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We consider hierarchical models for turbulence, that are simple generalizations of the standard Gledzer-
Ohkitani-Yamada shell model&. B. Gledzer, Dokl, Akad. Nauk SSSR09, 5 (1973 [Sov. Phys. Dokl18,
216 (1973]; M. Yamada and K. Ohkitani, J. Phys. Soc. JpB, 4210(1987). The density of degrees of
freedom is constant in wave-number space. Looking only at this behavior and at the quadratic invariants in the
inviscid unforced limit, the models can be thought of as systems living naturally in one spatial dimension, but
being qualitatively similar to hydrodynamics in tw@D) and three dimensions. We investigated cascade
phenomena and intermittency in the different cases. We observed and studied a forward cascade of enstrophy
in the 2D case[S1063-651X97)01708-X

PACS numbds): 47.27.Eq

[. INTRODUCTION In 2D there is a second positive definite quadratic quan-
tity, the enstrophy, which is inertially conserved. In analogy
The study of energy spectra and other statistical charado the Kolmogorov theory in 3D one find§]
teristics of fully developed turbulence in the inertial range
now date back more than half a cent{ity. Fully developed E(k)=C,e2* % Kraichnan's “k 3" law, (2)
turbulence in the restricted sense is taken here to be the be-
havior of incompressible hydrodynamical flows at high Rey-wheree,, is the mean dissipation of enstrophy per unit time
nolds number, systems governed by the Navier-Stokes equand mass, an€,, is a dimensionless constant. Solutions to
tions in three dimensiong3D). Partly by dimensional the 2D Euler equations are smooth for all times, and the
analogy, partly because direct numerical simulations are feanergy spectrum can, therefore, never be flatter thar{Ztq.
sible, and partly because many physical flows are quasi-twadt could be steeper, but a spectrum decreasing asis a
dimensional, although then properly described by more inborderline case, in that if it is any steeper, the dominant
volved equations, it has become customary to also considémteractions are no longer local in wave-number space. En-
in parallel the more artificial case of the Navier-Stokes equastrophy at smalk would then jump directly to the dissipative
tions in two dimension$2D) [2]. range without an intermediate cascade from scale to scale.
A long-standing problem in the 3D case is to determine ifMost numerical experiments indicate significantly steeper
there are corrections to the classical prediction of Kolmogspectra than the Kraichnan predictipf|. The cascade pic-
orov [3], which is traditionally derived from dimensional ture is, therefore, probably qualitatively wrong for the 2D
analysis and the physical picture of a cascade of energfMavier-Stokes equations.
down to small scales, where molecular diffusion is effective The density of degrees of freedom in a field problendin
[4]. If all correlation functions are dominated by the samedimensions grows with the wave number as
scaling behavior one would have
n(k)~kP~1. 3)
(W(x+r)=v(x)H~rfa (o«

If the range of scales is frorRgyy tO Kiage the number of
with £, equal tog/3. If different correlation functions are degrees of freedom is approximativelya(ge/ksmamD. When
dominated by different scaling behaviorg, could be a D is equal b 3 a range of scales of just 1000 is beyond the
rather arbitrary function of,, subject to the constraints thatit reach of present-day computers, and direct simulation of
is nondecreasing, its derivative is nonincreasing, and itruly high-Reynolds-number turbulence will not be feasable
passes through the point8,0) and (3,1 [1]. in the foreseeable future. This is the motivation for consid-

The qualitative description of a cascade is generally conering various phenomenological models that share some of
sidered to be correct. The experimental evidence leans tdhe properties of the full equations, but where the number of
wards the conclusion that there are corrections to the dimerdegrees of freedom is much less, and where much wider
sional predictions, which are small for the spectrum, butscaling ranges can be investigated.
larger for higher momentgs]. With a finite scaling range In this paper we will investigate a class of such models
and experimental data that are never free from noise andhere the density of degrees of freedom is constant, that is,
other irregularities, the estimation of scaling exponents ighey could be thought of as field problems in one dimension.
always sensitive, especially for higher moments. In this sense they are intermediate between the full equa-

1063-651X/97/562)/16927)/$10.00 56 1692 © 1997 The American Physical Society



56 BINARY TREE MODELS OF HIGH-REYNOLDS-NUMBR . . . 1693

tions, or models where approximately the same number off ¢ is less than 1 the second invariant is indefinite like the
degrees of freedom are kept, and shell models, which can Heelicity in 3D hydrodynamics, and it has the same dimen-
thought of as field problems in zero spatial dimensions. Th&ional form at the Yamada-Ohkitani value efequal to3
outline of the paper is as follows: In Sec. Il we describe shel[16]. A large part of the phenomenology of turbulence was
models and other hierarchical models introduced in the litverified in this model in a series of papdtk5—20, which
erature. In Sec. lll we introduce the models studied in thisstimulated the recent interest from several groups. A numeri-
paper, and in Sec. [V we describe our numerical implemenga) study of the transition to chaos in the shell models with
tation and results. One of those, that in a naive first impleg<,<1 was performed by Biferalet al. [21]. They found

mentation all degrees of freedom in one shell synchronizey, o there is a stable fixed point fer< e, =0.3843, which
falls somewhat outside our main line of argument, and % ! ’

di d telv in Sec. V. In Sec. VI o t oes unstable via a Hopf bifurcation, and above a larger
ISCUssed separately In Sec. V. In sec. Viwe summarize aluee,=0.3953, the system evolves into a chaotic state.
discussion and conclude.

If, on the other handg is greater than 1, the second in-
variant is a positive definite like the enstrophy in 2D hydro-
Il. SHELL MODELS AND HIERARCHICAL MODELS dynamics, and it has the same dimensional form as the physi-

The basic idea of shell models is to describe with onlycal enstrophy whem is equal to3. In the interval between 1
one (or a few variable Uy the velocity fluctuations in a and 2 the exponent is positive and one naively expects a
wave-number octave (2<|k|<2N*1). Different models, Similar situation as in Kraichnan’s model of 2D turbulence,
differing mainly in the number of variables per shell and thei.e., a forward cascade of the second conserved quantity. At
couplings were introduced by a number of auth@s14]. larger values than 2, the roles of the invariants change, and

The arguably simplest models are the ones introduced bgne expects a forward cascade of energy. At the boundary,
Gledzer[10] and revived by Yamada and Ohkitddi3], now is equal to 2 and the two invariants coincide: that would be a
commonly referred to as the GOY mod&b]. These consist model of 3D turbulence without the helicity invariant.
in the following set of complex ordinary differential equa-  In fact, shell models do not reproduce the forward cascade
tions: of enstrophy in 2D. It was shown if22] that the GOY

model ate equal to2 is described by formal statistical me-
(de+ vkﬁ)UN= ikN[ U%, UK, ,— i Ux UX,, chanics,.clqse Fo equilib_rium. Enstrophy f!ows from the forge
2 to the dissipation, but in a process similar to heat flow in
thermodynamics. This is not a cascade process, although
(1-¢) : . . .
- Uﬁ—zUﬁ—l] +fy. (4) some of the d|me_zn5|onal predictions fqrt_unously turn (_)ut to
be correct. The simplest way to see this is that the resistance
to transport increases with the distance between the scale, as
_ . the resistance to heat flow increases with the diffusing dis-
only on the few shells nea¥=0, ande is a free parameter. ; L S N
tance. This case implies that quantities in the inertial range

The wave numbeky of the Nth shell is 2" . . .
depend on the viscosity parameterThe numerical results
For anye the GOY models conserve energy and phase ; .
X LT Y in [23] were confirmed inf24], and extended to the whole
space volume in the inviscid force-free limit, if these are

defined in a natural way as range ofe between 1 and 2.
y The motivation for hierarchical models, in contrast to

shell models, is that the growth of the number of degrees of
E:E Uy |2 (50  freedom with the wave number is an important property of
N turbulence, and should be in some degree preserved. Such
models were first introduced about the same time as shell
dV=dU7 XdU;X--- . (6)  models[25,11]. These models have in common that the num-
o ‘ber of degrees of freedom of the underlying system is kept,
If one makes the ansatz that a quadratic diagonal form ignore or less: hence Mgvariables in theNth shell for hydro-
conserved dynamics in 3D[11], and 4 variables in theNth shell for
hydrodynamics in 2026,27. The disadvantage of this ap-
W= |Uy|22N, (7) ~ Proach is that the resulting equations become about as time
N consuming to simulate as the full hydrodynamic equations,
although certainly the numerical code is much simpler. To
one finds that the variablemust satisfy a quadratic equation get a model which has many degrees of freedom, but which
is, nevertheless, significantly easier to simulate than the full

Here, * stands for conjugationf, a random force acting

(e—1)z"~ez+1=0. (8)  equations one has to try an intermediate solution, as we de-
_ . . . scribe below in Sec. Il
This equation admits two solutioz=1 andz=1/(—1). A second motivation is the above described discovery that

The first solution Corresponds to the energy conservation ahe 2D GOY model does not d|sp|ay a forward cascade of
above in Eq/(5), while the second gives another invariant enstropy. The theoretical explanation[22] uses the obser-
vation that the characteristic times in the forward range of
7= s —1)NKEE Y 2, ——lo —1). Fh_e transport of 'enstrophy are constant, and thus assumes that
EN: grie = 1)Ky UnI", ale) %e(le=1]) it is the increasing number of degrees of freedom in the full
(9) equations that drives the transport process preferably in the
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N e—1
Hg"=Kn[ Im{UnUn-1Un-2) 2
N-1 1
N 3 IM(Un+1UnUn-1) | (13
N+1

where we have used the shorthand thigf stands for the
FIG. 1. Binary tree and convention for flux computations: the amplitudeUy ,, Uy_; andUy_, for its parent and grand-
local energy(enstrophy flux through a given noda in level N, is parent, respéctively, and ., , for its two children. A sum-
defined by all energyenstrophy exchanges with nodes on higher 1,460 over the children is implied. The total flux of energy
levels. The total flux through levé is the sum oven of the local through a shell is just Eq13) summed over all the nodes
fluxes. n in one layer.
Similarly, the enstrophy flux through a nodd,f) is

e—1
4

direction of high wave numbers, that is, which leads to a

cascade. Earlier investigations of a hierarchical tree model in

[27], which could be considered a system of the type of 2D [N ita
e : ; ; fyrar z N

hydrodynamics in two spatial dimensions, did display such a

cascade. It is therefore of some interest to see if this also

IM(UnUn-1Un-2)

i i H &
happens. in a system of the 2D hydrodynamical type in one +|m<UN+1UNUN—l>< 1- —) ' (14)
spatial dimension. 2
Il. BINARY MODEL It turns out that this simple model, which we have just

described, has the property that all the nodes in one level

The first version of our model is a straightforward adap-synchronize. The numerical evidence for this fact, which
tation of the GOY model to a binary tre€ig. 1). holds for using both complex and real amplitudes, and for all

We useN for notation of the number of the shellhe  yajues ofe which we have investigated, is described below
Scale andn for the individual number of variable inside the in Sec. IV. We do not quite understand Why |t happens_ As |t
shell. We will also use a condensed notation for the Val’iableﬁ; Somewhat accidenta| to our main purpose in th|s paper we
when a computation is performed with and n fixed, we  have collected our remarks, as far as they go, separately in
omit to writen, if the meaning in this context is clear. For all Sec. V. Let us just note here that if synchronization occurs,
terms writtenUy -, the suppressed index is such that thisa|| the dynamically excited degrees of freedom in one layer
node is the parent ofly ,. Similarly Uy, stands for the can be represented by just the totally symmetrical combina-
children of Uy, usually with a summation implied. The tion Sy=2"N= Uy ,. The equations of motion for the
equations of motion will then be identical to E¢), and the  S's with different N will be precisely the original GOY
conserved quantities will be completely analogous to Eqsequations(4).
(5) and(9). In fact, we have mostly simulated a real version A straightforward adaptation of the binary model that
of Eq. (4) on a binary tree. The equations then read the sampads to interesting dynamics is to introduce dynamical cou-
without the factori and the complex conjugations on the plings between neighboring nodes on one scale. This has
right-hand side. All formulas below read the same for thesome similarity with hydrodynamics, where vortices both in-

real model, if the obvious substitutions are made. teract with other close-by vortices of the same size and are
The inertially conserved quantities are, in analogy withagdvected and sheared by vortices of a larger size.
Egs.(5) and(9), The most general GOY-like interaction term among
neighboring nodes on one level is
E=> U2, (10
N AUNn-2Unn-1TBUnn—1Un 1t CUn e 1Unpns2-
15)
and
Conservation of energy, and of the second invariant, implies
Z“:NE kpUZ . (11)
n

A+B+C=0, (16)

The energy flux through one node can be defined as fol- ) )
lows. Let us look at one particular nod&l () and on all and for obvious symmetry reasoAs= C. Using one overall

nodes in the binary tree subtended below it. Then parameters, which measures the strength of interactions be-
tween neighbors of the same scale, we have an additional
1d ) piece in the equations of motion:
- — |Uns o [?=[flow through(N,n)]
2 dt pelow(N,n) ’
) S(Unn-2Unn-1—2Uynn-1Unn+1tUnn+iUnne2)-
—[viscous loss belowN,n)]. (17
(12

For completeness we write here the equations finally pro-
That gives posed in the form that holds for real amplitudes
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d
u 2
dt—l—ka

UN,n:kN

(1—¢)
4

Un-—2Un-1F+ 8(Unn-2Unn-1

Asynchronization

—2Unn-1Unnr1tUnnsiUnns2)

+fy. (18

To avoid boundary problems, that is a singular behavior of

r]odes on the edge of the tree, we impose a_periodical condi- 2T 30 a0 50 w0 70 80 %0 100
tion. The tree could therefore be pictured to lie on the surface fme
of a cone.

FIG. 2. Desynchronization in time in the model which includes

In an earlier paper of the two of the present auth@®,  interactions between the neighbors on one level and horizontal pe-
we motivated a hierachical tree model by writing the 2Diodicity. e=2, Reynolds number Re5x1CP.

Navier-Stokes’ equations in a wavelet ba&f [28]). If we

interpreted our binary model as a system of equations for théixed value ofe. In the 2D casds=3), we increased from
coefficients in a wavelet expansion of a field on the circle,0.0 to 1.5 with step 0.%Fig. 2). As § increases, the mean
we can go backwards, synthesize the field and write ouvalue of desynchronization increases, as well as the variance.

model as an integral equation of the type In Fig. 3 we show the results fer=3 when the variables in
the last two shells were initialized to be zero.
_ , / Figure 4 presents energy and enstrophy spectra, for a
7] )= K(X, |t . . . .
b Vf (xxHux’,b) simulation of the 2D case, which should be compared with

Kraichnan’s ‘k 3" law. One can see that there are very
+J' L(x,x", X" u(x’,tHu(x”,t)+f(x,t). small, if any, deviations.
We also studied the higher structure functions, that we
(19 define by

The first kernelK is similar to a Laplacian as an integral B

operator, that is, to the second derivative affanction. The Sp(N)= ; {IUnal®) (21)
second kernel collects the nonlinear interaction terms and

inherits the symmetries of the GOY model. The details ofand we extract the scaling exponents in analogy with(EQg.
both kernels, of course, depend on the choice of the waveléto compute them with high accuracy we exploit the recent
basis we use to build the field. This analogy can perhaps bdiscovery of extended self-similarity in turbulence dgg@],

used to compare with the partial differential equation modelwhich means that if the moments are normalized by one of
in one dimension, but we will not pursue this question fur-them, the scaling range and, thus, the accuracy of the deter-

ther here. mination of the scaling exponents of the quotient, can be
significantly improved. Since in 3D{; is asymptotically
V. NUMERICAL IMPLEMENTATION equal to one, it is customary to normalize by the third mo-
A first implementation was done of the first naive modelment' He
in the version with complex amplitudes and run on a work 18 ‘ , . — ;
station. A second implementation was done on the massively 16} 5_,, ]
parallel computer CM5 at Centre National de Calcul Paral- lal s=0s — i
lele en Sciences de la Ter®€NCPST [29]. All results Ll |
shown are from runs using this code. We simulated systems_ ‘
up to 18 level(131 071 nodes using a 4th-order Runge- £ ' ] 1
Kutta scheme for the integration. 5 osr ‘
We first present some results to illustrate the desynchro-£  os | (ot o T i awikl
nization of the tree by variation of paramet®in Eq. (18). < o4l I
As measure of the “desynchronization” we use a quantity, 0zl
defined as ol
2(U;-Up)? O T 02 03 o4 05 06 07 08 05 1
g EUIZ , (20) time

FIG. 3. Desynchronization in time far=3. One can observe
whereU; andU, describe all the pairs of the last level, and that although the model is initialized with synchronized terminal
U; all leaves of the last level. When the tree is fully synchro-jeaves(the two last levels are set to zgrhe systems dynamically
nized, o is zero. We studied the influence of paramei@n  desynchronizes. The Reynolds number here & Hhd the time
the behavior of the system on a small modeK12) with a  step is 0.0002 fos=0, and 0.0001 fo=0.5.
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FIG. 4. Energy and enstrophy spectra for the 2D model;, FIG. 5. Mean energy and enstrophy flux, same simulation as in
and 6=1. The number of levels wad=18. The Reynolds number Fig. 4.

was 1.0 10%% The run time was 20 turn-over times.

_ portant, it is resonable to take new variables which are the
{q=83ly- (22)  symmetric and antisymmetric combinations of the pairs of
amplitudes on this last level. More formally, let

In 3D, {4 andZLwiII be asymptotically equal, but a direct

M,1_
determination o, is expected to be more exact. In the 2D S =(UnmztUmz+a), (23
part lack of accuracy in the determinantion of any scaling

exponent is instead collected in one overall factgr The A}V"l=(UM,2j—UM,zj+1), (24

mean energy and enstrophy fluxes, level by level, are shown

in Fig. 5. Our numerical values of thg’s in the 2D case are WhereUy 5 andUy, 5. are two adjacent variables in the
shown in Fig. 6. It is clear that the energy flux is small, verylast level. Since they are siblings they share the same parent,
close to zero, but that the enstrophy flux, or at least its flucwhich in this notation would be callet,_,;, and the
tuations, is significant. Though not perfectly converged, thegrandparent, and so on.

flux of enstrophy appears to be constant on about eight con- The equations of motion of the symmetrized and antisym-

secutive shells. metrized combinations are
We also studied the case=3 which corresponds to the
standard GOY model of 3D turbulence. Since the time step S—= — 5 Y .
then depends on the size of the model, we tried, in this case Tl U R R AR AU A | ) G
only, systems up tdN=12, and Reynolds number up to 25 DU T Lo | " G
2.0x 10%. The results are therefore at this stage preliminary, 5 X G
and will be presented in another context. G
& "--n--0~~0-~0~-»~-0--0~-0-..,€:5
S 15 P I P P P P PN P P N P SR p "
V. ON SYNCHRONIZATION . Z
In the naive model without in-level couplings we ob- s &
served synchronization of the different variable in one shell ‘ G
for different values of the model parameterin particular, 0
we observed this phenomenon both for the 2D dase?), 6 7 8 % 10 N R T
and the 3D casés=13) [29]. We cannot only explain this in
part. FIG. 6. The relative scale expone@l‘&(following the extended

Suppose that the lowest levéthe shell with the largest self-similarity), for the 2D model,s=3 and §=1. We can see that
indeX is M. Then, if synchronization is supposed to be im- there are but very small, if any, effects of space-time intermittency.
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(dy+ ,,kfﬂ)AjMylz 0, (25  drive the symmetrized combinations. To show that the last
two levels synchronize is thus as far as we get.
_ (1—¢) By a more qualitative argument we can, however, make it
(di+ ka,.)S,!\“: ikmy — 1 Uw—2Uu-1(- (26)  very plausible that synchronization occurs. Take the two sub-

trees hanging on one of the nodes on leNelwhereN is far

It follows of course that the antisymmetrized combinations atp in the tree, and assume that both trees are completely

the last level die out, that is, that siblings on the lowest leveBynchronized. Their dynamical degrees of freedom are then

synchronize. the remaining symmetrized combinations, that we call
It is tempting to assume that this behavior holds for higheXn+1,---Xw) and ¢n+1,....ym) for short. The equations

and higher levels, such that eventually the whole tree get§f motion forx can be written

synchronized. We cannot, however, make such an argument

work, because at higher levels the equations of motion for diXnt1=Fns2(X) + X1 26N (36)

the symmetrized and antisymmetrized combinations do not

decouple. dXn+ 2= Fne2(X) +Xnr1Hn 37
To see this effect it is sufficient to look at the next two

levels, which is still a situation a little easier to see than in diXn+i=Fn+i(XHN+3<i<M, (38

the middle of the tree. Let us take a subtree hanging on one

of the nodes on leveM —2 and call thatUy ;. We as-  where theF’s give the couplings of the variables between
sume that the pairs on the lowest level have synchronized, aiemselves, an@ andH give the coupling through the top
we know they must, and there are then fdoot siX) dy-  node (N,n). The equations fo§ are completely similar. The
namic variables on the branches of the tree hanging belowwo equations are not uncoupled, because they are both
namely,Uy 15, Sg/'ll Um-12+1, and SQ’}il Again, if  driven by the variable§, andH,, which in turn are driven
symmetrization is assumed to be important in this subtree, iy the symmetric combinations ofx.;,Yn+1) and

is reasonable to introduce the symmetric and antisymmetrigx, ., ,,yn42), respectively. We therefore appeal to Huy-

combinations as follows: gen’s principle, that identical nonlinear coupled oscillators
M—11_ tend to lock in phase. We believe this is what happens. It is
Sj =(Un-15+tUn-15+1), 27 true that Huygen'’s principle is generally applied to periodic

oscillators, and we have hede factotwo chaotic oscillators,

M—-11_ _ I ) .
Aj =(Un-15~Unm-15+1), (28)  \which is a weakness of the argument just presented.
SV2= (St Sy, 29
§ (ST S @9 VI. CONCLUSION
M,2__ M,1 M,1 . g . .
A= (S = Sgp50)- (30 We have presented a simplified hierachical model of tur-

Writing the equations of motion for these variables we havebUIence’ which can be looked upon as the GOY shell models
on a binary tree. The model is easy to simulate and allows us
(1-¢) to investigate cascade processes in a much wider range of
(d+ vkﬁ,l)A}""zzikM[ - ’,f,l_zyj(A}"'l'l)*], scales than in previously introduced hierarchical models, or
(31) in the full equations. A first naive implementation leads to
synchronization of the dynamical degrees of freedom on one
scale. One simple additional interlevel coupling term breaks
M2 (AMA* this effect.
We investigated intermittency corrections to the Kolmog-
(32 orov and Kraichnan predictions. As in shell models, a cas-
(1—¢) cade process would lead to the same spectral behavior as in
Nl ;\\-Aiz(s!\/lfl,l 2 the full equation, that i€(k)=k 2 in the Kraichnan theory.
4 J An equilibrium situation does however, simply by consider-
(33 ing the density of degrees of freedom, leadE) =kP 3 in
the forward enstrophy transport ranf@. For the full 2D
Kﬂfz(SIM’Z)*: (34) Navier-Stokes_, e_quations_tgis_ﬁik)zkfl_, V\_/hile for the 2D
shell models it isE(k)=k™ >, i.e., by coincidence the same
as the cascade prediction. In our model we have the interme-
diate law E(k)=k 2. Since we observe a behavior very
close toE(k)=k 3 a cascade picture can be established al-
ready from the spectrum.

(d¢+ ka/ll)AIMLl:ikM—ll - g

(dt-l-kaA)SJM’ZZikM( —

&
(dy+ ka,,l)Sle*lzikM( -5

(1-e) .
B UM—3UM—2]- (35

We see that the equations are linear inAbg and that the
A’s do not act back on th&'s. Under reasonable assump-
tions on the off-diagonal driving terms, that is, in this case

M—2;» it would still follow that eventually the two coupled E.A. thanks Laboratoire Physico-Gh&ue Therique at
antisymmetrized combinations die out. If we look at higherESPCI(Pari9 for hospitality. P.F. thanks the Center for Par-
levels we will, however, eventually find that quadratic com-allel Computers for hospitality. E.D. and P.F. thank the
binations of antisymmetrized combinations act back andCNCPST for use of the CM5 and the Laboratory of Dynami-
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