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Abstract. Let T be an infinite rooted tree with weights we assigned to its edges.

Denote by mn(T ) the minimum weight of a path from the root to a node of the nth

generation. We consider the possible behaviour of mn(T ) with focus on the two following

cases: we say T is explosive if

lim
n→∞

mn(T ) < ∞ ,

and say that T exhibits linear growth if

lim inf
n→∞

mn(T )

n
> 0 .

We consider a class of infinite randomly weighted trees related to the Poisson-weighted

infinite tree, and determine precisely which trees in this class have linear growth almost

surely. We then apply this characterization to obtain new results concerning the event of

explosion in infinite randomly weighted spherically-symmetric trees, answering a question

of Pemantle and Peres [23]. As a further application, we consider the random real tree

generated by attaching sticks of deterministic decreasing lengths, and determine for which

sequences of lengths the tree has finite height almost surely.

1. Introduction

Let i.i.d. random weights we be assigned to the edges of an infinite rooted tree T , and

let mn(T ) denote the minimum weight of a path from the root to a node of the nth

generation. In the context of first passage percolation, looking at the weight of an edge

as the transition time between the two corresponding nodes, mn(T ) is the first passage

time to the nth generation. We consider the possible behaviour of mn(T ) with particular

focus on the following cases: we say T is explosive if

lim
n→∞

mn(T ) < ∞ ,

and say that T exhibits linear growth if

lim inf
n→∞

mn(T )

n
> 0 .

In the case where the tree T is itself a random Galton-Watson tree conditioned on

the survival, the quantity mn also occurs as the minimal nth generation position in a
1
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branching random walk in R. The linear growth property goes at least back to the work

of Hammersley [19], Kingman [21], and Biggins [11]. Many other, including very recent,

results [2, 3, 4, 10, 14, 17, 20, 22, 24] on the behavior of mn in the context of branching

random walks are known, we refer to [10] and the discussion in the introduction there for a

short survey. The literature on explosion is partially surveyed by Vatutin and Zubkov [25].

We assume now that the tree T is deterministic. Pemantle and Peres introduced the

concept of stochastic dominance between trees and proved in [23] that amongst trees

with a given sequence of generation sizes, explosion is most likely in the case that the

tree is spherically symmetric. Recall that a tree T is called spherically symmetric if all

the vertices at generation n have the same number f(n) of children, for some function

f : N ∪ {0} → N. Pemantle and Peres proved that for a spherically symmetric tree T

with a non-decreasing branching function f , and with weights we independent exponen-

tial random variables of mean one, the probability of the event of explosion is 0 or 1

according to whether the sum
∑∞

n=0 f(n)−1 is infinite or finite. They also showed that

the same statement holds for weight random variables with distribution function G sat-

isfying limt→0G(t)t−α = c > 0 for some α > 0. Furthermore, they asked if the same

simple explosion criterion holds for general edge weight distributions, under reasonable

assumptions.

One of our aims in this paper is to answer, essentially completely, this question of

Pemantle and Peres. In order to do so, we consider a class of infinite weighted trees

related to the Poisson-weighted infinite tree, the PWIT, introduced by Aldous [6, 9].

Since its introduction, the PWIT has been identified as the limit object of the solutions

of various combinatorial optimization problems. The survey by Aldous and Steele [9]

provides a general overview with several examples of applications; see also [1, 13] for some

more recent applications.

As a cornerstone of all our results, we determine precisely which trees in this class of

generalized PWITs have linear growth almost surely. We then present two applications

of this result:

− First, we provide in Sections 3 and 4 our results concerning the event of explosion in

spherically-symmetric trees, generalizing the results of [23], and

− Second, we consider general classes of random real trees constructed via a stick breaking

process on R+, in a similar way that Aldous’ CRT [5] is constructed, and give in Section 5

a criterion for these random real trees to have finite diameter almost surely.
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In the remainder of this introduction, after summarizing our notation, we state our

main results.

Basic definitions and notation. Given edge weights we for each e ∈ E(T ), we write

w(γ) for the sum of the weights in a path γ. We write Tn for the nodes of the nth

generation (i.e., at distance n from the root), and Γn(T ) for the family of paths from the

root to Tn. In this notation, mn(T ) := minγ∈Γn(T ) w(γ).

Recall that a spherically symmetric tree with branching function f : N0 → N is the

rooted tree Tf in which the root has f(0) children and each node of (Tf )n has f(n) children

(here N0 := N ∪ {0}). We write F (n) for
∏n−1

i=0 f(i), and note that F (n) = |(Tf )n|. We

shall tend to focus on the case that f is non-decreasing.

A Poisson point process of intensity λ ∈ R+ is a point process P on the positive real

line such that for each pair of disjoint intervals [a, b], [c, d] we have

(i) |P ∩ [a, b]| is distributed as Po(λ(b− a)), and,

(ii) |P ∩ [a, b]| and |P ∩ [c, d]| are independent.

More generally, given a (measurable) function λ : R+ → R+, which is locally integrable

and satisfies
∫∞

0
λ = ∞, the inhomogeneous Poisson point process P λ is a point-process

on the positive real line such that for each pair of disjoint intervals [a, b], [c, d] we have

(i) |P λ ∩ [a, b]| is distributed as Po(
∫ b
a
λ), and,

(ii) |P λ ∩ [a, b]| and |P λ ∩ [c, d]| are independent.

We denote by P (j) the position of the jth smallest particle of the point process P .

We now define a class of infinite trees that generalize the Poisson-weighted infinite tree

(which corresponds to the case λ is the constant function with value 1). We shall use

N<ω to denote the set of finite (ordered) sequences of natural numbers. A typical element

of N<ω is denoted by i, and for an integer j ∈ N, the sequence ij is obtained from i by

inserting j to the very right end of the sequence.

Definition 1.1. The PλWIT, which we denote by T λ, has vertices labelled by N<ω, with

∅ labelling the root, and edge set

{ {i, ij} : i ∈ N<ω, j ≥ 1} .

Associate to each vertex i an independent point process P λ
i (distributed as P λ), and

give edge {i, ij} of T λ the weight P λ
i (j).
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1.1. Linear growth in generalizations of the PWIT. The Poisson-weighted infinite

tree exhibits linear growth almost surely. It is therefore natural to ask how general this

property is in the generalizations of the PWIT defined above. We answer this question

completely. Furthermore, we provide exponential probability bounds for the event that

mn(T ) grows more slowly.

Theorem 1.2. Let λ : R+ → R+ be any locally integrable function with
∫∞

0
λ =∞. Then

we have the following dichotomy.

(i) If either there exists some t > 0 such that
∫ t

0
λ = 0, or there exists some C > 0 so

that
∫ x

0
λ ≤ Cx for all x ∈ R+, then there exists α > 0 such that

lim
n→∞

mn(T λ)

n
= α

almost surely. In particular, T λ has linear growth, almost surely.

Furthermore, for each K > 0, there exists δ > 0 such that

P
(
mn(T λ) < δn

)
≤ e−Kn .

(ii) Otherwise, T λ does not have linear growth, almost surely.

Note that if
∫ t

0
λ = 0 for some t > 0, then obviously T λ has linear growth. The main

part of the theorem thus concerns the existence or the non-existence of a constant C > 0

so that
∫ x

0
λ ≤ Cx for all x ∈ R+, which provides a dichotomy for linear growth in the

trees T λ. The proof appears in Section 2.

1.2. Explosion in infinite trees. Recall that we call a rooted weighted tree explosive if

lim
n→∞

mn(T ) < ∞ .

Pemantle and Peres proved that amongst trees with a given sequence of generation sizes,

explosion is most likely in the case that the tree is spherically symmetric.

Let f : N0 → N, and let Tf denote the spherically-symmetric tree in which each node

v of generation n has f(n) children. Given a distribution function G : [0,∞)→ [0, 1], let

TGf denote the randomly weighted tree obtained by giving each edge of Tf an i.i.d. weight

distributed according to G.

Definition 1.3. Given the distribution G and non-decreasing function f : N0 → N, we

say that f is G-explosive if TGf is explosive almost surely.
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It is easy to see that a sufficient condition for f being G-explosive is (a slightly

stronger version of) the “local min-summability” condition (compare to the “global min-

summability” condition considered in [10]): apply a greedy algorithm to construct an

infinite path in the tree TGf by starting from the root, and by choosing recursively for the

end vertex vn of the already constructed path up to level n, the minimum weight edge

vnvn+1 among the f(n) adjacent edges to level n+ 1, see Proposition 3.1. This motivates

the following definition.

Definition 1.4. Given the distribution G and a non-decreasing function f : N → N, we

say that f is G-small if ∑
n≥0

G−1(f(n)−1) < ∞ . (1)

One may now interpret Pemantle and Peres [23, Page 193] as asking the following.

Question 1.5 (Pemantle-Peres [23]). For which G does the equivalence

f is G-small ⇔ f is G-explosive

hold in the class of non-decreasing functions f : N0 → N?

Pemantle and Peres [23] showed that if G has a limit law at 0 in the sense that

limx→0G(x)x−α exists and is positive, then this equivalence holds. They speculated that

perhaps the equivalence holds provided G is continuous and strictly increasing. The fol-

lowing definition encodes robust versions of the properties of being continuous and strictly

increasing.

Definition 1.6. The distribution G is controlled near 0 if

1 < lim inf
x→0

G(cx)

G(x)
≤ lim sup

x→0

G(cx)

G(x)
< ∞ ,

for some constant c > 1.

Note that this is much weaker than the requirement that G be regularly varying around

0, which corresponds to the condition that the limit exists for any c > 1 and lies in (1,∞),

which is in turn weaker than the requirement that G has a limit law at 0. Thus, the

following generalizes the result of Pemantle-Peres [23] and, in spirit, confirms the validity

of their speculation.

Theorem 1.7. If G is controlled near 0, then the equivalence

f is G-small ⇔ f is G-explosive
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holds in the class of non-decreasing functions f : N→ N.

On the other hand, we give examples that demonstrate that the “controlled near 0”

condition cannot be significantly weakened. Firstly, we show that the equivalence may

fail in general in both directions even if we assume G continuous and strictly increasing:

Proposition 1.8. There exist a continuous, strictly increasing weight distribution G, and

non-decreasing functions f1, f2 : N0 → N with the following properties.

(i) The function f1 is G-small but not G-explosive.

(ii) The function f2 is G-explosive but not G-small.

Secondly, a counterexample of the form (ii) holds in fact for a rather large class of

weight distributions:

Theorem 1.9. Let G be any weight distribution satisfying either

lim sup
i→∞

G(xi)

G(xi/c)
< lim sup

i→∞

G(cxi)

G(xi)
= ∞ , (2)

or

1 = lim inf
i→∞

G(xi)

G(xi/c)
< lim inf

i→∞

G(cxi)

G(xi)
, (3)

for some constant c > 0 and decreasing sequence xi : i ≥ 1 with limit 0. Then there exists

a function f : N0 → N which is G-explosive but not G-small.

See Section 4 for more details.

While Theorem 1.7 and Theorem 1.9 together cover most naturally defined distribution

functions G, we would like to stress that it is still open to answer Question 1.5 completely.

1.3. Finite height criterion for stick breaking random real trees. Consider the

following method for constructing a random real tree. Given a sequence `(i) : i ∈ N,

define the real tree A` recursively as follows. Let A`(1) consist of a closed segment of

length `(1) rooted at one end, and for each i ≥ 1, define A`(i + 1) by attaching one end

of a closed segment of length `(i + 1) to a uniformly randomly chosen point of the tree

A`(i). Let

Ao` :=
⋃
i≥1

A`(i)

and define A` as the completion of Ao` . The random real tree A` is referred to as the

random real tree given by the stick breaking process obtained by cutting the positive real

line according to the segment lengths sequence `.
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Note that in the case where the sequence `(i) is the length of the segment [P λ(i), P λ(i+

1)] given by an inhomogeneous Poisson point process P λ with intensity λ(t) = t on R+, the

random real tree A` is precisely the continuum random tree constructed by Aldous [5]. The

inhomogeneous, and more general, versions of this construction are treated in [7, 8, 18].

Curien and Haas [16] have recently studied the geometric properties of such trees (such

as compactness and Hausdorff dimension) in the case of deterministic lengths `(i) which

decay roughly like a power `(i) ≈ i−α for α > 0. It was a question of Curien [15] that led

us to consider Problem 1.10 below.

For a real tree A, we denote by d(A) the height of A, i.e., the supremum of distances

from points of A to the root. We denote by diam(A) the diameter of A. Note that

d(A) ≤ diam(A) ≤ 2d(A).

The following is then a very natural problem:

Problem 1.10. Classify all sequences `(i), i ∈ N, for which we have d(A`) < ∞, or

equivalently, diam(A`) <∞, almost surely.

Note that the property of having bounded diameter almost surely is equivalent to the

almost sure compactness of the random real tree A` [16].

As an application of our result on linear growth of PλWIT, we answer this question

completely in Section 5 for those length sequences `(i) which are deterministic and de-

creasing.

Theorem 1.11. Let `(i), i ∈ N, be a decreasing sequence. Then d(A`) <∞ almost surely

if and only if
∑

n≥1
`(n)
n

< ∞ , or equivalently, if and only if
∑

n≥1 `(2
n) < ∞ .

We note that the requirement that `(i) be decreasing may be relaxed: writing ¯̀(i)

for the average value of `(j) : j ≤ i, we only need to assume that the ratio `(i)/¯̀(i) is

bounded.

It might be possible that a similar criterion (applied to the decreasing rearrangement

of `) remains valid for a general sequence `(i), a question we leave open.

Finally, we mention that Curien and Haas have independently and simultaneously

proved in [16], by using different tools, that if `(i) ≤ i−α+o(1) for some α > 0, then

the random real tree A` has bounded height almost surely. They further prove (amongst

other things) that under the additional assumption on the average ¯̀(i) = i−α+0(1) for

α ∈ (0, 1], the Hausdorff dimension of A` is α−1, while for α > 1, the Hausdorff dimension

is one, almost surely.
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2. Linear growth in PλWIT trees

In this section, we will prove Theorem 1.2.

Hammersley [19], Kingman [21], and Biggins [11] give general conditions under which

linear growth occurs in a branching random walk, as well as associated limit theorems. The

version most suitable to our situation is Kingman [21] (see also Biggins [12]). Kingman’s

theorem holds for general point processes on R+, but we state it here only for the case

relevant to us, that of inhomogeneous Poisson point processes.

Theorem 2.1 (Kingman [21], specialized to the PλWIT). Let T λ be a PλWIT, for some

appropriate λ : R+ → R+. Define µ : R+ → R+ ∪ {∞} by

µ(a) := inf
D≥0

{
eDaE

[∑
j≥1

e−DP
λ(j)

]}
. (4)

Assume µ(a) <∞ for some a > 0. Then

lim
n→∞

mn(T λ)/n→ α almost surely,

where α = inf{a : µ(a) > 1}. In particular, if α > 0, then T λ exhibits linear growth

almost surely. Moreover,

P
(
mn(T λ) ≤ an

)
≤ µ(a)n.

We begin with part (i) of Theorem 1.2. The following argument allows to treat only

the case where
∫ t

0
λ > 0 for any t > 0. Indeed, if

∫ c
0
λ = 0 for some c > 0, then

P
(
mn(T λ) < cn

)
= 0 and linear growth holds trivially. In addition, if c is chosen maxi-

mum with respect to
∫ c

0
λ = 0, then the intensity function λ̃ defined by λ̃(t) := λ(t + c)

for any t ∈ R+ verifies
∫ t

0
λ̃ > 0 for all t > 0, so that the limit assertion for λ follows from

that of λ̃, guaranteed either by part (i) or part (ii) of the theorem.

So suppose that
∫ t

0
λ > 0 for any t > 0. Let C > 0 so that

∫ x
0
λ ≤ Cx for all x ≥ 1.

The key lemma is the following, after which we will be able to directly apply Kingman’s

result.

Lemma 2.2. For every η > 0, there exists D ∈ R such that

E

[∑
j≥1

e−DP
λ(j)

]
< η .
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Proof. Note that, by a straightforward coupling, if λ1 and λ2 are such that
∫ x

0
λ1 ≥

∫ x
0
λ2

for all x ≥ 0, then

E

[∑
j≥1

e−DP
λ1 (j)

]
≤ E

[∑
j≥1

e−DP
λ2 (j)

]
.

This allows us to assume λ is decreasing on [0, 1], and that λ(y) = (logC)Cy for y ≥ 1.

In particular, if we prove the lemma for such functions λ then this proves the lemma in

general. In addition, we may obviously assume that η ≤ 1.

We shall deal separately with points in the interval [0, 1] and those in (1,∞). We give

a choice of D such that

E

 ∑
j≥1:Pλ(j)≤1

e−DP
λ(j)

 ≤ η

2
and E

 ∑
j≥1:Pλ(j)>1

e−DP
λ(j)

 ≤ η

2
.

Let D1 be large enough that

E
[
e−D1Pλ(1)

]
≤ η

4
.

For each j ≥ 2, the fact that λ is decreasing on [0, 1] implies that conditioned on P λ(j) ≤ 1,

the increment P λ(j)− P λ(j − 1) stochastically dominates P λ(1), and so

E
[
e−D1Pλ(j)

]
≤
(
E
[
e−D1Pλ(1)

])j
≤
(η

4

)j
.

Summing the above inequalities, we obtain that for any D ≥ D1,

E

 ∑
j≥1:Pλ(j)≤1

e−DP
λ(j)

 ≤ η

2
.

Now, for the points in (1,∞), we have

E

 ∑
j≥1:Pλ(j)>1

e−DP
λ(j)

 ≤ ∫ ∞
1

(logC)Cye−Dy dy ≤ C logC

D − logC
e−D .

Therefore, taking D ≥ D1 large enough so that C logCe−D/(D − logC) ≤ η/2, we have

E

 ∑
j≥1:Pλ(j)>1

e−DP
λ(j)

 ≤ η/2 ,

which completes the proof of the lemma. �
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Note that the lemma ensures that µ(a) < ∞ for any a ∈ R+. Thus by Theorem 2.1,

mn(T λ)/n → α as n → ∞, where α := inf{a : µ(a) > 1}. The lemma also immediately

implies that µ(a) → 0 as a → 0. So α > 0, and thus T λ exhibits linear growth almost

surely. Moreover, again by Theorem 2.1,

P
(
mn(T λ) ≤ δn

)
≤ µ(δ)n ≤ e−Kn

for any δ > 0 s.t. µ(δ) ≤ e−K . This completes the proof of part (i) of Theorem 1.2.

We now move to part (ii). So suppose that for any t > 0, we have
∫ t

0
λ > 0, and λ

does not satisfy the conditions of part (i): in other words, for any C > 0, there exists an

x ≥ 1 so that
∫ x

0
λ > Cx. It is not possible to directly apply the result of Kingman, since

it turns out that µ(a) =∞ for all a. A truncation argument may be used, but we prefer

to give here a direct proof.

We will prove that T λ a.s. does not have linear growth by finding a value nδ for every

δ > 0, with nδ →∞ as δ → 0, such that

P
(
mnδ(T

λ) ≥ δ · nδ
)
→ 0 as δ → 0.

So fix any δ > 0. Let p = pδ := min{P
(
P λ(1) < δ/2

)
, δ/2}. Note that p > 0 by the

assumption that
∫ t

0
λ > 0 for all t > 0. Also let C = Cδ := p−8p−1

, and choose x = xδ ≥ 1

so that
∫ x

0
λ > Cx. Let n = nδ := d2x/δe. Note that nδ →∞ as δ → 0.

Let T denote the connected component containing the root of the subforest of T λ

obtained by keeping those edges adjacent to the root with weight less than x and all

remaining edges having weight less than δ/2. We thus have

P
(
mn(T λ) ≥ δn)

)
≤ P (Tn = ∅)

≤ P
(
Tn = ∅ | |T1| ≥ p−2n

)
+ P

(
|T1| < p−2n

)
.

Given that a particular child v of the root is in T, the probability that v has a descendant

in Tn (generation n) is certainly at least pn−1. Therefore,

P
(
Tn = ∅ | |T1| ≥ p−2n

)
≤ P

(
Bin(dp−2ne, pn−1) = 0

)
.

Also |T1| is Poisson distributed, with mean∫ x

0

λ ≥ Cx = p−8p−1x ≥ p−2p−1nδ ≥ p−4n.

So clearly the above bound on P
(
mn(T λ ≥ δn)

)
goes to zero as δ → 0, and the result is

proved.
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3. Explosion in spherically symmetric trees

In this section we prove Theorem 1.7. That is, we show that if G is controlled near 0,

and f : N0 → N is non-decreasing, then

f is G-small ⇔ f is G-explosive .

One direction of the equivalence is straightforward. If G is controlled near 0 and f is

G-small, then one easily deduces that∑
n≥1

G−1

(
1 + ε

f(n)

)
< ∞ ,

for some ε > 0. The first direction of the equivalence then follows from the following

proposition.

Proposition 3.1. Let G be an arbitrary weight distribution function, and let f : N0 → N
be non-decreasing. If ∑

n≥1

G−1

(
1 + ε

f(n)

)
< ∞ ,

then f is G-explosive.

Proof. Note that the summability condition certainly implies that f(n) → ∞. Consider

the forest F in which edges from generation n to generation n + 1 are kept if their

weight is at most G−1((1 + ε)/f(n)). Since any path in F has finite weight it suffices

to show it contains an infinite path with positive probability. Each node of generation

n has Bin(f(n), (1 + ε)/f(n)) children, which stochastically dominates the distribution

max{Po(1 + ε/2), ε−1} when n is large. Since the Galton-Watson branching process with

offspring distribution max{Po(1 + ε/2), ε−1} survives with positive probability, the same

is true for F . �

We now turn to the remaining direction of the equivalence. We prove that if G is

controlled near 0 and f is not G-small, i.e.,∑
n≥1

G−1(f(n)−1) = ∞ ,

then f is not G-explosive.

The idea is to compare weights along paths in TGf with the terms of the sequence

a(n) := G−1(f(n)−1). Indeed, the key intermediate result will be Proposition 3.3, which

claims that this re-normalized weighted tree has linear growth (at least after the removal

of some extra heavy edges).
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Definition 3.2. Given the weighted infinite tree TGf , and a sequence (a(n)), define the

renormalized weighted tree T̂Gf to have the same underlying graph as TGf , but with weights

ŵe :=
we
a(|e|)

e ∈ E(T̂Gf ) = E(TGf ) ,

where we is the weight of e in TGf and |e| is the generation of the parent in the edge e.

Say that T̂Gf has been η-trimmed, if all edges e with

ŵe ≥
η

a(|e|)
have been removed. Note, this is equivalent to removing all edges of weight at least η in

TGf before renormalizing.

Proposition 3.3. Let G be controlled near 0 and let f be a non-decreasing function with

f(n)→∞ as n→∞. Then there exists η > 0 such that the tree T̂ obtained when T̂Gf is

η-trimmed exhibits linear-growth almost surely.

Let us show how to complete the proof of Theorem 1.7, by using Proposition 3.3. The

following lemma is essentially what we need.

Lemma 3.4. Let ε > 0 and consider a sequence of non-negative real numbers b(i) : i ∈ N
such that

∑n
i=1

b(i)
a(i)
≥ εn for all sufficiently large n. Then

∑∞
i=1 b(i) =∞

Proof. Let n0 be such that the claimed inequality holds for all n ≥ n0. We prove that for

any n,
∑n

i=1 b(i) ≥ ε
∑n

j=n0
a(j), which proves the lemma, since the later sum is assumed

to be divergent. Let c(i) := b(i)
a(i)

and S(j) :=
∑j

i=1 c(i). By assumption, for any j ≥ n0,

we have S(j) ≥ εj. We now have that

n∑
i=1

b(i) =
n∑
i=1

c(i)a(i) =
n∑
i=1

c(i)
[
a(n) +

n−1∑
j=i

(a(j)− a(j + 1))
]

= S(n)a(n) +
n−1∑
j=1

S(j)(a(j)− a(j + 1))

≥ S(n)a(n) +
n∑

j=n0

S(j)(a(j)− a(j + 1))

≥ εna(n) +
n−1∑
j=n0

εj(a(j)− a(j + 1)) ≥ ε

n∑
j=n0

a(j).

The penultimate inequality uses that a(n) is a decreasing sequence. Since
∑∞

j=n0
a(j) =

∞, the lemma follows. �
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Proof of Theorem 1.7. Let G be controlled near 0 and f : N0 → N a non-decreasing

function. The proof that f being G-small implies f is G-explosive follows directly from

Proposition 3.1, as explained above.

For the other direction, suppose that f is not G-small, i.e.,∑
n≥1

G−1(f(n)−1) = ∞ ,

we shall prove that f is not G-explosive.

In the case that f is bounded the proof is easy. Let D be the maximum value of

f(n), and let δ0 > 0 be such that G(δ0) < 1/2D. All components of light edges (i.e.,

with weights at most δ0) are finite almost surely (since they correspond to sub-critical

branching processes). So every infinite path contains infinitely many edges of weight at

least δ0, which demonstrates that f is not G-explosive.

If f(n) is unbounded, we shall use Proposition 3.3. First observe that we may remove

all edges of weight above some η > 0. Indeed, let E be the event TGf contains an infinite

path of finite weight and let E(η) be the event TGf contains such a path with all edge

weights at most η. It is elementary that the ratio of P (E) and P (E(η)) is a constant. So

to prove that P (E) = 0, it suffices to prove that P (E(η)) = 0.

The renormalized version of the remaining tree is precisely the tree T̂ obtained after

T̂Gf is η-trimmed. By Proposition 3.3, there exists (almost surely), a constant δ > 0 such

that mn(T̂ ) ≥ δn for all sufficiently large n. Now, let γ be any infinite path descending

from the root in the tree TGf and using only edges with weight at most η. Writing b(n)

for the weights along this path, a(n) for G−1(f(n)−1) and c(n) for the ratio b(n)/a(n),

we have that c(n) are exactly the weights on the corresponding path in T̂ and so satisfy∑n
i=1 c(i) ≥ δn for all sufficiently large n. We are now in the setting of Lemma 3.4, and

we deduce that
∑

n≥0 b(n) is divergent.

Since the choice of the path γ was arbitrary it follows that (almost surely) TGf does not

contain an explosive path with all weights at most η, as required. �

In the rest of this section, we provide the proof of Proposition 3.3.

3.1. Proof of Proposition 3.3. It will be convenient to relabel the vertices of T̂Gf (and

so also T̂ ) by sequences in N<ω. We label the root by ∅, and for any vertex i ∈ N<ω which

labels a vertex in T̂Gf , we label with ij the child of i for which ŵi,ij has the j’th smallest

value, amongst all weights of edges to children of i.

With Theorem 1.2 in mind, it will suffice to couple the tree T̂ (obtained after T̂Gf is η-

trimmed) with a PλWIT (with λ controlled by an exponential) in such a way that weights
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in T̂ are at least the equivalent weights in the PλWIT. Such a coupling is provided by the

following lemma.

Lemma 3.5. Let G be controlled near 0, and let f : N0 → N be a non-decreasing function

with f(n) → ∞ as n → ∞. Then there exist constants n0 ∈ N and η, C > 0, a function

λ : R+ → R+ with
∫ x

0
λ ≤ Cx for all x ∈ R+, and a coupling between T̂ (obtained from

η-trimming T̂Gf ) and a PλWIT T λ in which

ŵi,ij ≥ P λ
i (j)

for any edge {i, ij} in T̂ with i at level at least n0.

Proof. We defer for now the explicit definitions of n0, C, η and λ. It is sufficient to show

that for any n ≥ n0, and any vertex i ∈ T̂n, we can couple the weights of the downward

edges from i with the inhomogeneous Poisson point process P λ. The lemma then follows

by applying the coupling at every vertex at distance n0 or more from the root.

The weights ŵi,ij : j = 1, . . . , f(n) are obtained by taking i.i.d. samples from the

distribution G, dividing by a(n), and then arranging in an increasing order. Equivalently,

they are generated as

ŵi,ij =
G−1(U(j))

a(n)

where U(1), . . . , U(f(n)) are i.i.d. Unif(0, 1) random variables arranged in increasing or-

der.

Let η0 = G−1(1/2). We will later choose η ≤ η0, thus ensuring η to satisfy G(η) ≤ 1/2.

We can ignore all edges {i, ij} for which U(j) ≥ G(η), since these will disappear when

we form T̂ by η-trimming T̂Gf . Let J denote the largest index j ≤ f(n) s.t. U(j) < G(η).

Thus one may couple the uniforms U(1), . . . , U(f(n)) with a Poisson point process Q

of intensity 2f(n) on the positive real line so that

U(j) ≥ Q(j) ∧G(η) for all j ≥ 1 .

It follows that there is a coupling in which

ŵi,ij ≥
G−1(Q(j))

a(n)
for all j = 1, . . . , J . (5)

So to prove the lemma, it suffices to demonstrate a coupling between Q and P λ (for our

choice of λ, which will be given shortly) such that

G−1(Q(j))

a(n)
≥ P λ(j) for all j = 1, . . . , J.
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The remainder is concerned with using the properties of G to prove this statement.

Since G is controlled near 0, there exist constants c > 1 and K ≥ max{1/η0, 2} such

that

1 +
1

K
<

G(cx)

G(x)
< K , for all x ≤ 1/K.

Let η = 1/K (note that then η ≤ G−1(1/2), as assumed earlier). It follows easily from

the above, combined with the monotonicity of G, that for any x0 ∈ (0, η],

G(x) ≤ K · (x/x0)log(1+1/K)/ log cG(x0) ∀x ∈ (0, x0],

G(x) ≤ K · (x/x0)logK/ log cG(x0) ∀x ∈ [x0, η].

More succinctly, we have that

G(x) ≤ h(x/x0)G(x0) for all x, x0 ∈ (0, η], (6)

where

h(z) =

Kzlog(1+1/K)/ log c z ≤ 1

KzlogK/ log c z > 1
. (7)

One can think of this as providing some uniform control over the shape of G when “zoom-

ing in” around some point x0. We now state our definition of n0: it is chosen such that

f(n0) ≥ K and a(n0) ≤ η. Let us see what the above tells us about the behaviour of G

about a(n), for n ≥ n0. It yields

G(x) ≤ h(x/a(n))G(a(n)) =
h(x/a(n))

f(n)
for all x ∈ (0, η]. (8)

Making the substitution y = G(x) and applying h−1, we obtain

h−1(yf(n)) ≤ G−1(y)

a(n)
for all y ∈ (0, G(η)].

Since Q(j) ≤ G(η) for all j ≤ J ,

h−1
(
Q(j)f(n)

)
≤
G−1

(
Q(j)

)
a(n)

for all j = 1, . . . , J . (9)

We are now ready to give our choice of λ, and finish the proof of the lemma: simply

define λ := 2dh
dx

. Note that by the explicit form of h given in (7), it is clear that h grows

polynomially and so there clearly exists a constant C > 0 so that
∫ x

0
λ = 2h(x) ≤ Cx for

all x > 0. Moreover, the Poisson point process P λ with intensity λ can be generated by

P λ(j) = h−1(Q(j)f(n)), because Q(j)f(n) is a Poisson point process of intensity 2; this

combined with (5) and (9) provide the required coupling. �
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Take n0, η, C and λ as guaranteed by the above lemma. Then for any vertex in i ∈
T̂n0 , the subtree rooted at i has linear growth almost surely, by the above coupling and

Theorem 1.2. Since this occurs for every vertex in T̂n0 , T̂ itself exhibits linear growth

almost surely, which completes the proof of Proposition 3.3.

4. Sharpness of the equivalence Theorem 1.7

In this section we give examples of pairs (f,G) where the equivalence between f being

G-small and f being G-explosive fails. We begin by giving simple examples for each

direction of the equivalence.

Note that this does not quite prove Proposition 1.8, since the choice of G used in these

two simple examples differ. However, we will then prove Theorem 1.9, and since the

choice of G that we use in demonstrating Proposition 1.8 (i) also satisfies the conditions

of Theorem 1.9, Proposition 1.8 follows.

Recall that we write F (n) for
∏n−1

i=0 f(i), and note that F (n) = |(Tf )n|.

4.1. A pair (f,G) where f is G-small but not G-explosive. We shall define a contin-

uous strictly increasing distribution function G and a non-decreasing function f : N0 → N,

such that f is G-small but not G-explosive.

In fact it is possible to define a general class of such examples. Let B1, B2, . . . be any

strictly increasing sequence of natural numbers. We may define f such that the image of

f is precisely {Bi : i ≥ 1}.
We first define G0, a distribution function that is neither continuous nor strictly increas-

ing (in fact it is a non-decreasing step function), with the property that f is G0-small

but not G0-explosive. We then define G as a tiny perturbation of G0 in such a way that

G becomes continuous and strictly increasing while maintaining the properties that f is

G-small but not G-explosive.

Our construction will involve defining a decreasing sequence ai of positive reals and a

non-decreasing sequence ni of natural numbers. We will give an inductive construction of

these sequences.

Set a0 = 1 and n0 = 0. Given ak−1 and nk−1, consider the Bk-regular infinite tree Tk.

Consider critical bond percolation on Tk in which bonds are open with probability 1/Bk.

It is well known that all open clusters are finite almost surely. It follows that, for any

constant ε > 0, there exists a constant ξ(k, ε) such that with probability at least 1 − ε,
every path from the root of Tk to generation ξ(k, ε) uses at least 1/ak−1 closed edges. Set
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nk := nk−1 + ξ(k, εk), where εk := 1
2F (nk−1)

, and

f(n) := Bk for all nk−1 ≤ n < nk .

Finally set ak := 1
2knk

. This defines the sequences ai, ni, and the function f : N0 → N.

Define now G0 by

G0(x) :=
1

Bk

for all ak ≤ x < ak−1

It is easily checked that f is G0-small.

We now show that for each k there is probability at least 1/2 that every path from

generation nk−1 to generation nk has weight at least 1. This is straightforward since

ξ(k, ε) was precisely chosen so that with probability at least 1− ε every path from a fixed

vertex of generation nk−1 to generation nk has at least 1/ak−1 edges of weight at least

ak−1, and therefore has total weight at least 1. The choice of εk is precisely made to

guarantee that a union bound over vertices of generation nk−1 complete the proof.

This property easily implies that explosion is a probability zero event, and so f is not

G0-explosive.

The essential content of the proof is unaffected if the atom of probability mass of G0

at ai is spread equally over the interval [ai, 2ai]. This makes the distribution function

continuous. To make G strictly increasing, add between 2ai and ai−1 probability mass

with such a small total value that it is very unlikely that any edge in the first ni generations

has a weight between 2ai and ai−1. In this way the proof is again unaffected.

This defines a continuous and strictly increasing G such that f is G-small but not

G-explosive.

4.2. A pair (f,G) where f is G-explosive but not G-small. We now define a contin-

uous strictly increasing distribution function G and a non-decreasing function f : N0 → N,

such that f is G-explosive but not G-small.

Again we may define a whole class of such examples. Let B1, B2, . . . be a sequence of

natural numbers satisfying Bi+1 ≥ 2Bi for each i ≥ 1. We may define f such that the

image of f is precisely {Bi : i ≥ 1}.
As above, we first define an example in which G0 has atoms and then obtain G using

the same kind of perturbation trick as in the above construction.

Our construction will involve defining a decreasing sequence ai of positive reals and a

non-decreasing sequence ni of natural numbers.
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Set ak := 1
k!

and nk := (k − 2)! for k ≥ 2, n0 = 0 and n1 = 1. Define G0 by

G0(x) :=
1− 1/(k − 1)!

Bk

for all ak ≤ x < ak−1,

and note that G−1
0 (1/Bk) = ak−1. Define f : N0 → N by

f(n) := Bk for all nk−1 ≤ n < nk .

It is easily checked that f is not G0-small.

To see that f is G0 explosive with positive probability (and therefore with probability 1

by the 0-1 law) consider the following strategy for finding an infinite path of finite weight.

Define a forest T ⊆ TG0
f by keeping the following edges: between generations nk = (k−2)!

and 2(k−2)! keep all edges of weight at most ak = 1/k!, and between generations 2(k−2)!

and nk+1 = (k − 1)! keep all edges of weight at most ak+1 = 1/(k + 1)!. It is clear that

any infinite path in T necessarily has finite weight. Writing pk for the probability that a

node of generation nk has no descendent in (T)nk+1
, it suffices to prove that

∑
k pk <∞.

Let us bound pk from above. Let v be a node of Tnk and consider the tree of de-

scendants of v in T. In the first (k − 2)! generations following nk, each node has

Bin(Bk+1,
1−1/(k−1)!

Bk
)) children. Denoting by Z(.) the branching process with offspring

distribution Bin(Bk+1,
1−1/(k−1)!

Bk
)), which has mean at least 3/2, it is straightforward to

verify that the probabilities

qk := P

(
Z
(
(k − 2)!

)
<

(
4

3

)(k−2)!
)

are summable. In addition, let us note that each node u ∈ T2(k−2)! has probability at least

(1− 1/k!)(k−1)! ≥ e−1 to have a descendent in generation nk+1 = (k− 1)!. The probability

rk that none of (4/3)(k−2)! nodes of generation 2(k − 2)! has a descendent in generation

nk+1 is at most e−(4/3)(k−2)!
, which is clearly summable.

The proof is now complete since pk ≤ qk + rk.

4.3. Proof of Theorem 1.9. Let G be a distribution function satisfying (2), i.e., such

that

lim sup
i→∞

G(xi)

G(xi/c)
< lim sup

i→∞

G(cxi)

G(xi)
= ∞ ,

for some constant c > 0 and a decreasing sequence xi : i ≥ 1 with limit 0. Restricting to

a subsequence if necessary, we may assume that

G(xi)

G(xi/c)
≤ K ≤ K44i ≤ G(cxi)

G(xi)
,
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where K is a constant, and xi−1 ≥ 4ixi for each i ≥ 1. We may also assume that

G(xi) ≤ 1/4.

One may now define the sequence ni by n0 := 0 and ni := b1/xic for i ≥ 1, and the

function f : N0 → N by

f(n) :=

⌊
1

2G(xi)

⌋
for ni−1 < n ≤ ni .

This choice of f(n) is designed to be around 1/G(xi), note that it satisfies

1

4G(xi)
< f(n) <

1

G(xi)
.

Using the second inequality above and the choice of the sequence ni it is easily observed

that f is not G-small.

Consider the forest T ⊆ TGf obtained by keeping edges between generation ni−1 and

ni−1 + ni/2
i with weight at most cxi, and edges between generations ni−1 + ni/2

i and ni

with weight at most xi/2
i. Clearly any infinite path in T has weight at most

∑
i≥1 2−i +∑

i≥1 2−i < ∞. Thus, to prove that f is G-explosive it suffices to prove that T contains

an infinite path with positive probability. The idea of the proof is that with very high

probability a node of generation ni−1 will have a very large number of descendants in

generation ni−1 + ni/2
i, and each such node has a not so small probability of having a

descendant in generation ni. While we do not go through every detail of the proof, it

suffices to note that between generations ni−1 and ni−1 + ni/2
i the number of children of

each node stochastically dominates

Bin
(
f(n), K44iG(xi)

)
≥ Bin

(
f(n),

K44i−1

f(n)

)
,

which has mean K44i−1. It is therefore extremely likely that a node v of generation ni−1

has at least e2ini descendants in generation ni−1 + ni/2
i, denote this event Ev.

Between generations ni−1+ni/2
i and ni each node has at least one child with probability

at least K−2dlogc(2
i)e ≥ e−K

′i for some constant K ′. Therefore a node of generation ni−1 +

ni/2
i has a descendant in generation ni with probability at least e−K

′ini . Thus, the number

of descendants in generation ni of a node v of generation ni−1 stochastically dominates

1Ev · Bin((e2ini , e−K
′ini)

which is zero with very small probability.

Up to routine details this completes the proof that T contains an infinite path with

positive probability.
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The proof in the case that G satisfies (3) is similar to the proof given in Section 4.2 –

define a forest T which grows exponentially for a period after generation ni−1, then only

slightly sub-critically from there until generation ni. We omit the details.

5. Finite height criterion for stick breaking problem

Recall the definition of the random real tree A` constructed by a stick breaking process

on R+ given by a sequence `(i), for i ∈ N: Given such a sequence, the stick breaking

process defines a random real tree A` as follows. Let A`(1) consist of a closed segment of

length `(1), seen as a (rooted) real tree with one edge, rooted at one end, and for each

i ≥ 1 let A`(i+ 1) be obtained by attaching one end of a closed segment of length `(i+ 1)

to a uniformly random position on the real tree A`(i). Define A` as the completion of

Ao` =
⋃
i≥1A`(i) .

For any real tree A, denote by d(A) the height of A. Our aim in this section is to prove

Theorem 1.11, namely, to show that if ` is a decreasing sequence, then

d(A`) <∞ almost surely if and only if
∑
n≥1

`(2n) < ∞ .

The intuition behind the summability condition is roughly speaking as follows: travers-

ing a path through A` the index of the segment which contains the nth edge used on

the path should grow exponentially in n, so that the sum of the lengths of the segments

containing the edges of the path should behave like∑
n≥1

`(2n) .

The following observation indeed allows us to focus on the sum of the lengths of the

segments (i.e., `(i)s) rather than distances in the real tree. Given a path ξ in A`, let td(ξ)

denote the sum of the lengths of the segments which contain the edges of ξ. Let td(A`)

be the maximum of td(ξ) over all the paths in the rooted tree A`.

Observation 5.1. The inequality d(A`) ≤ td(A`) holds deterministically. On the other

hand, if td(A`) is infinite then d(A`) is infinite almost surely.

The observation is indeed straightforward as the randomness used to position the end-

point of a segment ej on a current segment ei may be sampled independently. In the limit

at least half of the edges connect at least half way along.

The following two lemmas will be useful in our proof of the theorem. The first is a

straightforward monotonicity statement. The second will be used to show that when
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∑
n≥1 `(2

n) is divergent, it cannot be that `(i) is always much smaller than the average

of `(j) : j ≤ i.

Lemma 5.2. Suppose R, S are two subsets of N and for all j ∈ N,

|R ∩ {1, . . . , j}| ≤ |S ∩ {1, . . . , j}|.

Then ∑
i∈R

`(i) ≤
∑
i∈S

`(i) .

Proof. The sums are limits of the partial sums up to j. For any fixed j, we can find an

injection i : R ∩ {1, . . . , j} ↪→ S ∩ {1, . . . , j} such that i(i) ≤ i for any i ∈ R ∩ {1, . . . , j}.
Since ` is decreasing, we get∑

i∈R∩{1,....,j}

`(i) ≤
∑

i∈R∩{1,....,j}

`(i(i)) ≤
∑

i∈S∩{1,....,j}

`(i)

for partial sums, from which the lemma follows. �

Lemma 5.3. Let `(i) be an integer sequence and let

D :=

{
n ∈ N : `(2n) >

`(2m)

2(n−m)/2
for all m < n

}
.

Then ∑
n≥1

`(2n) is divergent if and only if
∑
n∈D

`(2n) is divergent.

Proof. For each n ∈ N define π(n) to be the least natural number m such that

`(2n) ≤ `(2m)

2(n−m)/2
.

Note that n ∈ D if and only if π(n) = n, and π(π(n)) = π(n) for any n ∈ N, in other

words, π is a projection from N to D. For each m ∈ D, let

Hm := {n : π(n) = m} .

The lemma follows immediately from the observations that

N =
⋃
m∈D

Hm

and that for any m ∈ D, ∑
n∈Hm

`(2n) ≤
∞∑
n=m

`(2m)

2(n−m)/2
≤ 4`(2m) .

�
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We are now ready to prove Theorem 1.11.

Proof. Neither direction is trivial. We begin by showing that if∑
n≥1

`(2n) < ∞ ,

then d(A`) is finite almost surely. Let us identify a path ξ in A` with the set of segments

it uses, and further, identify ξ with the subset of N of indices of these segments. The

length of the path ξ is obviously bounded by
∑

i∈ξ `(i). By Lemma 5.2 it suffices to show

that every path ξ in A` verifies

|ξ ∩ {1, . . . , j}| ≤ |R ∩ {1, . . . , j}| for all j ∈ N .

for some set R of the form R = {beδnc : n ≥ 1}.
We prove this using our result, Theorem 1.2, on linear growth in generalizations of the

PWIT. We can construct an infinite weighted (random) tree T associated with A`. As a

(combinatorial) tree, T is the genealogy tree of A`, formally defined as follows: To each

segment ei (of length `(i)) used in A` we associate a vertex vi of T . The vertex v1 will

be the root of T , and the vertex vi is a child of another vertex vj if j < i and in the

construction of A`, the segment ei is attached to a point of ej. The weight of the edge vjvi

is defined to be log j − log i. For technical reasons we shall ignore the root and the edges

to the children of the root. Consider the subtree beneath some vertex vi that is a child

of the root. The probability that vj will be a child of vi for j > i is at most 1/i, therefore

the distribution of the number of children of vi of weight at most w > 0 is stochastically

dominated by the binomial distribution

Bin(bewi− ic, 1/i) = Bin(bi(ew − 1)c, 1/i) ≤ Po

(∫ w

0

Ct dt

)
for an appropriately chosen constant C > 1 (in fact one may take C = e2). Theorem 1.2

now tells us that all subtrees of the children of the root exhibit linear growth, and fur-

thermore the probability of a path to generation n of weight less that δn (for some δ > 0)

is at most e−2n. The same is true deterministically for paths beginning with an edge of

weight at least n. Since at most en children of the root have weight less than n, a union

bound yields that

mn(T ) ≥ δn

with probability at least 1 − e−n. And so, almost surely, mn(T ) ≥ δn for all sufficiently

large n
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This translates into the fact that every path ξ in A`, when viewed as a subset of N has

nth element at least eδn for all sufficiently large n. This completes the required comparison

with a set R, and so completes this half of the proof.

For the other direction, let us assume that the sum∑
n≥1

`(2n)

is divergent. Applying Lemma 5.3, we have that∑
n∈D

`(2n)

is divergent, where

D :=

{
n ∈ N : `(2n) ≥ `(2m)

2(n−m)/2
for all m < n

}
.

Let D denote the set
⋃
n∈D{2n−1 + 1, . . . , 2n}, and consider the path ξ in A` generated

as follows: the first segment of ξ is e1, thereafter ξ chooses to connect to the segment ei

with minimal index i ∈ D that is a descendant of its latest segment. By Observation 5.1,

we complete a proof of the theorem by proving that td(ξ) is infinite almost surely.

Note that for a sequence of non-negative reals
(
a(i)

)
, if the sum

∑
i∈N a(i) diverges,

then a sum of the form
∑

i∈S a(i) for a random subset S ⊂ N which contains each index

n ∈ N independently with probability p > 0, will diverge almost surely. Similarly,

if there is not necessarily independence between the inclusion of indices in S but S is

constructed recursively so that the inclusion of n in S (given all the previous information)

has probability at least p > 0, then again the sum
∑

i∈S a(i) will diverge almost surely.

For this reason, it suffices to show that with probability at least some constant p > 0 the

path ξ will contain a segment ei with 2n−1 + 1 ≤ i ≤ 2n.

Given the path ξ up to inclusion of some edge ej : j ∈ D, let m ∈ D be the integer

such that 2m−1 < j ≤ 2m, and let n ∈ D be minimum integer in D such that 2n−1 ≥ j.

We complete the proof by bounding below the probability that ξ contains a segment ei

with 2n−1 + 1 ≤ i ≤ 2n. Until 2n segments have been attached in the construction of A`,

the total length may be bounded above by

n∑
k=1

2k−1`(2k−1) ≤
n∑
k=1

2k−12(n−k)/2`(2n) ≤ 2n+2`(2n) ≤ 2n+2`(j) .
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And so, each segment added has probability at least 2−n−2 of being attached to ej. The

probability that no segment ei with 2n−1 < i ≤ 2n joins to ej is therefore at most(
1− 1

2n+2

)2n−1

≤ e−1/8 .

This completes the proof. �
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