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Abstract

Our aim is to investigate the instability of mixed Ekman–Hartmann boundary layers arising in rotating incompressible
magnetohydrodynamics flows in a parameter regime relevant to the Earth liquid core. We perform a local study in a half
space at a given co-latitude θ �= π/2, and assume a mean dipolar axial magnetic field with internal sources. Instabilities are
driven, for high enough Reynolds number, by the quadratic term in the momentum equation. Following the work of Lilly [J.
Atmos. Sci. 23 (1966) 481], we restrict our analysis to the linearized growth phase. We describe the dependence of the critical
Reynolds number in terms of θ and Elsasser number (measuring the relative strength of Lorentz and Coriolis terms). It is
found that no matter how large the Elsasser number is, there exists a critical band centered on the equator in which instabilities
can occur. For geophysically relevant values of parameters, this band extends over some 45◦ away from the equator. This
study establishes the possibility of boundary layer instabilities near the core–mantle boundary. © 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

The magnetohydrodynamic flow in the Earth’s core
is believed to support a self excited dynamo process
responsible for the Earth’s magnetic field. Though
one has very few means of access to the deep interior
of our planet, most of the parameters characterizing
the dynamics in the core are relatively well known
(Poirier, 1991, 1994). One can model the Earth’s core
by a spherical shell, filled with a conducting fluid
of density ρ, kinematic viscosity ν, conductivity σ ,
which rotates rapidly with angular velocity Ω . We
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will only consider here phenomena occurring close
to the outer bounding sphere. Important parameters
are the Ekman number E, the Rossby number ε, the
Elsasser number Λ and the magnetic Reynolds num-
ber Rm. These are defined introducing the magnetic
diffusivity η = (σµ0)

−1, a typical velocity U, length
scale L and magnetic field B as

E = ν

2ΩL2
, ε = U

2ΩL
,

Λ = B2

2Ωρµ0η
, Rm = UL

η
. (1)

The role of boundary layers on the dynamics of the
core and on the geodynamo is usually thought to be
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small. The laminar Ekman layer effect on the main
flow, through the Ekman suction, scales as E1/2. The
Ekman suction is even reduced by magnetic effects
(Acheson and Hide, 1973). This would of course be
very different if the boundary layers happened to be
unstable (they could then extend over a larger do-
main and would most probably affect the main flow).
Recent studies showed that pure Ekman layer insta-
bilities could indeed produce field generation and
act as a dynamo (Ponty et al., 2000). In the last few
years, numerous numerical models of self excited dy-
namos have been proposed (see Dormy et al. (2000)
for a review). Among these models, some suppressed
boundary layers using stress-free boundary conditions
(Busse et al., 1999; Christensen et al., 1999; Katayama
et al., 1999; Kuang and Bloxham, 1997, 1999).
This was proven to strongly modify the moderate
Ekman number solutions with a conducting inner



∂tu + u · �u + �p

ε
+ eΩ × u

ε
− E
ε
�u = Λ

εRm
curl B × B

∂tB = curl(u × B)+ 1

Rm
�B, div B = 0, div u = 0

(2)

core (Kuang and Bloxham, 1997; Christensen et al.,
1999). Suppression of these boundary layers is based
on the assumption that they are stable, and thus, small
and negligible. Other numerical models retained the
Ekman layers and observed a large field induction in
laminar layers near the core–mantle boundary (CMB)
for moderate values of the Ekman number (Sakuraba
and Kono, 1999). The evidence of instabilities of these
layers would shed some new light on the flow near the
CMB, but also on numerical models for the dynamo.

We present a linearized study for instability of
the mixed Ekman–Hartmann boundary layers in ro-
tating incompressible magnetohydrodynamic flows.
It is known (Gilman, 1971) that Ekman–Hartmann
layer (as the Ekman layer and the Hartmann layer)
are unstable to two-dimensional rolls for sufficiently
high Reynolds numbers. The purpose of this work
is to extend previous instability studies (Leibovich
and Lele, 1985; Lilly, 1966; Gilman, 1971), to in-
compressible MHD flows near a spherical boundary
at a given co-latitude θ ∈ [0, π/2) for dipolar static
magnetic field. The Reynolds number at which these
instabilities occur, as well as the details of these insta-
bilities, are the subject of this article. The possibility

for such instabilities to occur near the CMB will then
be discussed.

2. Model description

2.1. Laminar Ekman–Hartmann boundary layer

We focus in this study to the parameter range rel-
evant for the Earth’s core, and in particular small
value of the magnetic Prandtl number (ERmε

−1). We
perform a local analysis at a given co-latitude, assum-
ing a dipolar axial mean magnetic field with internal
sources. More precisely, we consider a half space D
filed with an incompressible conducting fluid gov-
erned by the Navier–Stokes equations coupled with
the induction equation

where eΩ denotes the constant unit vector in the
direction of rotation, B the magnetic field, and E =
(curl B)/Rm − u × B the electric field.

Outside the shell (Dc), the mantle is considered to
be an electrical insulator and the magnetic field is thus
assumed to be harmonic

curl B = 0, curl E = −∂tB,
div E = 0, div B = 0. (3)

At the CMB ∂D, we require the velocity of the fluid
to vanish and the tangential component of the electric
field and magnetic field to be continuous.

We consider in the sequel the following orderings
for ε, Λ, Rm, E

ε → 0, Λ ∼ O(1), εRm → 0, E ∼ ε2. (4)

These limits are relevant to the Earth’s core (Dormy
et al., 1998; Desjardins et al., 1999).

We define our frame of reference (x, y, z) with x
in the e1 direction (co-latitude), y in the e2 direction
(longitude) and z in the e3 direction (radial direction)
(see Fig. 1).

We also assume that the direction of the static
magnetic field B0 varies in latitude as a pure axial
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Fig. 1. Geometry of the local study. Rotation vector and magnetic
field, respectively, make an angle θ and ψ with the normal to
the boundary. Traveling wave solutions are sought for an external
velocity U∞. These quantities, respectively, make an angle δ and
γ0 = δ + γ with the plane (Ω, B).

dipole with internal sources, so that we can write
eΩ = (−sin θ, 0, cos θ), eB = e′/||e′|| with e′ =
(sin θ, 0, 2 cos θ) and hence

cosψ = 2 cos θ

(1 + 3 cos2 θ)1/2

is the vertical component of B 0. (5)

Note that the polarity of the field can be reversed
through a modification of ψ in π +ψ , what does not
affect the rest of the study.

Note also that the first assumption here is that
the static magnetic field B 0 has only two non-zero
coordinates b1 and b3. If such was not the case, a
second angle (say ψH) would need to be introduced
at this stage. The dipolar variation of the field’s di-
rection (i.e. the precise relation between θ and ψ),
however, becomes important only in Section 2.5 and
following.

Introducing the normal Elsasser number Λ⊥ =
Λ cos2 ψ(cos θ)−1, it is convenient to define τ such
that tan τ = Λ−1

⊥ . With this definition, the width of
the laminar Ekman–Hartmann boundary layer λL
varies (see Acheson and Hide, 1973; Desjardins et al.,

1999) as

λ =
√

2E tan(τ/2)

cos θ
, (6)

where

tan(τ/2) = cos θ

Λ cos2 ψ + (Λ2 cos4 ψ + cos2 θ)1/2
.

(7)

The boundary layers are obtained by introducing
the scaled vertical coordinate z′ = z/λ. Assuming
that the limit flow at z′ = ∞ has the form U∞ =
(cos γ0,−sin γ0, 0) and that the magnetic field van-
ishes at infinity, one obtains (Acheson and Hide, 1973;
Benton and Loper, 1969, 1970; Gilman and Benton,
1968; Loper, 1970a,b) a stationary velocity profile
(U,V,W = 0) and magnetic profile (B1, B2, B3 = 0),

U(z′) = cos γ0 − e−z′ cos
(
z′tan(τ/2)+ γ0

)
,

V (z′) = −sin γ0 + e−z′ sin
(
z′ tan(τ/2)+ γ0

)
,

B1(z
′) = −

√
E sin τ

cos θ
e−z′

cos
(τ

2
+ z′ tan(τ/2)+ γ0

)
cosψ,

B2(z
′) =

√
E sin τ

cos θ
e−z′

sin
(τ

2
+ z′ tan(τ/2)+ γ0

)
cosψ. (8)

So that the velocity at infinity makes an angle −γ 0
with the x direction (i.e. eθ ).

It should be noted that Loper (1970a,b) demon-
strated that this profile does not depend on the conduc-
tivity of the outer domain (Dc). This result, however,
does not extend to the following sections (instability).

2.2. Ekman–Hartrnann boundary layer instabilities

The laminar Ekman–Hartmann boundary layer
profile (8) is known (Gilman, 1971) to be unstable
to two-dimensional disturbances for sufficiently high
Reynolds number. The relevant number here is the
boundary layer Reynolds number, it is defined as the
classical Reynolds number (u"/ν), but using a typical
length scale " based on the boundary layer width,
rather than the problem size.
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For the Ekman layer at the pole, it is expressed as

Re0 = ε
√

2

E
. (9)

If we now define the local boundary layer Reynolds
number Re on the scale λ, we can write

Re = λε

E
. (10)

This quantity is constructed on the width of the
Ekman–Hartmann boundary layer which varies with
θ and Λ. It is, thus, the relevant physical quantity.
However, it needs to be compared with the local
boundary Reynolds number for the Earth (which
depends on latitude). The quantity Re0 (9) used in
Desjardins et al. (1999) is scaled with respect to an
arbitrary length: the width of the pure Ekman layer
at the poles and can thus be compared with the same
quantity for the Earth’s core.

In a previous work (Desjardins et al., 1999), we
derived analytically a range of Reynolds number for
which nonlinear stability holds. More precisely, defin-
ing the function Ξ by

Ξ(k)=
√

1 + k2

∫ +∞

0
z(|cos(kz)| + |sin(kz)|) e−z dz,

(11)

it was shown that if the Reynolds number Re attached
to the boundary layer satisfies

Re = Re0

√
tan(τ/2)

cos θ
< Res = 1

Ξ(tan(τ/2))
, (12)

the corresponding MHD flow is nonlinearly stable
(see Eq. (7) for the definition of tan(τ /2) and Fig. 2).
Note that Ξ (k) is not defined here as in Desjardins
et al. (1999), since we consider the local value of the
Reynolds number Re instead of a global estimate Re0.
In our previous study, we concluded that assuming an
order one Reynolds number Re0 for the boundary layer
near the CMB, stability could only be demonstrated
locally near the poles if the Elsasser number was above
unity. Res is probably a poor bound on Re. We will now
study the linearized problem to establish with accuracy
the boundary layer Reynolds number for instability.

Numerical simulations will yield upper bounds Rei
such that if

Re > Rei (Λ, θ), (13)

Fig. 2. Representation of an analytical result from our previous
study (Res ), here using present conventions. If the Reynolds num-
ber Re attached to the boundary layer is lower than Res , non-linear
stability is demonstrated. We concentrate in the sequel on bound-
ary layer Reynolds number above Res .

the Ekman–Hartmann flow is linearly unstable. We
establish that the flow is then unstable in the following
sense: there exists arbitrarily small initial perturbations
which grow exponentially in time in the linear phase
and reach a non negligible size (i.e. the supremum of
the difference between the velocities of the perturbed
flow and the unperturbed one does not go to 0 as ε goes
to 0). However, we do not demonstrate mathematically
that the energy of the perturbation grows significantly.
The corresponding non-linear analysis is postponed to
further study.

In the absence of electromagnetic coupling and
for the co-latitude θ = 0, Lilly (1966) showed
that the pure Ekman flow is linearly unstable to
two-dimensional disturbances when the boundary
layer Reynolds number exceeds a critical value
(Rei � 54.16). This study was extended to the
Ekman–Hartmann profile by Gilman (1971) (still for
a horizontal boundary). Leibovich and Lele (1985)
extended this approach in the pure Ekman case to a
spherical boundary and demonstrated the importance
of the horizontal component of Ω. The case of the
Ekman–Hartmann layer near a spherical boundary (in
the sense Ω and B0 vary with θ ) is addressed in the
present work.

A finer estimate than (4) can be achieved for geo-
physical parameters (Poirier, 1991, 1994; Hulot et al.,
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1990). We use the radius of the core as length L
and the following values: ||Bd || � 5 × 105 nT, ρ �
104 kg m−3, µ0 � 4π × 10−7 T m A−1, η � 1.1 m2

s−1, ν � 10−6 m2 s−1,Ω � 7.3 × 10−5 rad s−1 and
||u|| � 10 km per year � 3 × 10−4 m s−1.

This yields the following values for non-dimensional
numbers

Λ � 0.13, ε � 6 × 10−7, E � 5.5 × 10−16,

Rm � 9.5 × 102, Re0 � 35.6. (14)

A few words on two important simplifications are
needed. First, we will neglect large scale electrical cur-
rents (corresponding to curl B0) in their interactions
with the induced field and second we only consider
the dipolar component of the magnetic field (Bd ) when
constructing B0 and evaluating Λ.

The interaction of small scale currents curl b with
large scale field B0 is of order 1/λ. The interaction of
large scale currents curl B0 with b, however, does not
enter this order. Physically, this last term is scaled as
1/L, where L is based on magnetic diffusion. Clearly
for the limits considered here (4) the ratio of viscosity
to magnetic diffusivity (Rm Eε−1) tends to zero and
this effect can be neglected.

The toroidal component of the field can indeed be
neglected here, as it needs to vanish near the insulating
mantle. Writing the magnetostrophic equilibrium near
the core mantle boundary would yield

∂Btor

∂r
∼ µ0ρ

2Ωu

Bd
� 4 × 10−7 T m−1. (15)

It is clear that Btor would remain much smaller than
Bd in the area of interest for our study (a few meters
thick).

The Elsasser number thus evaluated is lower than
unity and the Reynolds number Re0 greater than 1,
it is then reasonable to study precisely the onset of
instability, since non-linear stability was not estab-
lished in Desjardins et al. (1999) for this parameter
régime.

2.3. Linearized system

Let us consider linearized perturbations (u, p, b) of
the stationary profile (8). Magnetic perturbations are
scaled according to B = eB +Rmb. Coordinates are

scaled as x′ = λ−1x, t ′ = λ−1t . Then, dropping the
primes, we obtain

ε

λ
(∂tu + U · �u + u · �U)− E

λ2
�u + �p

λ

= Λ

λ
curl b × eB − eΩ × u

+ΛRm

λ
(curl B × b + curl b × B), div u = 0,

(16)

Rm

λ
(∂tb + U · �b + u · �B − b · �U − B�u)

= 1

λ
curl(u × eB)+ 1

λ2
�b, div b = 0. (17)

We will consider perturbations which are plane trav-
eling waves (see Fig. 1) and we will change the refer-
ence frame (x, y, z) to (x′, y′, z) such that x′ derivatives
of (u, p, b) vanish. We, therefore, introduce the angle
δ between the intersection of the plane of the waves
and the plane (x, y) and the projection of e and e′ on
the plane (x, y).

We then rotate coordinates (x, y) by an angle δ to
get (x′, y′). In the sequel, the primes of x′ and y′ are
dropped. In this new frame, (u, p, b) are independent
of x, and

eΩ = (−sin θ cos δ, −sin θ sin δ, cos θ),

eB = (sinψ cos δ, sinψ sin δ, cosψ).

We use the velocity components u along e′
1, the

field component b1 along the same axis scaled as
β̃ = b1/(λ cosψ) and stream function φ̃ with vector
potential X̃ in the normal plane.

We now take traveling wave type perturbations φ̃,
X̃ , u and β̃ as follows:

φ̃(t, y, z) = φ(z) eiα(y−ct),

X̃ (t, y, z) = X (z) eiα(y−ct),

u(t, y, z) = µ(z) eiα(y−ct),

β̃(t, y, z) = β(z) eiα(y−ct). (18)

The set of differential equations governing these per-
turbations (demonstration is given in the Appendix A)
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can be written as

ciα Re(φ′′ − α2φ)

= −(φ′′′′ − 2α2φ′′ + α4φ)

+2 tan
τ

2
(−µ′ + iα tan θ sin δ µ)

+iαV Re(φ′′ − α2φ)− iα ReV ′′φ

−
(

1 − tan2 τ

2

)
(X ′′′ − α2X ′

+iα tanψ sin δ (X ′′ − α2X )), (19)

ciα Reµ

= −(µ′′ − α2µ)

+2 tan
τ

2
(φ′ − iα tan θ sin δ φ)

+iα Re(V µ+ U ′φ)

−
(

1 − tan2 τ

2

)
(β ′ + iα tanψ sin δ β), (20)

iα tanψ sin δµ+ µ′ + β ′′ − α2β = 0, (21)

iα tanψ sin δ(φ′′ − α2φ)

+φ′′′ − α2φ′ + X ′′′′ − 2α2X ′′ + α4X = 0. (22)

The coefficients U and V vary with z, what makes
numerical computations necessary. They also depend
on γ 0, minimization over γ 0 is, thus, required to get
the most unstable configuration.

2.4. Boundary conditions

The system of differential equations expressed
above requires 12 boundary conditions. We first state
that velocity vanishes at z = 0, so that

φ = 0, φ′ = 0, µ = 0 at z = 0.

Moreover, we assume that the tangential component of
the electric field and the magnetic field are continuous
across the interface (Roberts, 1967b). In the insulator,
we can use the x invariance to write the magnetic field
b in terms of β̃ and vector potential X̃ , as in Section
2.3, which leads to

�y,zX̃ = 0, ∂zβ̃ = ∂yβ̃ = 0,

∂zE1 = Rm∂t∂zX̃ , ∂yE1 = Rm∂t∂yX̃ .

Hence, taking E and b in the insulator as in (18), we
deduce

E1 = −iαcRmX , and X ′′ − α2X = 0.

In particular, X ′(0−) = αX (0−), and the continuity
of E1 across the interface reduces to

X ′′(0+) = αX (0)(α − icRm).

At infinity, we assume, as in Lilly (1966), that
∂zu, ∂zv, w, and ∂2

z b1, ∂2
z b2, ∂zb3 vanish, and write

φ = 0, φ′′ = 0, µ′ = 0, and β ′′ = 0,

X ′ = 0, X ′′′ = 0 at infinity.

Thus, the 12 conditions needed are expressed.

2.5. Relevant equilibria

As stressed in Leibovich and Lele (1985), in the
pure Ekman case (Λ = 0), the θ and δ dependence of
system (19–22) only relies on the parameter

ξ = tan θ sin δ.

First, it is useful to note that this parameter vanishes
in the horizontal plane case. This highlights that
though the laminar layer only depends on the normal
component of Ω, the instabilities are affected by its
horizontal component as well (Leibovich and Lele,
1985). The parameter ξ accounts for this effect.

It should be noted that changing δ into π − δ does
not modify ξ , and thus does not affect the Reynolds
number. This implies that if δ �= π/2, two instabilities
with angles δ and π − δ occur for the same critical
Reynolds number.

The minimizing value ξ∗ of ξ is obtained in
Leibovich and Lele (1985). For ξ = ξ∗, the boundary
layer Reynolds number for instability (Rei) is mini-
mal. At low values of θ , ξ = ξ∗ cannot be realized
and δ = π/2 is required to have large values of ξ ,
as close as possible to ξ∗. Past a critical co-latitude
θ∗ = atan(ξ∗) � 63.8◦, the value of ξ , and thus, the
Reynolds number for instability, can be maintained
constant (ξ = ξ∗) through a proper variation of the
angle δ

δ = δ1 = asin

(
ξ∗

tan θ

)
,

or

δ = π − δ1.
Near the equator, as tan θ increases, δ1 tends to zero,
and the rolls get aligned with e1 (north–south).
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In the mixed Ekman–Hartmann régime (Λ �= 0),
relevant to the Earth core, for an arbitrary imposed
magnetic field, a similar reasoning leads to introducing

ξ ′ = tanψ sin δ.

The boundary layer Reynolds number for instabil-
ity is then a function of both ξ and ξ ′, and the two
parameters describe the full θ , ψ , δ dependence.
Note that both ξ and ξ ′ vanish for θ = ψ = 0. The
terms, respectively, reflect the role of the horizontal
component of Ω and B0 on the instabilities.

If the imposed field varies in latitude as an axial
dipole, ψ and θ are related through (5), so that con-
stant values for ξ and ξ ′ cannot be maintained through
a simple variation of δ, and thus, the critical Reynolds
number will not be constant at low latitudes onceΛ �=
0. Note that neither ξ nor ξ ′ is affected by a, modi-
fication of θ in π + θ , however, the profiles (8) are
modified and we arbitrarily chose to restrict, our study
to one hemisphere: θ ∈ [0, π/2].

Note also that neither ξ nor ξ ′ is affected by a mod-
ification of δ in π − δ. This modification, therefore,
leaves the Reynolds number unaffected, as was the
case previously in the non-magnetic régime (both an-
gles are unstable for the same boundary layer Reynolds
number).

Because we assumed a perfectly dipolar variation of
the static magnetic field (Eq. (5)), the value θ = π/2
is singular both for the Ekman layer Greenspan (1969)
and the Hartmann layer (Roberts, 1967a). As the value
of θ increases toward the equator, the stable mixed
Ekman–Hartmann boundary layer, however, degener-
ates to an Ekman layer. Indeed for (π/2 − θ) < Λ−1

rotation dominates. As a consequence, the equatorial
singularity relevant to our study is the Ekman layer
singularity. It scales as E1/5 in the axial direction and
as E2/5 in the radial direction (e.g. Kleeorin et al.,
1997). Our study is limited by the size of this singu-
larity (which we do not intend to describe here), and
thus, to values of θ smaller than π/2 −E1/5. For geo-
physically realistic values of E, a thin strip of width
10−3 rad near the equator is to be excluded.

The instability Eqs. (19)–(22) in the magnetic
régime (Λ �= 0) still differ from the simple Ekman
equations (i.e.Λ = 0) near the equator, because of the
term associated with the horizontal component of the
imposed magnetic field. But, as in the non-magnetic
régime, δ must tend to zero (in order to maintain ξ and

ξ ′ finite), also for the field we consider tan(τ /2) tends
to unity. As a consequence, all magnetic effects van-
ish near the equator, and the instability itself evolves
toward the pure Ekman layer instability. Physically,
this is related to the invariance of the pure Ekman
layer instability with respect to the direction e1, the
horizontal component of the imposed magnetic field
lies precisely along this direction near the equator
(δ = 0) and does not affect the instability.

3. Numerical results

3.1. Validation

We developed a Fortran-90 code to compute the
critical Reynolds number Re above which instabili-
ties appear, resolving Eqs. (19)–(22). Eigenvalues of
complex matrices were computed using the EISPACK
library from Netlib (http://netlib.bell-labs.com/netlib/
eispack). The gradient algorithm was parallelized us-
ing the MPI library. Results were tested successfully
against previous studies: in the non-magnetic régime
(Leibovich and Lele, 1985; Lilly, 1966), as well as in a
horizontal plane in the pure Hartmann limit (Roberts,
1967b) and in the mixed Ekman–Hartmann régime
(Gilman, 1971).

3.2. Results

We find that the layer is linearly unstable if Re0 >

Rei (Λ, θ). We represent in Fig. 3 the critical Reynolds
number Rei versus the co-latitude θ , for different val-
ues of the Elsasser number Λ ∈ {0, 0.3, 1}. One can
note on this figure that the critical Reynolds number
for instability is no longer independent of θ at low
latitudes once Λ �= 0 as expected from the discussion
in Section 2.5.

We can then construct an approximate estimate for
the local boundary layer Reynolds number at the CMB

ReBL = ε
√

2

E

√
tan(τ/2)

cos θ
. (23)

Note, however, that this estimate is proportional to the
estimation on ε, and thus, ||u||. The estimation (14)
is based on secular variation studies (Bloxham and
Jackson, 1992; Hulot et al., 1990) and represent a
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Fig. 3. Boundary layer Reynolds number for instability for three different values of the Elsasser number vs. co-latitude θ . An estimation
of the boundary layer Reynolds number near the core–mantle boundary is also represented for comparison.

typical velocity near the CMB. It is clear, however,
that the velocity could locally be at least twice as large
and could also be several order smaller at other places;
the value of ReBL would then undergo the same vari-
ations. It is, thus, important to consider ReBL as an
estimate only. ReBL computed from (14) and (23) is
also represented on Fig. 3.

For the parameter range (14) relevant to the Earth
core, there exists a critical co-latitude θc below which
the Ekman–Hartmann boundary layer can be linearly
unstable. From the estimated ReBL, one would get
θc � 45◦.

We would like to stress that, we previously es-
tablished in Desjardins et al. (1999) the value below
which non-linear stability could be proven (Res).
This value being estimated analytically, it probably
represents a poor estimate. However, comparing this
value (see Fig. 2) with the present results (Rei), a
coefficient close to 50 is obtained for Λ = 0.3. This
much lower value of Res could suggest, a possible
subcritical bifurcation of the Ekman–Hartmann layer.

Let us now describe physically the instability (for
Re = Rei). The angle δ at which the instability grows
is represented versus co-latitude θ on Fig. 4. The in-
stability is aligned with the eφ , direction near the pole
for the three Elsasser numbers considered here. Past
a critical co-latitude two branches of solution exist,

corresponding to δ and π − δ, as described in Section
2.5. This critical value of the co-latitude (noted θ∗ in
the non-magnetic case) decreases with Λ, as the hori-
zontal component of the imposed magnetic field lies
in the eθ direction and magnetic effects reduce shear
in this direction (maximum when δ = 90◦). Near the
equator, the instability is aligned with eθ in the mag-
netic régime as in the Λ = 0 case.

Fig. 4. Angles δ for instability with respect to eθ represented
vs. the co-latitude θ . The instability develops in the eφ direction
near the poles. Past a critical co-latitude (decreasing with Λ) two
branches of solutions exist. The instability is aligned with eθ near
the equator.
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Fig. 5. Angles γ on the left and γ0 = δ + γ (between the eθ direction and U∞) on the right, both represented vs. co-latitude θ .

Angles γ between e′
1 and the U∞ flow correspond-

ing to these instabilities (which enters Eqs. (19)–(22)
through the expressions of U and V) are represented
in Fig. 5, together with γ0 = δ + γ corresponding to
the angle between the eθ direction and U∞ (see also
Fig. 1, for angles construction).

The wave number α and the corresponding phase
velocity α×cr are represented on Fig. 6. The solution
propagates in the azimuthal direction in the equatorial
region and towards the poles away from the equator.

3.3. Geophysical discussion

When trying to develop an intuitive understanding
of the stability of the boundary layer near the Earth’s

Fig. 6. Wave number α on the left and the corresponding phase velocity α × cr on the right, both represented vs. co-latitude θ .

CMB (an Ekman–Hartmann type of boundary layer),
one can hesitate between two main lines of thinking.
The first one states that the Reynolds number in the
core is so high (around 108) that, one can hardly imag-
ine anything laminar in the flow. The other lines that
the layer is so thin (LE1/2 would represent less than a
meter) that instabilities are unlikely to develop there.
Probably the first geophysically relevant result of our
work is to show how these two effects compensate and
how the boundary layer near the core mantle boundary
is extremely close to instability.

For geophysically realistic values of the control pa-
rameters, a critical band is found to extend over some
45◦ away from the equator (see Fig. 3). It is, however,
useful to recall that ReBL is only an estimate based on
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a typical value of ||u|| and that its value is, therefore
indicative.

The critical value for instability being so close to
geophysical estimates, it appears useful to discuss
with additional care the limitations of our study. We
computed here the minimal Reynolds number after
minimizing on γ (measuring the direction of U∞).
This direction could, in the Earth, be far from opti-
mum. For example, an optimal Rei , was obtained near
the equator for γ0 = δ + γ � −10◦ whereas in the
Earth, flows near the CMB inferred from variations of
the magnetic field (Bloxham and Jackson, 1992) are
rather found to be aligned in the longitudinal direction
near the equator (γ0 = δ + γ � ±90◦). Also, we as-
sumed a perfectly spherical boundary. This, however,
seems reasonable as bumps at the CMB are known
to be small about 4 km for wavelength larger than
300 km (Garcia and Sourian, 2000) and they would
only slightly modify the results. We assumed that the
static field varies in latitude as a perfect dipole, this
certainly is not the case in the Earth. In particular,
as the geographic equator and the magnetic equator
would differ almost everywhere the normal compo-
nent of the field may stabilize the flow near the geo-
graphic equator. This effect is, however, expected to
be small. We assumed a perfectly insulating mantle.
This is a reasonable assumption, as conductivity of
the lower mantle is known to be very small (Alexan-
drescu et al., 1999) and the existence of a thin conduc-
tive layer appears most unlikely (Poirier et al., 1998).
There are also some physical effects, not included
in our model, that could alter the critical boundary
layer Reynolds number. In particular effects of den-
sity perturbations were neglected. Buoyancy effects
could modify the stability of the layer (see Braginsky
(1999) for geophysical discussion of density profile
near the CMB). Thermal effects could also possibly
be associated with current sheets near the insulating
mantle, this could help destabilize the layer. Also we
insist again that, when comparing results with the
estimated boundary Reynolds number near the CMB

Re

(
∂tu+V ∂yu+wdU

dz

)
+λ

2

E

∣∣∣∣∣
−v cos θ − w sin θ sin δ
u cos + w sin θ cos δ

−v sin θ cos δ+u sin θ sin δ
+ λ
E

∣∣∣∣∣
0
∂yp −�y,zu
∂zp

= Λλ

E

∣∣∣∣∣
∂zb1 cosψ + ∂yb1 sinψ sin δ
−∂yb1 sinψ cos δ − j1 cosψ

−∂zb1 sinψ cos δ + j1 sinψ sin δ
(A.1)

(ReBL), only an order of magnitude was used for a
||u||. The problem of possible boundary layer insta-
bilities near the CMB clearly deserves further study

(especially concerning more complicated large scale
fields and the effects of the direction of U∞ and of
the non dipolar component of the field), such study
could rely on field map at the CMB and core flows de-
rived from the secular variation of the field. This could
also allow to test a possible relation between bound-
ary layer instabilities and rapid geomagnetic impulses
(or jerks) observed some eight times in the last cen-
tury (Alexandrescu et al., 1995, 1996; Courtillot and
Le Mouël, 1984; Mac Millan, 1996).
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Appendix A. Mathematical construction of
instability equations

Let us first recall that we have assumed in (4) that

ε → 0, Λ ∼ O(1), εRm → 0, E ∼ ε2.

and that the magnetic field B was expended as B =
eB +Rmb.

We consider perturbations of the stationary profile
(8). However, B1 and B2 being of order E1/2, only eB
is relevant here.

As b is of order ε, we can rewrite (16)–(17) as

where j1 = ∂yb3 − ∂zb2, and

λ(sinψ sin δ ∂yu + cosψ ∂zu)+�y,zb = 0 (A.2)
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We will now use the velocity and field components
along the axis of instability; in the normal plane, the
divergence free condition on u and b yield the exis-
tence of a stream function φ̃ and a vector potential X̃
such that

v = −∂zφ̃, w = ∂yφ̃,
b2 = −λ cosψ ∂zX̃ , b3 = λ cosψ ∂yX̃ .

Denoting β̃ = b1/(λ cosψ), ζ̃ = ∆y,zφ̃ and η̃ =
∆y,z,X̃ and taking the first component of the curl of
Eqs. (A.1) and (A.2), we deduce

Re(Dt ζ̃ + V ∂yζ̃ − V ′′∂yφ̃)

+λ
2

E
(−cos θ ∂zu+ sin θ sin δ ∂yu)−�y,zζ̃

= λ2Λ cosψ

E
(cosψ ∂zη̃ + sinψ sin δ ∂yη̃), (A.3)

Re(∂tu+ V ∂yu+ U ′∂yφ̃)

+λ
2

E
(cos θ ∂zφ̃ − sin θ sin δ ∂yφ̃)−�y,zu

= λ2Λ cosψ

E
(cosψ ∂zβ̃ + sinψ sin δ ∂yβ̃), (A.4)

sinψ sin δ ∂yu+ cosψ ∂zu+ cosψ�y,zβ̃ = 0,

(A.5)

sinψ sin δ ∂y ζ̃ + cosψ ∂zζ̃ + cosψ �y,zη̃ = 0.

(A.6)

We now take traveling wave type perturbations φ̃, X̃ ,
u and β̃ as follows:

φ̃(t, y, z) = φ(z) eiα(y−ct),

X̃ (t, y, z) = X (z) eiα(y−ct),

u(t, y, z) = µ(z) eiα(y−ct),

β̃(t, y, z) = β(z) eiα(y−ct), (A.7)

and obtain an eigenvalue problem expressed in
terms of a system of four ordinary differential
equations:

ciα Re(φ′′ − α2φ)

= −(φ′′′′ − 2α2φ′′ + α4φ)

+λ
2

E
(−cos θµ′ + iα sin θ sin δµ)

+iαV Re(φ′′ − α2φ)− iα ReV ′′φ

−Λλ
2 cosψ

E
(cosψ(X ′′′ − α2X ′)

+iα sinψ sin δ(X ′′ − α2X )) (A.8)

ciα Reµ= −(µ′′ − α2µ)

+λ
2

E
(cos θ φ′ − iα sin θ sin δ φ)

+iα Re(V µ+ U ′ φ)

−Λλ
2 cosψ

E
(cosψ β ′ + iα sinψ sin δ β),

(A.9)

iα sinψ sin δ µ+ cosψ µ′ + cosψ(β ′′ − α2β) = 0,

(A.10)

iα sinψ sin δ(φ′′ − α2φ)+ cosψ(φ′′′ − α2φ′)
+cosψ(χ ′′′′ − 2α2χ ′′ + α4χ) = 0 (A.11)

where the expressions V = V (z), V ′′ = V ′′(z), U ′ =
U ′(z) in the reference frame (e′1, e

′
2, e

′
3) are obtained

replacing γ 0 by γ = γ0 − δ in (8).
Using the expression tan τ = cos θ(Λ cos2 ψ)−1 =

Λ−1
⊥ , the system (A.8)–(A.11) can be rewritten as

ciα Re(φ′′ − α2φ)

= −(φ′′′′ − 2α2φ′′ + α4φ)

+2 tan
τ

2
(−µ′ + iα tan θ sin δ µ)

+iαV Re(φ′′ − α2φ)− iα ReV ′′φ

−
(

1 − tan2 τ

2

)
(X ′′′ − α2X ′

+iα tanψ sin δ (X ′′ − α2X )) (A.12)

ciα Reµ

= −(µ′′ − α2µ)+ 2 tan
τ

2
(φ′ − iα tan θ sin δ φ)

+iα Re(V µ+ U ′φ)−
(

1 − tan2 τ

2

)

×(β ′ + iα tanψ sin δ β) (A.13)
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iα tanψ sin δµ+ µ′ + β ′′ − α2β = 0, (A.14)

iα tanψ sin δ(φ′′ − α2φ)+ φ′′′ − α2φ′

+X ′′′′ − 2α2X ′′ + α4X = 0 (A.15)
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