A numerical dynamo benchmark

U.R. Christensena, J. Aubertb, P. Cardinb, E. Dormyc,
S. Gibbonsd, G.A. Glatzmaiere, E. Grotef, Y. Honkurag,
C. Jonesd, M. Konoh, M. Matsushimag, A. Sakurabai,
F. Takahashig, A. Tilgnerf, J. Wichta, K. Zhangd

a Institut für Geophysik, Universität Göttingen, Herzberger Landstrasse 180, 37075 Göttingen, Germany
b LGIT, Observatoire des Sciences de l'Univers de Grenoble, B.P. 53, 38041 Grenoble Cedex 09, France
c Institut de Physique du Globe de Paris, 4 place Jussieu, 75252 Paris Cedex 05, France
d Department of Mathematics, University of Exeter, Exeter EX4 4QE, UK
e Earth Sciences Department, University of California, Santa Cruz, CA 95064, USA
f Theoretische Physik IV, Universität Bayreuth, 95440 Bayreuth, Germany
g Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Okayama, Meguro-ku, Tokyo 152-8551, Japan
h Institute for Study of the Earth's Interior, Ookayama University, Yamada 827, Misasa, Tottori-ken 682-0193, Japan
i Department of Earth and Planetary Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan

Physics of the Earth and Planetary Interiors, vol. 128 1-4, pp 25-34, 2001.

Abstract. We present the results of a benchmark study for a convection-driven magnetohydrodynamic dynamo problem in a rotating spherical shell. The solutions are stationary aside from azimuthal drift. One case of non-magnetic convection and two dynamos that differ in the assumptions concerning the inner core are studied. Six groups contributed numerical solutions which show good agreement. This provides an accurate reference standard with high confidence.

Keywords: geodynamo, numerical modeling


ERRATUM (beware 30.773 is not 30.733!)