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Abstract

Motion
	

is generated in a rotating spherical shell, by a slight differential rotation of the inner core. We show how the
numerical solution tends, with decreasing Ekman number, to the asymptotic limit of Proudman [J. Fluid Mech. 1 (1956)
505–516]. Starting from geophysically large values, we show that the main qualitative features of the asymptotic solution
show up only when the Ekman number is decreased below 10
 6

�
.� Then, we impose a dipolar and force-free magnetic field

with internal sources. Both the inner core and the liquid shell are electrically conducting. The first effect of the Lorentz
force is to smooth out the change in angular velocity at the tangent cylinder. As the Elsasser number is further increased,
the Proudman–Taylor constraint is violated, Ekman layers are changed into Hartmann type layers, shear at the inner sphere
boundary vanishes, and the flow tends to a bulk rotation together with the inner sphere. Unexpectedly, for increasing
strength of the field, there is a super-rotation (the angular velocity does not reach a maximum at the inner core boundary
but in the interior of the fluid) localized in an equatorial torus. At a given field strength, the amplitude of this phenomenon
depends on the Ekman number and tends to vanish in the magnetostrophic limit. 
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1. Introduction

As
�

we try to model the Earth’s dynamo, we face
su� ccessive difficulties. In particular, the kinematic
vi� scosity of the fluid is very low and this lets other
forc

�
es dominate viscous diffusion except on very

�
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short� scales. We hope that the study of some sim-
pl� ified problems will shed light on the numerical
d

�
ifficulties associated with the limit of small Ekman

numbe� rs. We present here a study of such a prob-
lem,

�
axisymmetric, where all motions are generated

by
�

differentially rotating boundaries in the presence
o� f an imposed magnetic field. We will study the
st� eady solution for a wide range of parameters, and
tr

�
y to infer conclusions on the asymptotic limit. The

sol� ution involves nice examples of boundary and in-
t

�
ernal shear layers driven by Ekman pumping and � or�

Hartmann electric currents.
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F
�

or one part (in the absence of a magnetic field),
t

�
he motivation of this work is to use our three-

di
�

mensional convection code on a simple problem,
easier� to solve, and for which the asymptotic solu-
t

�
ion is well understood after the work of Proudman

[1] and Stewartson [2]. This allows us to test the
pe� rformances and the limitations of our approach.
This problem, though much easier then 3D MHD
co nvection (it is axisymmetric, no heat equation con-
sid� ered), is nevertheless attractive since it possesses
a! non-trivial solution in the asymptotic limit of van-
i

"
shing viscosity. Moreover, this problem presents a

si� ngularity at the cylinder tangent to the inner core
w# hich is a major difficulty for a spherical numerical
c ode to deal with. In this respect, we complete the
pre� vious numerical study of Hollerbach [3] restricted
to

�
larger Ekman values.
On

$
the other hand, the problem has not been

st� udied before in the presence of a magnetic field
a! nd with a conducting inner core. Hopefully, this
numerical study may guide future analytical works.
Kleeorin et al. [4] have already studied analytically
a! similar problem, but for an insulating inner core.
T

%
his makes an important difference but they have

b
�

een nevertheless able to compare some features of
t

�
heir solution with our numerical findings.

F
�

inally, recent claims of a discovery of a differ-
e� ntial rotation of the Earth’s inner core [5,6] adds, if
necessary, further motivation to understand better the
flow between slightly differentially rotating spheres,
a! nd the effects of an imposed magnetic field on this
flow.

2. Modelling

A
�

n incompressible fluid of kinematic viscosity & ,
de

�
nsity ' , magnetic diffusivity ( , magnetic perme-

ab! ility ) 0
* , is enclosed between two spheres. The

i
"
nner solid body is rotating slightly faster than the

o� uter sphere (Fig. 1). Their rotation rates are, respec-
ti

�
vely, + 1 , - . / an! d 0 . The equations are written in

t
�
he rotating frame where the outer sphere is at rest.

Usi
1

ng the outer sphere radius ro2 as! length scale,
t

�
he period of angular rotation of the inner sphere with

respect to the outer one [ 3 4 ]
5 6 1 as! unit of time, and

t
�
he maximum amplitude of the imposed magnetic

field B0
* a! t the outer sphere to scale magnetic field B,

Fig. 1. The geometry of the problem is represented here in
a meridional plane. The flow is driven by a slight differential
rotation between the inner and the outer spheres, and remains
axisymmetric.

t
�
he momentum equation and the induction equation

w# rite:
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Whe
h

re zE i
"
s the unit vector parallel to the axis of

ri otation, and the centrifugal acceleration is included
in

" j
. The geometry is fully determined by the ratio

rk i l rk o2 whi# ch has been kept constant and equal to 0.35
t

�
hroughout this study. The outer boundary m rk n 1o

is insulating and rigid p u9 q 0
U r

. The inner core has
be

�
en taken as either insulating or conducting, with

t
�
he same conductivity as the fluid and u9 s st eu v

whe# re w st x y x zz { de
�

note cylindrical coordinates. The
di

�
mensionless parameters are the Ekman number E,

t
�
he Elsasser number | , and the magnetic Prandtl
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numbe� r P
}

m:

E
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rk 2
�
o2 �

� � B
� 2

0
*� � � � � P

�
m �

�
� (2)

�

Four dimensionless numbers, � , E, � , Pm� a! re thus
ne� cessary to describe the problem.

Th
%

e computer code is written in such a way that
w# e can investigate the effects of the nonlinear terms
u� � u� an! d � � � u� � B

� �
. However, these terms play

no� part in the solution when � i
"
s small enough� � �

E
  1¡ 3

¢ £
. With ¤ lar

�
ge enough, 3D instabilities

ar! e expected [7,8]. This study focuses on the linear
sol� ution. Then, the induced perturbation b

¥
to

�
the

force-free imposed field can be scaled such that:

B
� ¦

B
�

0
* § ¨ © P

�
m E

  ª 1 « b
¥

(3)
�

a! nd the system (Eq. 1) reduces to:
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Two parameters only (E, × )
Ø

fully determine
stead� y state solutions. We have not investigated tran-
si� ent solutions and we have found (covering a large
rai nge of parameters E

 
, Ù )

Ø
that, within this frame

(
�
axisymmetric fields and Ú Û 1), the solution always

settles� down to a steady state.

3
Ü

. Numerical model

V
Ý

ector fields are decomposed into poloidal and
to

�
roidal parts:

u� Þ ß à á â ã ruä på æ ç è é ruä t
ê
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�

b
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�

Appl
�

ying r� � 	 
 an! d r� � �  � � t
�
o Eq.4 ,w e get

th
�

e set of scalar equations:

� �
�
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whe# re L2
� is the Beltrami operator

L
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2 Z
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� \
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sin� a
b
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sin� 2 d
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�
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(8)
�

an! d Q (i
�

ntroduced in Roberts [9]) is the operator
d

�
efined as:

Q h z¸ i j k 1
2 l L2

� z¸ m n o z¸ p q L2
� r (9)

�

Th
%

e scalar uä t
ê , uä på , b

ú
t

ê , b
ú

på ar! e decomposed as:

X
s t

l
u xv

l
u w rk x Y 0

*
l

u (10)
�

whe# re xv
l

u y r z is sampled at discrete points. The cross
produc� ts with B

�
0

* t
�
erms are computed in the physical

spa� ce on Gauss collocation points, and are re-inte-
g{ rated in the spectral space. Vertical discretization
is

"
achieved using a Finite Difference scheme on a

non-uni� form grid stretched in the vicinity of the
bounda

�
ries. It required 3000 shells to resolve the

st� ructures corresponding to an Ekman number of
10| 8. Eq. 7 is time stepped until the solution changes
v� ery little. Time integration is performed using a
C

}
rank–Nicholson scheme for diffusion terms, and an

Adams–Bashforth scheme for other terms. Hence,
th

�
e calculation of the diffusion term in each of Eq. 7

requires a product and an inversion of either 3- or
5-banded

~
diagonal matrix at each time step.
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4.
�

Solution in the non-magnetic case

In a first step, we study how the solution in the
non-magnetic case depends on the Ekman number E
a! nd we recover the asymptotic solution of Proudman
a! nd Stewartson [1,2].

4.1.
�

Ekman layers

The numerical study of Ekman layers raises im-
port� ant problems that can be partly alleviated by
usi� ng a radial grid, which is stretched in the vicinity
of� the two boundaries. It is essential to determine
how many points are needed to resolve these viscous
layers properly. Another difficulty is due to the steep
gra{ dient of the solution in these layers. Spurious os-
cillatio ns often arise in the vicinity of shear layers;
it

"
is difficult to ensure that they are kept small, that

t
�
hey do not spoil the solution (they do not blow up),

an! d that they do disappear in the steady state regime
a! fter time integration of transient states. Around ten
poi� nts, in the layer, are found to be needed (if reg-
u� larly spaced) to resolve the structure correctly with
our� finite difference scheme. When only three points
a! re used, the structure of the layer is not properly
so� lved, the calculated suction is erroneous, and this
has important consequences on the main flow com-
put� ed outside the layer, as can be seen on Fig. 2.

4.2. The Proudman–Stewartson solution

The problem we consider is strongly dominated
b

�
y rotation. In the limit of small viscosity, all mo-

t
�
ions in the interior should satisfy the Proudman–

Taylor theorem (vertically invariant flow):

u� � uä � � s� � eï � � 1

s� � u� pol� � s� � � e� � (11)
�

T
%

he cylindrical surface that touches the inner
sphe� re (the axis being the axis of rotation) will
be

�
referred to as the tangent cylinder. Outside the

tan
�

gent cylinder, the asymptotic state is rigid rotation
wi# th the same angular velocity as the outer sphere:

u� � � s� � � u� pol� � s� � � 0
Ä

(12)

Inside the tangent cylinder the angular velocity of
ge{ ostrophic cylinders in the asymptotic regime is de-
t

�
ermined by the Proudman constraint in the volume

a! nd by Ekman pumping at the boundaries [1]:

u� � � s� � � s� � 1 � s� 2
� �

1� 4
 

¡
1 ¢ s� 2 £ 1¤ 4 ¥ [1 ¦ § s� ¨ rk i © 2]

5 1ª 4
(13)

�

u� pol� « s� ¬  E1® 2s� 2

2̄ ° 1 ± s� 2 ² 1 ³ 4 ´ [1 µ ¶ s� · ri ¸ 2]
5 1¹ 4 º (14)

�

whe# re the notations of Proudman are related to ours
by:

�
» ¼ ½

u� pol� ¾ ¿ À Á su� Â (15)
�

The resulting cylindrical shear layer was investi-
ga{ ted by Stewartson [2] who proved that it does not
e� xert a control on the interior flow. This layer allows
th

�
e flow to recirculate from one Ekman layer to the

o� ther and also accommodates the jump in azimuthal
v� elocity. Stewartson showed that the shear layer can
be

�
divided into three nested layers. In the two outer

layers, the zÃ -dependence of u� Ä may be neglected and
i

"
nterior viscous stresses on the cylinders balance vis-

c ous stresses on the boundaries. As a consequence,
u� pol� de

�
pends on zÃ , as can be seen from the Å co m-

pone� nt of the momentum equation. For s� Æ rk i, the
wi# dth of the layer is O(

�
E

  1Ç 4)
Ø

and both u� È an! d u� pol�
de

�
crease exponentially to zero. For s� É rk i, the width

o� f the layer is O(
�
E2Ê 7

Ë
) a

Ø
nd the s� -dependence of the

sol� ution is given by Bessel and Gamma functions.
The remaining discontinuity in u� pol� is removed in
t

�
he inner layer of width O(

�
E1 Ì 3

¢
)

Ø
. This layer is fully

ageostrophic.! Stewartson’s analysis is well illustrated
by

�
the numerical study.

4.3.
�

Numerical study

The solutions are calculated for different Ekman
numbers. As the Ekman number is decreased, the
si� ngularity on the tangent cylinder develops, and
more and more harmonics are required to represent
t

�
he associated fields. Harmonics up to degree 1300

we# re needed to compute the solution for E Í 10Î 8.
If

Ï
one was to use fewer harmonics, this would lead to

o� scillations comparable to Gibbs phenomenon (see
Morse

Ð
and Feshbach [11]).

Th
%

e results published by Hollerbach [3], for Ek-
maÑ n numbers E

 
H Ò 10Ó 5

Ô
ar! e reproduced (Fig. 3).

W
h

e note that his Ekman number E
 

H is
"

related to ours
by:

�
E

 
H

Õ Ö 2 × 37
Ø

E (16)
�



E
�

. Dormy et al. / Earth and Planetary Science Letters 160 (1998) 15–30 19

Fig. 2. Ekman spirals. u Ù Ú r versus u Û Ü r for different number of grid points. Ý Þ ß à 12, E á 10â 5
ã
. These results compare very well with

the
ä

linear theory [10].

Fig. 3. Meridional section of angular velocity and upolå for decreasing values of the Ekman number. First two figures compare very well
with fig. 3 of [3]. The qualitative asymptotic behavior of flow synchronization with the inner core rotation close to sæ ç 0 è 35 can be
observed only on the two last figures.

W
h

e have recovered the interior geostrophic solu-
t

�
ion found by Proudman [1]. The meridional flow

scales� as O(
�
E1é 2).

Ø
The asymptotic behaviour of flow

sync� hronization with the inner core rotation, as the
tan

�
gent cylinder is approached, can be qualitatively

obse� rved only when E ê 10ë 6
ì

(se
�

e Fig. 4). We have
sho� wed uí î ï s� an! d uí polð a! s a function of zÃ an! d r w# hereas
w# e are, of course, interested by the (s� ,zÃ )-st

Ø
ructure

of� the solution; numerical convenience dictated our
ch oice.
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Fig. 4. Comparison with the Proudman solution. Angular velocity u ñ ò sæ and poloidal scalar upolå E1 ó 2 versus sæ at r ô 0õ 7 for different
Ekman numbers. The Proudman solution is shown with a thin solid line. The angular velocity solutions for E ö 10 ÷ 6

�
do not show the

qualitative behavior of the asymptotic limit.

Fig.
ø

5. Comparison with the Stewartson asymptotics. Angular velocity u ù ú sæ and poloidal field upolå E
� 1 û 2

ü
versus sæ for different radius r.

The inner ageostrophic layer of width E1 ý 3
þ

is well distinguished from the outer layers where the azimuthal flow is geostrophic.

W
h

e can also study the departure from the Proud-
maÑ n solution in the cylindrical shear layer. Fig. 5
illu

"
strates well the three nested layers. The inner

layer of width O(
�
E1 ÿ 3

¢
),

Ø
where uí � is ageostrophic, is

we# ll defined and is clearly embedded in the outer
she� ar layers, where uí � is zÃ -independent but uí pol� de

�
-

pe� nds on zÃ . The transport of fluid takes place at small
zÃ inside the tangent cylinder and at large zÃ out� side
t

�
he tangent cylinder (see also Fig. 3). We have calcu-

l
�
ated the rate of exponential decrease of uí � an! d uí pol�

w# ith s� for
� �

s� � rk i � (
�
Table 1). The agreement with

th
�

e E
  1� 4 sc� aling of Stewartson is gratifying. In order

t
�
o investigate the outer layers, we have subtracted

th
�

e mainstream solution (Eqs. 13 and 14). Further-
more, we have stretched the s� c oordinate by the
factor E� 2	 7

Ë
, for s� 
 ri

� , and by the factor E� 1 4, for
s� � ri

� . The O(
�
E2 � 7

Ë
) a

Ø
nd O(

�
E1 � 4)

Ø
scalings are vindi-

cated (Fig. 6) inasmuch as the mainstream solution is
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Ta
�

ble 1
E1 � 3

þ
and E1 � 4

�
Stewartson layers

E � � 1 � 2

10� 5
ã

0.117 � 23.02 19.5
10� 6

�
0.057 � 38.41 33.89

10� 7
�

0.027 � 73.40 63.94
10� 8

 
0.013 ! 129.52 106.71
E " 0.

#
32 E$ 0.

#
253 E % 0.

#
249

&
is the width of the region where u ' is ageostrophic. ( 1 and ) 2

are the rate of exponential decrease of, respectively, u * and upolå
outside the tangent cylinder. The last line gives the slope of the
r+ egression of these coefficients on log E

�
.

recovered for a fixed distance to the tangent cylinder.
However, the influence of the O(

�
E1, 3

¢
)

Ø
layer on uí pol�

inside the tangent cylinder is also visible. Stretching
no� w the s� c oordinate by E

  - 1. 3
¢
, we characterize fur-

th
�

er the O(
�
E1/ 3

¢
)

Ø
layer, whose influence on uí pol� is the

st� rongest at small zÃ (
�
Fig. 7): the maxima are now

a! ligned at a fixed distance to the tangent cylinder.
F

�
inally, Fig. 8 demonstrates that the width of the

l
�
ayer where uí 0 i

"
s ageostrophic scales with E

  1 1 3
¢

(se
�

e
also! Table 1) as predicted by Stewartson [2].

Th
%

e scaling laws given by Stewartson apply well
to

�
the numerical solution for the range of Ekman

numbers [102 6
ì
, 103 8]

5
, even if some features of

t
�
he Stewartson solution are absent from the nu-

merical solution. As an example, the amplitude of
E 4 1 5 2uí pol� increases rapidly with E 6 1 in the E7 18 3

¢

Fig. 6. The outer Stewartson layers. u 9 : sæ and upolå E1 ; 2 versus E < 2 = 7
� >

sæ ? 0@ 35A for sæ B 0C 35 and E D 1 E 4 F sæ G 0 H 35I for sæ J 0K 35 r L 0M 7.

i
"
nner layer (cf. Fig. 7), whereas Stewartson [2] pre-

d
�

icted very slow variation (E
  N 1O 21).

Ø
We note also that

th
�

e zP -dependence of uí pol� in the E2Q 7
R

layer out of the
E1S 3

¢
inner layer is not linear as predicted (Fig. 5).

5.
T

Magnetohydrodynamics

W
h

e now study how the flow is modified in the
p� resence of an imposed magnetic field (Fig. 9).

5.1.
U

The imposed magnetic field

Onl
$

y current-free fields have been investigatedV
J

W X
0

Ä Y
. A current free field with external sources,

w# hen axisymmetric and dipolar, is aligned along the
ax! is of rotation. As a consequence, shear at the tan-
ge{ nt cylinder does not create electric currents. We
have checked that, in this case, the shear at the tan-
ge{ nt cylinder is not reduced by magnetic effects, and
is even reinforced for strong fields, as the Lorentz
force efficiently couples the fluid inside the tangent
cyl inder with the inner sphere. The asymptotic solu-
tio

�
n for large Z co nsists of bulk rotation of the fluid

v� olume inside the tangent cylinder together with the
i

"
nner body and a bulk rotation of the fluid volume

e� xterior to the cylinder together with the outer sphere
(

�
see also the recent study by Hollerbach [12]).

The problem is very different if the sources of the
magnetic field are internal. For the imposed field one
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Fig. 7. The inner Stewartson layer. upolå E1 [ 2 versus E \ 1 ] 3
þ ^

sæ _ 0 ` 35a . r b 0c 4 (left) and r d 0 e 7 (right).

th
�

en writes:

Brf g 1

r 3
¢ co s h i Bj k 1

2r 3
¢ sin� l (17)

�

Here the magnetic field is not aligned along the
ax! is of rotation, and will therefore cross the tangent
c ylinder. Important, too, is the variation of the field’s
maÑ gnitude: in this case the amplitude of the field,
va� rying as rk m 3

¢
, will be much stronger at the inner

boundary
�

. The field amplitude is 23 times larger at
t

�
he inner sphere surface than at the boundary with

Fig. 8. The inner Stewartson layer. u n o sæ versus E p 1 q 3
þ r

sæ s 0 t 35u
for different Ekman numbers (E

� v
10 w 5

ã
, 10x 6

�
, 10y 7

�
, 10z 8

 
from

top
ä

to bottom) and different radius (r { 0.4, 0.5, 0.6, 0.7, 0.8,
0.9).

t
�
he outer sphere. The local Elsasser number is thus

544
~

times greater than the value that we quote and
c alculate with the field at the outer boundary.

5.2.
|

Comparison with previous studies and
nume} rical tests

W
h

e present results obtained in the case of an
insulating inner core in order to compare with the
numerical study of Hollerbach [3]. The first effect
of� the magnetic force is to reduce the shear at the
t

�
angent cylinder. As the Elsasser number is increased

th
�

e motion reduces to a rigid rotation with the outer
sphe� re. Since both spheres are insulating, only vis-
c ous torques couple the solid boundaries. Fig. 10
sh� ows how the solution evolves with increasing val-
ue� s of ~ at! E � 10� 5

�
. First, we see (for � � 0)

Ä
t

�
he influence of the equatorial Ekman layer of width

E2� 5
�

a! ttached to the inner sphere. Comparison with
[3] validates our code. The recent asymptotic study

Fig.
ø

9. The imposed magnetic induction.
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Fig. 10. Angular velocity with respect to the cylindrical radius sæ in the case of an insulating inner body; on the left hand side at r � 0 � 75,
on the right hand side in an equatorial section. E

� �
10� 5

ã
.

of� Kleeorin et al. [4] predicts a local minimum in
a! ngular velocity, in the vicinity of the equator of the
inner body, in their strong field limit. The reversed
flow can be seen on Fig. 10 (see the equatorial
se� ction). We note that they refer to a first version
of� our paper, in which the figures were numbered
di

�
fferently. Fig. 10 was referred to as Fig. 6.
W

h
e now restore finite conductivity to the inner

c ore. The induction equation (its diffusive part)
mustÑ now be solved inside the inner core, also.
F

�
or non-zero Elsasser numbers, a magnetic torque

a! pplies on the inner boundary:

�
B � � rk B

�
r b

� �
sin� � d

�
S

�
(18)

�

V
Ý

iscous torques act at both boundaries and are
e� xpressed as:

� � �
Er

 
sin� � rk �

� rk
uí �
rk d

�
S

�
(19)

�

Eq
�

uilibrium between these torques is an addi-
t

�
ional check of our numerical calculation. They agree

to
�

within 1%.

5.3.
�

The asymptotic state

W
h

e shall see that including a conducting inner
co re endows the solution with a rich variety of
features. When the imposed magnetic field is strong
e� nough, we again expect the solution to be close
t

�
o a state of rigid rotation. But, now, the internal

magnetic torque couples far more efficiently the fluid
wi# th the inner body than the external viscous torque
wi# th the outer body. As a consequence, most viscous
e� ffects are confined to the boundary layer attached to
t

�
he outer sphere.

5.3.1.
�

Ekman–Hartmann boundary layer
As the Elsasser number is increased from zero to

O(1)
�

values, the Ekman boundary layer attached to
t

�
he outer sphere gradually changes into an Hartmann

t
�
ype boundary layer. Boundary layers influenced by

bot
�

h rotation and magnetic field are reviewed by
Acheson and Hide [13]. They give (in their section
5.2)

~
a local derivation of the effect of the boundary

lay
�

er on the flow and the magnetic field in the in-
t

�
erior region when the boundary is insulating. With� �

0
Ä

, the effect on the flow reduces to the Ekman
su� ction. In the Hartmann limit, the normal compo-
ne� nt of u� v� anishes at the edge of the interior region.
I

Ï
n between, elimination of the main flow vorticity in

t
�
he expressions for uí r an! d j

�
r yi� elds:

j
�

r�
[uí r� ]

5 �
�
B0

* � r �
B0

* 1   ¡ 2¢ 1£ 2
� ¤ ¥ ¦

(20)
�

whe# re [ § ]5 denotes jump across the boundary layer
an! d ¨ © is

"
defined as:

ª « ¬ 1

2
·

z¸  r®
¯
B

�
0

* ° r® ± 2
�

B2
0

*
²

(21)
�

Fig. 11 shows how the Ekman spirals on both
bounda

�
ries are modified by magnetic effects. The
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Fig. 11. Same as Fig. 2 in the presence of a magnetic field. As the Elsasser number increases, the angular velocity of the main flow
approaches the angular velocity of the inner body. The ³ -component of the velocity vanishes as the layers modify from Ekman type to
Hartmann type.

Fig. 12. The outer boundary layer for E ´ 10µ 5
ã

and ¶ · ¸ ¹ 12. On the left hand side, the radial electric current j
º

r. The current boundary
layer is well characterized only for » ¼ 0½ 1. On the right hand side, numerical (¾ ) and theoretical (as given by Eq. 20) values for [j

º
r¿ ]À [ur¿ ]

are represented.

meÑ ridional motion uí Á c haracteristic of the secondary
fl

Â
ow in the Ekman layer is reduced and then sup-

pre� ssed as the local Elsasser number is increased
t

�
o order one. Fig. 12 gives a comparison between

E
�

q. 20 and our numerical results, for E
  Ã

10Ä 5
Å

w# ith
increasing Æ at! Ç È É Ê 12.

5.3.2.
�

Electric currents ejected from the Hartmann
la

Ë
yer
In this section, we investigate the solution in

th
�

e limit of large Elsasser numbers: the Hartmann

limit.
�

The flow is close to a state of rigid rotation
a! nd the main feature of the solution is a Hartmann
bounda

�
ry layer attached to the outer sphere through

w# hich the flow velocity decreases from sin Ì to
�

0.
Ä

W
h

e rescale the set of Eq. 4, retaining only the
magnetic and viscous forces, and introducing the
Hartmann number M Í Î Ï Ð E Ñ 1 Ò 2. Only one pa-
rameter controls the system in this regime. Taking
into account the geometry of the imposed field, and
introducing Ó Ô M Õ 1 Ö r × a! s radial boundary-layer
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c oordinate, we get:Ø 2
�
uíÙ Ú 2 Û 2 c

·
os Ü

Ý
b

�
Þ ß à 0

Ä
á 2b

�
â ã 2 ä 2 cos å

æ
uíç è é 0

Ä ê
22

· ë
oì f which the solution is [14]:

uí í î b
� ï

sinð ñ 1 ò eó ô 2 c
õ

os ö ÷ (23)
ø

To
ù

ensure j
ú û

B
� ü

0,
Ä

b
�

h
ý

as to be written:

b
� þ 1

rÿ sinð � f
� sinð 2

õ �
rÿ (24)

ø
H

�
ence Eq. 23 is compatible with the bulk rotation

t
�
hat we have assumed as solution for the interior flow

if:

b
� � sinð �

rÿ 2
õ (25)

ø
The equations are singular at the equator, where

t
�
he magnetic field lines are parallel to the boundary.

5.3.3.
�

The equatorial singularity
The singularity of the Hartmann layer has im-

p� ortant consequences because it can be shown that
t

�
he flux of electric currents leaving the boundary

layer there does not vanish. We have not pushed
t

�
he analytical study further (see Roberts [14] for a

thorough
�

investigation of such singularities) and we
rely here on the numerical study to describe how the
eó quatorial singularity affects the interior flow.

In
�

the presence of rotation forces, the viscous
l

	
ayer is of Ekman type. It is also singular at the

eqó uator, where the rotation vector is parallel to the
boundary



. Numerical study seems necessary to un-

ravel how rotational forces modify the Hartmann
soð lution.

5.4.
�

Numerical study

F
�

ig. 13 illustrates how the flow synchronizes with
t

�
he inner body as the Elsasser number is increased.

For low Elsasser numbers, the electric currents are
ge� nerated at the inner core and at the tangent cylin-
de


r whereas for larger values they are induced by

t
�
he viscous shear at the outer boundary (see Fig. 14).

For large Elsasser numbers, the numerical solution
illustrates the role of the equatorial singularity. At

hi
ý

gh latitude, the electric currents flow along the
l

	
ines of the imposed dipolar field. In the viscous

bounda



ry layer, they converge toward the outer equa-
t

�
or and coming back to the inner core, they cross

magnetic field lines which are parallel to the outer
bounda



ry. Indeed, the magnetic field and the electric

field do not share the same symmetry with respect
t

�
o the equatorial plane. This discrepancy between

th
�

e symmetries of the two fields holds also in the
intermediate regime where electric currents are in-
duc


ed by the remaining shear in the interior region.

A
�

s a consequence, in the vicinity of the equatorial
pl� ane, magnetic forces do not vanish and make the
in

�
terior flow depart from a state of rigid rotation.

Fi
�

g. 15 shows the profile of the angular velocity in
t

�
he equatorial plane for different strengths of the im-

pose� d magnetic field at E � 10� 5
�
. The case � � 10�

M � 103
� �

eó xemplifies departure from rigid rota-
t

�
ion. Angular velocity reaches a maximum in the

interior region. This maximum is still more pro-
nounced at smaller Elsasser number (see � � 0

� �
1,

i.e. M � 102
õ �

. The accelerated flow closely fol-
lows magnetic field lines. With increasing Elsasser
numbe� r, the peak angular velocity migrates from the
i

�
nner boundary to the outer sphere and the flow

a pproaches a state of rigid rotation.
In

�
order to better understand how the interior flow

is
�

accelerated, we have studied the magneto-viscous
eqó uilibrium, where the Coriolis forces are absent
(se

ø
e Figs. 16 and 17). As in Section 5.3.2, the sys-

tem
�

(Eq. 4) is rescaled so that the Coriolis force
is eliminated in the limit ! " # , E $ % an d
t

�
he remaining dimensionless number, the Hartmann

number M & ' ( ) E * 1+ 2 finite. Viscous shear (mainly
i

�
n the outer boundary layer) generates electric Hart-

mann currents in the equatorial region crossing the
ma, gnetic field lines as described above. Super-rota-
tio

�
n of the fluid is thus a magneto-viscous effect.

Here,
�

viscous forces only oppose the acceleration of
t

�
he zonal flow in the equatorial region. The region

oì f accelerated fluid has a banana shape centred on a
mag, netic field line. The maximum speed grows with
increasing Hartmann number, in strong contrast with
wha- t is described above. Whereas a weak magnetic
field . M / 10 c1 hanges the dynamics only slightly, a
moderate magnetic field 2 M 3 3

4 5
166 suð ffices to ac-

celer1 ate the equatorial interior flow. At M 7 316
4

and
M 8 1000, the shear is well confined to the bound-
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Fig. 13. Angular velocity with respect to the cylindrical radius s: in the case of an conducting inner body; on the left hand side at r ; 0< 75
on the right hand side in an equatorial section. Ekman number is 10= 5

>
.

Fig. 14. Meridional sections for E ? 10 @ 5
>
, and increasing values of the Elsasser number.

a ry layer parallel to the magnetic field line tangent
t

�
o the outer sphere. The width of the sheared zone

follows the M A 1B 2 a symptotic law for boundary layer

attach ed to a wall parallel to the imposed magnetic
field [15]. This internal shear layer is associated with
th

�
e recirculation of electric currents induced in the
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Fig.
C

15. Equatorial section of angular velocity at Ekman 10D 5
>
. As the Elsasser number increases the flow synchronizes with the inner

body
E

. Unexpectedly the angular velocity of the flow locally exceeds the outer body’s angular velocity.

Fig.
C

16. Meridional representations of the zonal angular velocity u F G s: and the meridional electric currents j
º

polH in
I

the absence of rotational
forces for increasing Hartmann numbers.

Hartmann layer as the internal Stewartson layer is
asso ciated with the recirculation of the meridional
flow generated in the Ekman layers.

C
J

omparison of the solutions with and with-
outì the rotational forces shows that they strongly
inhibit the equatorial acceleration, which violates
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Fig.
C

17. Equatorial section of the angular velocity in the absence of rotational forces.

t
�
he Proudman–Taylor constraint. Besides, departure

from a state of rigid rotation is less and less pro-
nounced as viscosity is decreased (see Fig. 18).
Decreasing the viscosity indeed restores the role of
rotation forces, even for large Elsasser numbers.

Kl
K

eeorin et al. [4] have studied how geostrophic
vL elocity (see Fig. 14) reduces to zero as the equator
ofì the outer sphere is approached in the intermediate
an d strong field limit E

M 1N 2 O P Q 1. They write
t

�
he ‘modified Taylor’s constraint’, balance between

Maxwell stress in the mainstream flow and the vis-
c1 ous stress in the Ekman–Hartmann boundary layer.
They describe a magnetic Proudman layer of width
E2R 7

S T U
4V 7

S
w- here viscous stress is negligible except

a t the top and bottom of the geostrophic cylinders.
The remaining discontinuity in the geostrophic ve-
locity is smoothed out in the viscous Stewartson
E2

õ W
5

X
layer attached to the equator. Kleeorin et al.

[4] have compared their result with our numerical
w- ork. We note that figs. 12, 13 and 16 of that paper
ar e now, respectively, Figs. 14, 15 and 18. Their
t

�
able 2 gives the distance in our units from the outer

spð here at which the rotation rate is one half the
vL alue outside the magnetic Proudman layer, accord-
ing to their asymptotic theory. Only for Y Z 0

[ \
1, the

E2 ] 5
X

St
^

ewartson layer is thin compared to the mag-
netic Proudman layer. But the agreement between
th

�
e theoretical and numerical works is striking and

vL indicates their analytical work.
Finally, the conducting inner body strongly influ-

enó ces the geometry of the electric currents. Electric
current1 s can enter the inner body (because it is con-
duct

_
ing) without shearing it (because it is rigid).

Fig. 14 shows how the electric currents try to follow
th

�
e magnetic field lines in the fluid all the way to the

i
�
nner solid body where they loop back.

6.
`

Conclusion

V
a

ery small values of the Ekman number have
t

�
o be studied in order to get some insight into

th
�

e asymptotic limit with a numerical study. Ek-
man numbers such as 10b 5

X
a re not small enough

to
�

describe even qualitatively the asymptotic regime,
we- ll-known in the non-magnetic case, and this con-
c1 lusion holds also with strong magnetic effects. It
w- ould be helpful to develop a numerical algorithm
t

�
o solve the thin boundary layers without increasing

t
�
he number of grid points too much. The method

uc sed here limits the (axisymmetric) studies to E
M

lar
	

ger than 10d 8 onì some of the fastest computers
a vailable.

A
e

new structure, defined as a maximum in the
a ngular rotation inside the interior flow, arises in
t

�
he equatorial region in the presence of an imposed

field. It is present only when the solid inner body is
conduct1 ing because, firstly, the main boundary layer
is attached at the outer sphere and, secondly, the
eó lectric currents can loop in the inner body. This
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Fig.
C

18. Equatorial section of the angular velocity at Elsasser
numbers 0.1, 1, 10 for varying Ekman numbers. One can see on
each of these graphs how the amplitude of the super-rotation is
controlled by viscous effects.

stð ructure vanishes in the magnetostrophic limit but
i

�
s present for Ekman number values in the range

t
�
hat can be investigated in the numerical geodynamo

models that are being developed.
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