan

τ

2

))
,

tan
τ

2
= 1

3 +
√

1 +32
,

(39)

and

uBL0 (t, x, y, ζ ) + ivBL0 (t, x, y, ζ )

= (uBL0 (t, x, y,0) + ivBL0 (t, x, y,0)) exp
(
−ζ

(
1 + i tan

τ

2

))
. (40)

As a result, usinguBL0 + uint0 = 0 atζ = 0, we finally write

uBL0 (t, x, y, ζ ) = exp(−ζ )
{
−uint0 (t, x, y,0) cos

(
ζ tan

τ

2

)
− vint0 (t, x, y,0) sin

(
ζ tan

τ

2

)}
(41)

vBL0 (t, x, y, ζ ) = exp(−ζ )
{
uint0 (t, x, y,0) sin

(
ζ tan

τ

2

)
− vint0 (t, x, y,0) cos

(
ζ tan

τ

2

)}
.

(42)

Using the incompressibility condition

∂xu
BL
0 + ∂yv

BL
0 +

ε

λ
∂ζw

BL
1 = 0

we deduce

wBL1 (t, x, y, ζ ) = −exp(−ζ )ωint0 (t, x, y) sin
(
ζ tan

τ

2
+
τ

2

)√
Eε−2 sinτ . (43)

Aswint1 +wBL1 = 0 atζ = 0, we get the succion expression

wint1 (x, y,0) = ωint0 (t, x, y) sin
(τ

2

)√
Eε−2 sinτ . (44)

Next, using (11),∂2
ζ ζb

BL
0 = 0 and hence

bBL0 = 0.

Moreover,D = bBL1,1 + ibBL2,1 satisfies

∂2
ζ D = −

λ

ε
A,

hence

D = λ

ε

(uBL0 + ivBL0 )

1 + i tan τ2
, (45)

and

bBL1,1 =
(
uBL0 cos

τ

2
+ vBL0 sin

τ

2

)√
Eε−2 sinτ , (46)

bBL2,1 =
(
−uBL0 sin

τ

2
+ vBL0 cos

τ

2

)√
Eε−2 sinτ . (47)

In other words, we have

bBL1,1(t, x, y, ζ ) = exp(−ζ )
{
−uint0 (t, x, y,0) cos

(τ
2

+ ζ tan
τ

2

)
− vint0 (t, x, y,0) sin

(τ
2

+ ζ tan
τ

2

)}√
Eε−2 sinτ (48)

bBL2,1(t, x, y, ζ ) = exp(−ζ )
{
uint0 (t, x, y,0) sin

(τ
2

+ ζ tan
τ

2

)
− vint0 (t, x, y,0) cos

(τ
2

+ ζ tan
τ

2

)}√
Eε−2 sinτ . (49)
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From(48), (49), we deduce that

jBL3,1 (t, x, y, ζ ) = −exp(−ζ )ωint0 (t, x, y) cos
(τ

2
+ ζ tan

τ

2

)√
Eε−2 sinτ , (50)

and usingjBL3,1 + j int3,1 = 0 for ζ = 0, the currents entering the layer write

j int3,1(t, x, y,0) = ωint0 (t, x, y) cos
(τ

2

)√
Eε−2 sinτ . (51)

It follows that

(wint1 +3jint3,1)(t, x, y,0) = ωint0 (t, x, y)

√
E

2ε2 tan τ
2

. (52)

Let us observe that in the limit3→ 0,λ = √2E, β =
√

2E/ε2 and we recover classical
Ekman layers:

bBL1 ≡ 0,

uBL0 (t, x, y, ζ ) = exp(−ζ ){uBL0 (t, x, y,0) cosζ + vBL0 (t, x, y,0) sinζ }
vBL0 (t, x, y, ζ ) = exp(−ζ ){−uBL0 (t, x, y,0) sinζ − vBL0 (t, x, y,0) cosζ }.
On the other hand, in the limit when3 → +∞, λ2 ∼ E/3 and one obtains Hartmann-type
layers

uBL0 (t, x, y, ζ ) = uBL0 (t, x, y,0) exp(−ζ ), (53)

vBL0 (t, x, y, ζ ) = vBL0 (t, x, y,0) exp(−ζ ), (54)

bBL1,1 =
λ

ε
uBL0 , bBL2,1 =

λ

ε
vBL0 . (55)

Observe that the Ekman succion (44) vanishes in this case, whereas the magnetic damping
(51) tends to infinity.

4.3. Construction of approximate solutions

It is now routine work to construct an approximate solutionuappε , j
app
ε , b

app
ε starting from

uint0 and the boundary-layer terms constructed in the previous section (see for instance [14]
for details in the case of pure Ekman layer, and [6]). By approximate solutions, we mean
functions which match the boundary conditions, which satisfy the divergence free conditions,
and which satisfy (10) up to small error termsR1,ε, and (11) up toR2,ε, and moreover for every
t > 0, s > 5,

|R1,ε|L2(�) 6 Cε
1
2‖uint0 ‖Hs(R2), (56)

|R2,ε|L2(�) 6 Cε
3
2‖uint0 ‖Hs(R2), (57)

|uappε |L∞(�) + ε−1|bappε |L∞(�) 6 C‖uint0 ‖L∞(R2), (58)

|∂xuappε |L∞(�) + |∂yuappε |L∞(�) + |∂zwappε |L∞(�) 6 C‖uint0 ‖L∞(R2). (59)

We have to estimate

g(3) = sup
x,y

∣∣∣∣ ∫ 1/2

0
z|∂zuBL0 |dz

∣∣∣∣
and similar integrals for12 6 z 6 1, and withuBL0 replaced byvBL0 . Using (41) we get

∂zu
BL
0 = λ−1

(
uint0 − vint0 tan

τ

2

)
cos

(
ζ tan

τ

2

)
e−ζ

+λ−1
(
uint0 tan

τ

2
+ vint0

)
sin
(
ζ tan

τ

2

)
e−ζ
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and therefore

g(3) 6 λ
∣∣∣uint0 − vint0 tan

τ

2

∣∣∣ ∫ +∞

0
ζ

∣∣∣cos
(
ζ tan

τ

2

)∣∣∣ e−ζ dζ

+λ
∣∣∣uint0 tan

τ

2
+ vint0

∣∣∣ ∫ +∞

0
ζ

∣∣∣sin
(
ζ tan

τ

2

)∣∣∣ e−ζ dζ

6
√

1 + tan2
(τ

2

)
λ‖uint0 ‖L∞(R2)

∫ +∞

0
ζ
(∣∣∣cos

(
ζ tan

τ

2

)∣∣∣
+
∣∣∣sin

(
ζ tan

τ

2

)∣∣∣) e−ζ dζ.

Hence, asλ = √2E tan(τ/2),∣∣∣∣ ∫ 1/2

0
z|∂zuBL0 | dz

∣∣∣∣ 6 √2E‖uint0 ‖L∞(R2)4
(
tan

τ

2

)
. (60)

4.4. Slanted magnetic field and rotation

Let us consider in this section Ekman–Hartmann layers in an half-space, at a colatitudeθ0,
with a uniform velocity field at infinity. The angle between the outward normal of the plane
and the rotation vector is thereforeθ0. Letψ be the angle of the magnetic field with the normal
of the plane. Providedθ0 6= π/2 andψ 6= π/2, the calculations of the boundary layers can be
carried out and the results are very similar to those of section 4.2. Let us present them in the
caseθ ∈ [0, π/2): the size of the layerλ is now

λ =
√

2E

cosθ0
tan

τ ′

2
,

where

tan
τ ′

2
= cosθ0

3 cos2ψ + (32 cos4ψ + cos2 θ0)1/2
.

Let

Res(3, θ) =
√

cosθ0

4
(
tan τ ′

2

) .
If we assume that the static magnetic fieldB0 is a pure axial dipole with internal sources, one
obtains

cosψ = 2 cosθ0

(1 + 3 cos2 θ0)
1
2

,

sinceB0 is proportional to 2 cosθ0er + sinθ0eθ0 in spherical coordinates. Up to the above
parameter changes, the boundary-layer expressions(41), (42), (48), (49) still hold in suitably
scaled coordinates.

Those expressions clearly degenerate at the equator. Forθ0 = π/2 (see [12]) andψ = π/2
(see [22]), we do not study this singularity here, and will restrict our work to the values ofθ0

such that the layer is well-defined by the above expressions (roughlyθ0 < π/2− E1/3).

5. Stability of mixed Ekman–Hartmann boundary layers

5.1. Time decay of limit solutions

The aim of this section is to prove that the maximum norm of the interior velocityuint

which is known to exist for all time (by a small modification of Youdovich argument) decays
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exponentially in time. In terms of the vorticityωint0 = curluint0 , the limit system reads as a
damped two-dimensional Euler equation

∂tω
int
0 + (uint0 · ∇)ωint0 + βωint0 = 0 in D′(R+

t × R2) and ωint0|t=0 = ωint0,0.

As uint0 is divergence free, we have for allp ∈ [1,+∞]

|ωint0 (t, .)|Lp(R2) = |ωint0,0|Lp(R2)e
−βt .

Using the following classical estimates on commutators [17]

|[Dα, u∇]ω|L2 6 C(|ω|L∞|u|Hs+1 + |∇u|L∞|ω|Hs )

for |α| = s > 2, and assuming that divu = 0 andω = curl u,

|∇u|L∞ 6 C(|ω|L∞ + |ω|L2) +Cs |ω|L∞ log+

( |ω|Hs

|ω|L∞
)

we deduce that for all fixeds ∈ N, s > 2

1

2

d

dt
|ωint0 (t, .)|2Hs(R2) + β|ωint0 (t, .)|2Hs(R2)

6 C(|ωint0 (t, .)|L∞(R2) + |∇uint0 |L∞(R2))|ωint0 (t, .)|2Hs(R2).

It follows that definingα by

α(t) = |ωint0 (t, .)|Hs(R2)e
βt , (61)

we observe that

α(t) 6 α(0) +C
∫ t

0
e−βsα(s)

×
(
|ωint0,0|L∞(R2) log+

(
α(s)

|ωint0,0|L∞(R2)

)
+ |ωint0,0|L∞(R2) + |ωint0,0|L2(R2)

)
ds. (62)

Let A = |ωint0,0|L2(R2), let B = |ωint0,0|L∞ + |ωint0,0|L2(R2), and letψ(t) be the right-hand side of
(62). We have

ψ̇(t) 6 C exp(−βt)ψ(t)
(
A log+

(
ψ(t)

A

)
+B

)
therefore ∫ ψ(t)/A

ψ(0)/A

du

u(log+ u +BA−1)
6
∫ t

0
CA exp(−βs) 6 CAβ−1. (63)

But u logu is not integrable near +∞, therefore (63) boundsψ(t) and thereforeα(t) using
(62) in terms of|ωint0,0|L2(R2) and|ωint0,0|L∞ which gives theorem 3.2.

5.2. Proof of the stability result

We will only prove theorem 3.4, the proof of theorem 3.3 being similar and easier. Denoting
v = uε − uappε , e= Eε −Eapp

ε , andm = bε − bappε , we obtain

∂tv + uε · ∇v + v · ∇uappε −
E

ε
1v +∇π +

e3× v
ε

= 3

ε
curlm× e3 +

3θ

ε

(
bε.∇m +m.∇bappε

)− R1,ε, (64)

div v = 0, divm = 0, and v|∂� ≡ 0, (65)
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and

∂tm + uε.∇m + v · ∇bappε − bε · ∇v −m · ∇uappε =
1

θ
1m− 1

θ
curl (v × e3)− R2,ε, (66)

whereas in�c, we simply have

curlm = 0, curl e = −θ∂tm, divm = 0 and dive = 0. (67)

We recall estimates (56)–(60) for all timet > 0. In order to obtain energy bounds, we multiply
(64) by v and(66) bym3θ/ε to get

d

dt

∫
�

1

2

(
|v|2 +

3θ

ε
|m|2

)
dx +

E

ε

∫
�

|∇v|2 dx +
3

ε

∫
�

|curlm|2 dx

+
3

ε

∫
∂�

(curlm×m) · n 6 |R1,ε|L2(�)|v|L2(�) +
3θ

ε
|R2,ε|L2(�)|m|L2(�)

+

∣∣∣∣ ∫
�

(
3θ

ε
mimk + vivk

)
∂iu

app

k,ε dx

∣∣∣∣ +

∣∣∣∣ ∫
�

3θ

ε

(
mivk +mkvi

)
∂ib

app

k,ε dx

∣∣∣∣,
wheren denotes the outward normal to�. Next, we observe using the fact thatv vanishes on
∂� ∫

�

mimk∂iu
app

k,ε dx = −
∫
�

u
app

k,ε mi (∂imk − ∂kmi ) dx,

hence∣∣∣∣ ∫
�

3θ

ε
mimk∂iu

app

k,ε dx

∣∣∣∣ 6 C3θε |curlm|L2(�)|m|L2(�)00 exp(−βt),

6 κ 3
ε
|curlm|2L2(�) +Cκ0

2
0
3θ2

ε
|m|2L2(�) exp(−2βt).

Similarly, we have∫
�

(mivk +mkvi )∂ib
app

k,ε dx =
∫
�

b
app

k,ε (mi (∂kvi − ∂ivk) + vi (∂kmi − ∂imk)) dx

hence∣∣∣∣ ∫
�

3θ

ε
(mivk +mkvi )∂ib

app

k,ε dx

∣∣∣∣
6 3θ(|m|L2(�)|∇v|L2(�) + |v|L2(�)|curlm|L2(�)) exp(−βt),

6 κE

ε
|∇v|2L2(�) + κ

3

ε
|curlm|2L2(�) +Cκ

3θ

ε
|m|2L2(�)3θ

ε2

E
exp(−2βt)

+Cκε3θ
2|v|2L2(�) exp(−2βt).

The last term involving the velocityv is estimated as in [6, 14]. Namely, fori = x, y and
arbitraryk, and fori = k = z, using (58), (59),∣∣∣∣ ∫

�

vivk∂iu
app

k,ε dx

∣∣∣∣ 6 C0s |v|2L2(�) exp(−βt).

It remains to handle the casei = z andk = x, y. For this, we first remark that∣∣∣∣ ∫
�

vivk∂i(u
app
ε − uBLε )

∣∣∣∣ 6 C3s exp(−βt)|v|2L2.
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Moreover,∣∣∣∣ ∫
R2×[0,1/2]

v3v1∂zu
BL
ε dx dy dz

∣∣∣∣ = ∣∣∣∣ ∫
R2×[0,1/2]

(∫ z

0
∂zv3(t, x, y, z

′) dz′
)

×
(∫ z

0
∂zv1(t, x, y, z

′) dz′
)
∂zu

BL
ε dx dy dz

∣∣∣∣
6

√∫ 1/2

0

∫
R2
|∂zv3|2 dx dy dz

√∫ 1/2

0

∫
R2
|∂zv1|2 dx dy dz sup

(x,y)∈R2

×
∣∣∣∣ ∫ 1/2

0
z|∂zuBLε | dz

∣∣∣∣
6 ‖∂zv3‖L2(R2×[0,1/2])‖∂zv1‖L2(R2×[0,1/2])‖uint0 ‖L∞(R2)

√
2E4

(
tan

τ

2

)
6
(

1

2
√

2
‖∂zv3‖2L2(R2×[0,1/2]) +

1√
2
‖∂zv1‖2L2(R2×[0,1/2])

)
×‖uint0 ‖L∞(R2)

√
2E4

(
tan

τ

2

)
and similarly fori = z andk = y. Therefore,∣∣∣∣ ∫
R2×[0,1]

v3v1∂zu
BL
ε dx dy dz

∣∣∣∣ +

∣∣∣∣ ∫
R2×[0,1]

v3v2∂zv
BL
ε dx dy dz

∣∣∣∣
6 ‖∇v‖2L2(�)‖uint0 ‖L∞(R2)

√
E4

(
tan

τ

2

)
6
√
E4

(
tan

τ

2

)
‖∇v‖2L2(�)0s exp(−βt)

where we used theorem 3.2. Thus, finally using the equations(67) in �c, we obtain
3θ

ε

∫
∂�

(curlm×m) · n = 3θ

ε

∫
∂�

(e×m) · n = −3θ
ε

∫
�c

div (e×m) dx

= 3θ2

2ε

d

dt

∫
�c
|m|2 dx,

so that we can estimate the energy in the whole spaceR3

d

dt

(∫
�

1

2
|v|2 +

3θ

2ε

∫
�

|m|2 dx +
3θ2

2ε

∫
�c
|m|2 dx

)
+
E

ε

∫
�

|∇v|2 dx

+
3

ε

∫
�

|curlm|2 dx

6 C
(
|v|2L2(�)(1 + ε3θ2) +

3θ

ε
|m|2L2(�)θ

(
1 +3

ε2

E

)
+ ε

)
exp(−βt)

+

(
0s
√
E4

(
tan

τ

2

)
+ 2κ

E

ε

)
|∇v|2L2(�) + 2κ

3

ε
|curlm|2L2(�).

Therefore, if (22) is satisfied, and forκ small enough we have the global estimate

sup
t>0

(
|v(t, .)|2L2(�) +

3θ

ε
|m(t, .)|2L2(�) +

3θ2

ε
|m(t, .)|2L2(�c)

)
+κ ′

E

ε

∫ +∞

0
|∇v|2L2(�) ds + κ ′

3

ε

∫ +∞

0
|curlm|2L2(�) ds

6 Cβ
(
|v(0, )̇|2L2(�) +

3θ

ε
|m(0, .)|2L2(�) +

3θ2

ε
|m(0, .)|2L2(�c) + ε

)
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for some constant depending onβ, and forκ ′ arbitrary close to 1.

5.3. Global strong solutions for the Navier–Stokes equations for small enoughε

Hereafter, we focus on the case whenb ≡ 0 which correspond to the rotating incompressible
Navier–Stokes equations between two parallel plates. As proven in [2, 4] in the three-
dimensional periodic case, large enough Rossby numbersε yield global classical solutions
for the Navier–Stokes equations for suitable initial conditions. We want here to prove that this
result holds for the boundary-value problem.

As in the above section, we definev = uε − uappε solution of

∂tv + v · ∇v +∇π − 1

Re
1v = Lε, div v = 0, (68)

where

Lε = −e3× v
ε
− v · ∇uappε − uappε · ∇v +RNε (69)

with

|RNε |L2(�) 6 CεN+ 1
2 e−βt , (70)

whereN is a given integer such thatN > 3. If the stability criterion is satisfied, we obtain
whenRe = ε−1CRe for some constantCRe,

sup
t>0
|v(t, .)|2L2(�) +

1

Re

∫ +∞

0
|∇v|2L2(�) ds 6 C|v(0, .)|2L2(�) +Cε2N+1 = K0

ε . (71)

In order to prove thatuε is smooth wheneverε is small enough, we proceed as in [9] in
the context of two-dimensional multiphase MHD flows. First, we multiply(68) by ∂tv and
integrate by parts as follows∫ t

0
|∂tv|2L2(�) ds +

1

2Re
|∇v(t, .)|2L2(�) 6

1

2Re
|∇v(0, .)|2L2(�) +

1

2

∫ t

0
|∂tv|2L2 ds

+C
∫ t

0
(|Lε|2L2(�) + |v∇v|2L2) ds

hence∫ t

0
|∂tv|2L2(�) ds +

1

Re
|∇v(t, .)|2L2(�) 6

1

Re
|∇v(0, .)|2L2(�) +C

∫ t

0
|Lε|2L2(�) ds

+C
∫ t

0
|v|2L4(�)|∇v|2L4(�) ds. (72)

Rewriting(68) as a Stokes equation

− 1

Re
1v +∇π = Lε − v.∇v − ∂tv, div v = 0, and v = 0 on ∂�,

classical estimates yield

1

Re2
|D2v|2L2(�) 6 C(|∂tv|2L2(�) + |Lε|2L2(�) + |v · ∇v|2L2(�)).

Combining with (72) we get∫ t

0

(
|∂tv|2L2 +

|D2v|2
L2

Re2

)
ds +

1

Re
|∇v(t, .)|2L2 6

C

Re
|∇v(0, .)|2L2

+C
∫ t

0
(|v|2L4|∇v|2L4 + |Lε|2L2) ds. (73)
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Combining the following two Gagliardo–Nirenberg inequalities,

|v|2L4 6 C|v|1/2L2 |∇v|3/2L2

and

|∇v|2L4 6 C|∇v|1/2L2 (|∇v|L2 + |D2v|L2)3/2

we deduce that for allκ > 0

|v|2L4(�)|∇v|2L4(�) 6
κ

Re2
(|D2v|2L2(�) + |∇v|2L2(�)) +CκRe

6|v|2L2(�)|∇v|8L2(�)
.

Next, we observe that arguing as in the preceding section, we can estimate

|v · ∇uappε |2L2(�) + |uappε .∇v|2L2(�) 6 C|∇v|2L2(�) exp(−2βt)

which leads to

|Lε|2L2 6 C|∇v|2L2 exp(−2βt) +C
|v|2

L2

ε2
+Cε2N+1 exp(−2βt).

As a result, we obtain using the Poincaré lemma, forε 6 1,∫ t

0

(
|∂tv|2L2(�) +

1

Re2
|D2v|2L2(�)

)
ds +

1

Re
|∇v(t, .)|2L2(�) 6

C

Re
|∇v(0, .)|2L2(�)

+
C

Re6

∫ t

0
|v|2L2|∇v|8L2 ds +C

∫ t

0

|∇v|2
L2

ε2
ds +Cε2N+1.

Using the Poincaŕe lemma and|v(t, .)|2
L2 6 K0

ε we get∫ t

0

(
|∂tv|2L2(�) +

1

Re2
|D2v|2L2(�)

)
ds +

1

Re
|∇v(t, .)|2L2(�) 6

C

Re
|∇v(0, .)|2L2

+CRe10Kε
0

∫ t

0

(
|∇v|2

L2

Re

)4

ds +C
Re

ε2
Kε

0 +Cε2N+1

6 C
|∇v(0, .)|2

L2

Re
+
CKε

0

ε10

∫ t

0

(
|∇v|2

L2

Re

)4

ds +
CKε

0

ε3
.

Let

α(t) = |∇v(t, .)|
2
L2

Re
,

C0 = C
|∇v(0, .)|2

L2

Re
+
CKε

0

ε3
,

C1 = CKε
0

ε10

and

ψ(t) = C0 +C1

∫ t

0
α4 ds.

We have

α 6 C0 +C1

∫ t

0
α4 ds

therefore,

ψ̇ 6 C1αψ
3
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hence

ψ(t) 6 ψ(0)
(

1− 2ψ(0)2C1

∫ +∞

0
α ds

)−1/2

which boundsψ(t) in terms ofψ(0) provided

2ψ(0)2C1

∫ +∞

0
α ds 6 1/2

that is provided(
|∇v(0, .)|2

L2

Re
+
Kε

0

ε3

)2

Kε
0

Kε
0

ε10
6 C∞

whereC∞ is some universal constant, or equivalently provided

|∇v(0, .)|2L2 +
Kε

0

ε4
6 C∞

which ends the proof. Notice that the uniqueness property is a straightforward consequence
of the above regularity. Besides, additional bounds can be obtained by deriving the equation
in time and integrating by parts, but no further details will be given here.

5.4. Proof of theorem 3.1

To prove theorem 3.1 just follow section 5.2 and notice that the term(v · ∇)us reduces to
v3∂zus which can be absorbed in the viscosity exactly as in section 5.2 leading to the fact that∫ |v|2 + 3θ

ε

∫ |m|2 is decreasing.
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