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We consider hierarchical models for turbulence, that are simple generalizations of the standard Gledzer-
Ohkitani-Yamada shell models„E. B. Gledzer, Dokl, Akad. Nauk SSSR209, 5 ~1973! @Sov. Phys. Dokl.18,
216 ~1973!#; M. Yamada and K. Ohkitani, J. Phys. Soc. Jpn.56, 4210 ~1987!…. The density of degrees of
freedom is constant in wave-number space. Looking only at this behavior and at the quadratic invariants in the
inviscid unforced limit, the models can be thought of as systems living naturally in one spatial dimension, but
being qualitatively similar to hydrodynamics in two~2D! and three dimensions. We investigated cascade
phenomena and intermittency in the different cases. We observed and studied a forward cascade of enstrophy
in the 2D case.@S1063-651X~97!01708-X#

PACS number~s!: 47.27.Eq
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I. INTRODUCTION

The study of energy spectra and other statistical cha
teristics of fully developed turbulence in the inertial ran
now date back more than half a century@1#. Fully developed
turbulence in the restricted sense is taken here to be the
havior of incompressible hydrodynamical flows at high Re
nolds number, systems governed by the Navier-Stokes e
tions in three dimensions~3D!. Partly by dimensional
analogy, partly because direct numerical simulations are
sible, and partly because many physical flows are quasi-t
dimensional, although then properly described by more
volved equations, it has become customary to also cons
in parallel the more artificial case of the Navier-Stokes eq
tions in two dimensions~2D! @2#.

A long-standing problem in the 3D case is to determine
there are corrections to the classical prediction of Kolm
orov @3#, which is traditionally derived from dimensiona
analysis and the physical picture of a cascade of ene
down to small scales, where molecular diffusion is effect
@4#. If all correlation functions are dominated by the sam
scaling behavior one would have

^„v~x1r !2v~x!…q&;r zq ~1!

with zq equal toq/3. If different correlation functions are
dominated by different scaling behaviors,zq could be a
rather arbitrary function ofq, subject to the constraints that
is nondecreasing, its derivative is nonincreasing, and
passes through the points~0,0! and ~3,1! @1#.

The qualitative description of a cascade is generally c
sidered to be correct. The experimental evidence leans
wards the conclusion that there are corrections to the dim
sional predictions, which are small for the spectrum,
larger for higher moments@5#. With a finite scaling range
and experimental data that are never free from noise
other irregularities, the estimation of scaling exponents
always sensitive, especially for higher moments.
561063-651X/97/56~2!/1692~7!/$10.00
c-

e-
-
a-

a-
o-
-
er
-

f
-

y
e

it

-
o-
n-
t

d
is

In 2D there is a second positive definite quadratic qu
tity, the enstrophy, which is inertially conserved. In analo
to the Kolmogorov theory in 3D one finds@6#

E~k!5Cvev
2/3k23 Kraichnan’s ‘‘k23’ ’ law, ~2!

whereev is the mean dissipation of enstrophy per unit tim
and mass, andCv is a dimensionless constant. Solutions
the 2D Euler equations are smooth for all times, and
energy spectrum can, therefore, never be flatter than Eq.~2!.
It could be steeper, but a spectrum decreasing ask23 is a
borderline case, in that if it is any steeper, the domin
interactions are no longer local in wave-number space.
strophy at smallk would then jump directly to the dissipativ
range without an intermediate cascade from scale to sc
Most numerical experiments indicate significantly stee
spectra than the Kraichnan prediction@7#. The cascade pic-
ture is, therefore, probably qualitatively wrong for the 2
Navier-Stokes equations.

The density of degrees of freedom in a field problem inD
dimensions grows with the wave number as

n~k!;kD21. ~3!

If the range of scales is fromksmall to klarge the number of
degrees of freedom is approximatively (klarge/ksmall)

D. When
D is equal to 3 a range of scales of just 1000 is beyond t
reach of present-day computers, and direct simulation
truly high-Reynolds-number turbulence will not be feasa
in the foreseeable future. This is the motivation for cons
ering various phenomenological models that share som
the properties of the full equations, but where the numbe
degrees of freedom is much less, and where much w
scaling ranges can be investigated.

In this paper we will investigate a class of such mod
where the density of degrees of freedom is constant, tha
they could be thought of as field problems in one dimensi
In this sense they are intermediate between the full eq
1692 © 1997 The American Physical Society
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56 1693BINARY TREE MODELS OF HIGH-REYNOLDS-NUMBER . . .
tions, or models where approximately the same numbe
degrees of freedom are kept, and shell models, which ca
thought of as field problems in zero spatial dimensions. T
outline of the paper is as follows: In Sec. II we describe sh
models and other hierarchical models introduced in the
erature. In Sec. III we introduce the models studied in t
paper, and in Sec. IV we describe our numerical implem
tation and results. One of those, that in a naive first imp
mentation all degrees of freedom in one shell synchron
falls somewhat outside our main line of argument, and
discussed separately in Sec. V. In Sec. VI we summarize
discussion and conclude.

II. SHELL MODELS AND HIERARCHICAL MODELS

The basic idea of shell models is to describe with o
one ~or a few! variable UN the velocity fluctuations in a
wave-number octave (2N,uku,2N11). Different models,
differing mainly in the number of variables per shell and t
couplings were introduced by a number of authors@8–14#.

The arguably simplest models are the ones introduced
Gledzer@10# and revived by Yamada and Ohkitani@13#, now
commonly referred to as the GOY model@15#. These consist
in the following set of complex ordinary differential equ
tions:

~dt1nkN
2 !UN5 ikNH UN11* UN12* 2

«

2
UN21* UN11*

2
~12«!

4
UN22* UN21* J 1 f N . ~4!

Here, * stands for conjugation,f N a random force acting
only on the few shells nearN50, and« is a free parameter
The wave numberkN of the Nth shell is 2N.

For any « the GOY models conserve energy and pha
space volume in the inviscid force-free limit, if these a
defined in a natural way as

E5(
N

uUN u2, ~5!

dV5dU1* 3dU13••• . ~6!

If one makes the ansatz that a quadratic diagonal form
conserved

W5(
N

uUNu2zN, ~7!

one finds that the variablez must satisfy a quadratic equatio

~«21!z22«z1150. ~8!

This equation admits two solution,z51 and z51/(«21).
The first solution corresponds to the energy conservatio
above in Eq.~5!, while the second gives another invariant

Z5(
N

sgn~«21!NkN
a~«!uUNu2, a~«!52 log2~ u«21u!.

~9!
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If « is less than 1 the second invariant is indefinite like t
helicity in 3D hydrodynamics, and it has the same dime
sional form at the Yamada-Ohkitani value of« equal to 1

2

@16#. A large part of the phenomenology of turbulence w
verified in this model in a series of papers@15–20#, which
stimulated the recent interest from several groups. A num
cal study of the transition to chaos in the shell models w
0,«,1 was performed by Biferaleet al. @21#. They found
that there is a stable fixed point for«,«150.3843, which
goes unstable via a Hopf bifurcation, and above a lar
value«250.3953, the system evolves into a chaotic state

If, on the other hand,« is greater than 1, the second in
variant is a positive definite like the enstrophy in 2D hydr
dynamics, and it has the same dimensional form as the ph
cal enstrophy when« is equal to5

4. In the interval between 1
and 2 the exponenta is positive and one naively expects
similar situation as in Kraichnan’s model of 2D turbulenc
i.e., a forward cascade of the second conserved quantity
larger values than 2, the roles of the invariants change,
one expects a forward cascade of energy. At the bounda«
is equal to 2 and the two invariants coincide: that would b
model of 3D turbulence without the helicity invariant.

In fact, shell models do not reproduce the forward casc
of enstrophy in 2D. It was shown in@22# that the GOY
model at« equal to 5

4 is described by formal statistical me
chanics, close to equilibrium. Enstrophy flows from the for
to the dissipation, but in a process similar to heat flow
thermodynamics. This is not a cascade process, altho
some of the dimensional predictions fortuitously turn out
be correct. The simplest way to see this is that the resista
to transport increases with the distance between the scal
the resistance to heat flow increases with the diffusing d
tance. This case implies that quantities in the inertial ran
depend on the viscosity parametern. The numerical results
in @23# were confirmed in@24#, and extended to the whol
range of« between 1 and 2.

The motivation for hierarchical models, in contrast
shell models, is that the growth of the number of degrees
freedom with the wave number is an important property
turbulence, and should be in some degree preserved. S
models were first introduced about the same time as s
models@25,11#. These models have in common that the nu
ber of degrees of freedom of the underlying system is ke
more or less: hence, 8N variables in theNth shell for hydro-
dynamics in 3D@11#, and 4N variables in theNth shell for
hydrodynamics in 2D@26,27#. The disadvantage of this ap
proach is that the resulting equations become about as
consuming to simulate as the full hydrodynamic equatio
although certainly the numerical code is much simpler.
get a model which has many degrees of freedom, but wh
is, nevertheless, significantly easier to simulate than the
equations one has to try an intermediate solution, as we
scribe below in Sec. III.

A second motivation is the above described discovery t
the 2D GOY model does not display a forward cascade
enstropy. The theoretical explanation in@22# uses the obser
vation that the characteristic times in the forward range
the transport of enstrophy are constant, and thus assume
it is the increasing number of degrees of freedom in the
equations that drives the transport process preferably in
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1694 56ERIK AURELL, EMMANUEL DORMY, AND PETER FRICK
direction of high wave numbers, that is, which leads to
cascade. Earlier investigations of a hierarchical tree mode
@27#, which could be considered a system of the type of
hydrodynamics in two spatial dimensions, did display suc
cascade. It is therefore of some interest to see if this a
happens in a system of the 2D hydrodynamical type in
spatial dimension.

III. BINARY MODEL

The first version of our model is a straightforward ada
tation of the GOY model to a binary tree~Fig. 1!.

We useN for notation of the number of the shell~the
scale! andn for the individual number of variable inside th
shell. We will also use a condensed notation for the variab
when a computation is performed withN and n fixed, we
omit to writen, if the meaning in this context is clear. For a
terms writtenUN21 , the suppressed index is such that th
node is the parent ofUN,n . Similarly UN11 stands for the
children of UN,n , usually with a summation implied. Th
equations of motion will then be identical to Eq.~4!, and the
conserved quantities will be completely analogous to E
~5! and~9!. In fact, we have mostly simulated a real versi
of Eq. ~4! on a binary tree. The equations then read the sa
without the factori and the complex conjugations on th
right-hand side. All formulas below read the same for t
real model, if the obvious substitutions are made.

The inertially conserved quantities are, in analogy w
Eqs.~5! and ~9!,

E5(
N,n

UN,n
2 ~10!

and

Za5(
N,n

kN
aUN,n

2 . ~11!

The energy flux through one node can be defined as
lows. Let us look at one particular node (N,n) and on all
nodes in the binary tree subtended below it. Then

1

2

d

dt (
below ~N,n!

uUN8,n8u
25@flow through~N,n!#

2@viscous loss below~N,n!#.

~12!

That gives

FIG. 1. Binary tree and convention for flux computations: t
local energy~enstrophy! flux through a given noden in level N, is
defined by all energy~enstrophy! exchanges with nodes on highe
levels. The total flux through levelN is the sum overn of the local
fluxes.
a
in

a
o
e

-

s

s.

e

e

l-

PE
N,n5kNF Im^UNUN21UN22&S «21

4 D
2

1

2
Im^UN11UNUN21&G , ~13!

where we have used the shorthand thatUN stands for the
amplitudeUN,n , UN21 and UN22 for its parent and grand
parent, respectively, andUN11 for its two children. A sum-
mation over the children is implied. The total flux of energ
through a shell is just Eq.~13! summed over all the node
n in one layer.

Similarly, the enstrophy flux through a node (N,n) is

PZ
N,n5kN

11aF Im^UNUN21UN22&S «21

4 D
1Im^UN11UNUN21&S 12

«

2D G , ~14!

It turns out that this simple model, which we have ju
described, has the property that all the nodes in one le
synchronize. The numerical evidence for this fact, wh
holds for using both complex and real amplitudes, and for
values of« which we have investigated, is described belo
in Sec. IV. We do not quite understand why it happens. A
is somewhat accidental to our main purpose in this paper
have collected our remarks, as far as they go, separate
Sec. V. Let us just note here that if synchronization occu
all the dynamically excited degrees of freedom in one la
can be represented by just the totally symmetrical comb
tion SN522N(nUN,n . The equations of motion for the
SN’s with different N will be precisely the original GOY
equations~4!.

A straightforward adaptation of the binary model th
leads to interesting dynamics is to introduce dynamical c
plings between neighboring nodes on one scale. This
some similarity with hydrodynamics, where vortices both
teract with other close-by vortices of the same size and
advected and sheared by vortices of a larger size.

The most general GOY-like interaction term amo
neighboring nodes on one level is

AUN,n22UN,n211BUN,n21UN,n111CUN,n11UN,n12 .
~15!

Conservation of energy, and of the second invariant, imp

A1B1C50, ~16!

and for obvious symmetry reasonsA5C. Using one overall
parameterd, which measures the strength of interactions b
tween neighbors of the same scale, we have an additi
piece in the equations of motion:

d~UN,n22UN,n2122UN,n21UN,n111UN,n11UN,n12!.
~17!

For completeness we write here the equations finally p
posed in the form that holds for real amplitudes
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S d

dt
1nkN

2 DUN,n5kNFUN11UN122
«

2
UN21UN11

2
~12«!

4
UN22UN211d~UN,n22UN,n21

22UN,n21UN,n111UN,n11UN,n12!G
1 f N . ~18!

To avoid boundary problems, that is a singular behavior
nodes on the edge of the tree, we impose a periodical co
tion. The tree could therefore be pictured to lie on the surf
of a cone.

In an earlier paper of the two of the present authors@27#,
we motivated a hierachical tree model by writing the 2
Navier-Stokes’ equations in a wavelet basis~cf. @28#!. If we
interpreted our binary model as a system of equations for
coefficients in a wavelet expansion of a field on the circ
we can go backwards, synthesize the field and write
model as an integral equation of the type

] tu~x,t !5nE K~x,x8!u~x8,t !

1E I ~x,x8,x9!u~x8,t !u~x9,t !1 f ~x,t !.

~19!

The first kernelK is similar to a Laplacian as an integr
operator, that is, to the second derivative of ad function. The
second kernelI collects the nonlinear interaction terms a
inherits the symmetries of the GOY model. The details
both kernels, of course, depend on the choice of the wav
basis we use to build the field. This analogy can perhaps
used to compare with the partial differential equation mo
in one dimension, but we will not pursue this question fu
ther here.

IV. NUMERICAL IMPLEMENTATION

A first implementation was done of the first naive mod
in the version with complex amplitudes and run on a wo
station. A second implementation was done on the massi
parallel computer CM5 at Centre National de Calcul Pa
lèle en Sciences de la Terre~CNCPST! @29#. All results
shown are from runs using this code. We simulated syst
up to 18 level~131 071 nodes!, using a 4th-order Runge
Kutta scheme for the integration.

We first present some results to illustrate the desynch
nization of the tree by variation of parameterd in Eq. ~18!.
As measure of the ‘‘desynchronization’’ we use a quant
defined as

s5
(~U12U2!2

(Ui
2 , ~20!

whereU1 andU2 describe all the pairs of the last level, an
Ui all leaves of the last level. When the tree is fully synch
nized,s is zero. We studied the influence of parameterd on
the behavior of the system on a small model (N512) with a
f
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fixed value of«. In the 2D case~«5 5
4!, we increasedd from

0.0 to 1.5 with step 0.5~Fig. 2!. As d increases, the mea
value of desynchronization increases, as well as the varia
In Fig. 3 we show the results for«51

2 when the variables in
the last two shells were initialized to be zero.

Figure 4 presents energy and enstrophy spectra, fo
simulation of the 2D case, which should be compared w
Kraichnan’s ‘‘k23’’ law. One can see that there are ve
small, if any, deviations.

We also studied the higher structure functions, that
define by

Sp~N!5(
n

^uUNnup& ~21!

and we extract the scaling exponents in analogy with Eq.~1!.
To compute them with high accuracy we exploit the rec
discovery of extended self-similarity in turbulence data@30#,
which means that if the moments are normalized by one
them, the scaling range and, thus, the accuracy of the de
mination of the scaling exponents of the quotient, can
significantly improved. Since in 3D,z3 is asymptotically
equal to one, it is customary to normalize by the third m
ment, i.e.,

FIG. 2. Desynchronization in time in the model which includ
interactions between the neighbors on one level and horizonta
riodicity. «5

5
4, Reynolds number Re553106.

FIG. 3. Desynchronization in time for«5
1
2. One can observe

that although the model is initialized with synchronized termin
leaves~the two last levels are set to zero! the systems dynamically
desynchronizes. The Reynolds number here is 104, and the time
step is 0.0002 ford50, and 0.0001 ford50.5.
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zq5z3z̃q . ~22!

In 3D, zq and z̃q will be asymptotically equal, but a direc
determination ofz̃q is expected to be more exact. In the 2
part lack of accuracy in the determinantion of any scal
exponent is instead collected in one overall factorz3 . The
mean energy and enstrophy fluxes, level by level, are sh
in Fig. 5. Our numerical values of thez̃q’s in the 2D case are
shown in Fig. 6. It is clear that the energy flux is small, ve
close to zero, but that the enstrophy flux, or at least its fl
tuations, is significant. Though not perfectly converged,
flux of enstrophy appears to be constant on about eight c
secutive shells.

We also studied the case«5 1
2 which corresponds to the

standard GOY model of 3D turbulence. Since the time s
then depends on the size of the model, we tried, in this c
only, systems up toN512, and Reynolds number up t
2.03103. The results are therefore at this stage prelimina
and will be presented in another context.

V. ON SYNCHRONIZATION

In the naive model without in-level couplings we o
served synchronization of the different variable in one sh
for different values of the model parameter«. In particular,
we observed this phenomenon both for the 2D case~«55

4!,
and the 3D case~«5 1

2! @29#. We cannot only explain this in
part.

Suppose that the lowest level~the shell with the larges
index! is M . Then, if synchronization is supposed to be im

FIG. 4. Energy and enstrophy spectra for the 2D model,«5
5
4,

andd51. The number of levels wasN518. The Reynolds numbe
was 1.031010. The run time was 20 turn-over times.
g

n
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e
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portant, it is resonable to take new variables which are
symmetric and antisymmetric combinations of the pairs
amplitudes on this last level. More formally, let

Sj
M ,15~UM ,2j1UM ,2j 11!, ~23!

Aj
M ,15~UM ,2j2UM ,2j 11!, ~24!

whereUM ,2j and UM ,2j 11 are two adjacent variables in th
last level. Since they are siblings they share the same pa
which in this notation would be calledUM21,j , and the
grandparent, and so on.

The equations of motion of the symmetrized and antisy
metrized combinations are

FIG. 5. Mean energy and enstrophy flux, same simulation a
Fig. 4.

FIG. 6. The relative scale exponentsz̃p ~following the extended
self-similarity!, for the 2D model,«5

5
4 andd51. We can see tha

there are but very small, if any, effects of space-time intermitten
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~dt1nkM
2 !Aj

M ,150, ~25!

~dt1nkM
2 !Sj

M ,15 ikMH 2
~12«!

4
UM22* UM21* J . ~26!

It follows of course that the antisymmetrized combinations
the last level die out, that is, that siblings on the lowest le
synchronize.

It is tempting to assume that this behavior holds for hig
and higher levels, such that eventually the whole tree g
synchronized. We cannot, however, make such an argum
work, because at higher levels the equations of motion
the symmetrized and antisymmetrized combinations do
decouple.

To see this effect it is sufficient to look at the next tw
levels, which is still a situation a little easier to see than
the middle of the tree. Let us take a subtree hanging on
of the nodes on levelM22 and call thatUM22,j . We as-
sume that the pairs on the lowest level have synchronized
we know they must, and there are then four~not six! dy-
namic variables on the branches of the tree hanging be
namely,UM21,2j , S2 j

M ,1 , UM21,2j 11 , and S2 j 11
M ,1 . Again, if

symmetrization is assumed to be important in this subtre
is reasonable to introduce the symmetric and antisymme
combinations as follows:

Sj
M21,15~UM21,2j1UM21,2j 11!, ~27!

Aj
M21,15~UM21,2j2UM21,2j 11!, ~28!

Sj
M ,25~S2 j

M ,11S2 j 11
M ,1 !, ~29!

Aj
M ,25~S2 j

M ,12S2 j 11
M ,1 !. ~30!

Writing the equations of motion for these variables we ha

~dt1nkM
2 !Aj

M ,25 ikMH 2
~12«!

4
UM22,j* ~Aj

M21,1!* J ,

~31!

~dt1nkM21
2 !Aj

M21,15 ikM21H 2
«

2
UM22,j* ~Aj

M ,2!* J ,

~32!

~dt1nkM
2 !Sj

M ,25 ikMH 2
~12«!

4
UM22* ~Sj

M21,1!* J ,

~33!

~dt1nkM21
2 !Sj

M21,15 ikMH 2
«

2
UM22* ~Sj

M ,2!* , ~34!

2
~12«!

4
UM23* UM22* J . ~35!

We see that the equations are linear in theA’s and that the
A’s do not act back on theS’s. Under reasonable assum
tions on the off-diagonal driving terms, that is, in this ca
UM22,j* , it would still follow that eventually the two coupled
antisymmetrized combinations die out. If we look at high
levels we will, however, eventually find that quadratic co
binations of antisymmetrized combinations act back a
t
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w,
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e

r
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d

drive the symmetrized combinations. To show that the l
two levels synchronize is thus as far as we get.

By a more qualitative argument we can, however, mak
very plausible that synchronization occurs. Take the two s
trees hanging on one of the nodes on levelN, whereN is far
up in the tree, and assume that both trees are comple
synchronized. Their dynamical degrees of freedom are t
the remaining symmetrized combinations, that we c
(xN11 ,...,xM) and (yN11 ,...,yM) for short. The equations
of motion for xW can be written

dtxN115FN11~xW !1xN12GN , ~36!

dtxN125FN12~xW !1xN11HN , ~37!

dtxN1 i5FN1 i~xW !N13< i<M , ~38!

where theF ’s give the couplings of thex variables between
themselves, andG andH give the coupling through the top
node (N,n). The equations foryW are completely similar. The
two equations are not uncoupled, because they are
driven by the variablesGN andHN , which in turn are driven
by the symmetric combinations of (xN11 ,yN11) and
(xN12 ,yN12), respectively. We therefore appeal to Hu
gen’s principle, that identical nonlinear coupled oscillato
tend to lock in phase. We believe this is what happens. I
true that Huygen’s principle is generally applied to period
oscillators, and we have herede factotwo chaotic oscillators,
which is a weakness of the argument just presented.

VI. CONCLUSION

We have presented a simplified hierachical model of t
bulence, which can be looked upon as the GOY shell mod
on a binary tree. The model is easy to simulate and allows
to investigate cascade processes in a much wider rang
scales than in previously introduced hierarchical models
in the full equations. A first naive implementation leads
synchronization of the dynamical degrees of freedom on
scale. One simple additional interlevel coupling term brea
this effect.

We investigated intermittency corrections to the Kolmo
orov and Kraichnan predictions. As in shell models, a c
cade process would lead to the same spectral behavior
the full equation, that isE(k).k23 in the Kraichnan theory.
An equilibrium situation does however, simply by conside
ing the density of degrees of freedom, lead toE(k).kD23 in
the forward enstrophy transport range@2#. For the full 2D
Navier-Stokes equations this isE(k).k21, while for the 2D
shell models it isE(k).k23, i.e., by coincidence the sam
as the cascade prediction. In our model we have the inter
diate law E(k).k22. Since we observe a behavior ve
close toE(k).k23 a cascade picture can be established
ready from the spectrum.
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