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Abstract. — In this paper we introduce the notion of Σ-colouring of a graph G: For given
subsets Σ(v) of neighbours of v, for every v ∈ V (G), this is a proper colouring of the vertices
of G such that, in addition, vertices that appear together in some Σ(v) receive different colours.
This concept generalises the notion of colouring the square of graphs and of cyclic colouring
of graphs embedded in a surface. We prove a general result for graphs embeddable in a fixed
surface, which implies asymptotic versions of Wegner’s and Borodin’s Conjecture on the planar
version of these two colourings. Using a recent approach of Havet et al., we reduce the problem
to edge-colouring of multigraphs, and then use Kahn’s result that the list chromatic index is
close to the fractional chromatic index.

Our results are based on a strong structural lemma for graphs embeddable in a fixed surface,
which also implies that the size of a clique in the square of a graph of maximum degree ∆
embeddable in some fixed surface is at most 3

2
∆ plus a constant.

1. Introduction

Most of the terminology and notation we use in this paper is standard and can be found
in any text book on graph theory (such as [2] or [8]). All our graphs and multigraphs will
be finite. A multigraph can have multiple edges; a graph is supposed to be simple. We will
not allow loops. The vertex and edge set of a graph G are denoted by V (G) and E(G),
respectively (or just V and E, if the graph G is clear from the context).

Given a graph G, the chromatic number of G, denoted χ(G), is the minimum number of
colours required so that we can properly colour its vertices using those colours. If we colour
the edges of G, we get the chromatic index, denoted χ′(G). The list chromatic number or
choice number ch(G) is the minimum value k such that if we give each vertex v of G a list L(v)
of at least k colours, then we can find a proper colouring in which each vertex gets assigned
a colour from its own private list. The list chromatic index ch ′(G) is defined analogously for
edges.

The square G2 of a graph G is the graph with vertex set V (G), with an edge between any
two different vertices that have distance at most two in G. A proper vertex colouring of the
square of a graph can also be seen as a vertex colouring of the original graph satisfying:
• vertices that are adjacent receive different colours, and
• vertices that have a common neighbour receive different colours.
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Another way to formulate these conditions is as ‘vertices at distance one or two must receive
different colours’. This is why the name distance-two colouring is also used in the literature.

In this paper we consider a colouring concept that generalises the concept of colouring
the square of a graph, but that also can be used to study different concepts such as cyclic
colouring of plane graphs (definition will be given later).

For a vertex v ∈ V , let N(v) (or NG(v) if we want to specify the graph under consideration)
be the set of vertices adjacent to v. Suppose that for each vertex v ∈ V , we are given a subset
Σ(v) ⊆ N(v) of its neighbourhood. We call such a collection a Σ-system for G.

A Σ-colouring of G is an assignment of colours to the vertices of G so that:
• vertices that are adjacent receive different colours, and
• vertices that appear together in some Σ(v) receive different colours.

When additionally each vertex v has its own list L(v) of colours from which its colour must
be chosen, we talk about a list Σ-colouring.

We denote by χ(G; Σ) the minimum number of colours required for a Σ-colouring to exist.
Its list variant is denoted by ch(G; Σ), and is defined as the minimum integer k such that for
each assignment of a list L(v) of at least k colours to vertices v ∈ V , there exists a proper
Σ-colouring of G in which all vertices are assigned colours from their own lists.

Notice that we trivially have χ(G) = χ(G; ∅) and χ(G2) = χ(G;NG); and the same
relations holds for the list variant (∅ assigns the empty set to each vertex).

We define the width of a Σ-system of G as ∆(G; Σ) = maxv∈V |Σ(v)|. It is clear that we
always need at least ∆(G; Σ) + 1 colours in a proper Σ-colouring. In the case Σ ≡ NG, there
exist plenty of graphs G that require O(∆(G)2) colours (where ∆(G) = ∆(G;NG) is the
usual maximum degree of G). But for planar graphs, it is known that a constant times ∆(G)
colours is enough (even for list colouring). We will take a closer look at this in Subsection 1.1
below.

Following Wegner’s Conjecture on colouring the square of planar graphs (see also next
subsection), we propose the following conjecture.

Conjecture 1.1. — There exist constants c1, c2 and c3 such that for all planar graphs G and
any Σ-system for G, we have

χ(G; Σ) ≤
⌊

3
2 ∆(G; Σ)

⌋
+ c1;

ch(G; Σ) ≤
⌊

3
2 ∆(G; Σ)

⌋
+ c2;

ch(G; Σ) ≤
⌊

3
2 ∆(G; Σ)

⌋
+ 1, if ∆(G; Σ) ≥ c3.

If Σ ≡ ∅ (hence ∆(G; Σ) = 0), then the Four Colour Theorem implies that the smallest
possible value for c1 is four; while the fact that planar graphs are always 5-list colourable but
not always 4-list colourable, shows that the smallest possible value for c2 is five.

Our main result is that Conjecture 1.1 is asymptotically correct: ch(G; Σ) ≤ 3
2 ∆(G; Σ) +

o
(
∆(G; Σ)

)
. In fact, we can prove this asymptotic result holds for general surfaces.

Theorem 1.2. — For every surface S and real ε > 0, there exists a constant βS,ε such that
the following holds for all β ≥ βS,ε. If G is a graph embeddable in S, with a Σ-system of

width at most β, then ch(G; Σ) ≤
(

3
2 + ε

)
β.

A trivial lower bound for the (list) chromatic number of a graph G is the clique number ω(G),
the maximum size of a clique in G. For graphs with a Σ-system, we can define the following
related concept. A Σ-clique is a subset C ⊆ V such that every two different vertices in C
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are adjacent or appear together in some Σ(v). Denote by ω(G; Σ) the maximum size of a
Σ-clique in G. Then we trivially have ch(G; Σ) ≥ ω(G; Σ), and so Theorem 1.2 means that for
a graph G embeddable in some fixed surface S, we have ω(G; Σ) ≤ 3

2 ∆(G; Σ) + o(∆(G; Σ)).
But in fact, the structural result we use to prove Theorem 1.2 fairly easily gives ω(G; Σ) ≤

3
2 ∆(G; Σ) + O(1).

Theorem 1.3. — For every surface S, there exist constants βS and γS such that the following
holds for all β ≥ βS. If G is a graph embeddable in S, with a Σ-system of width at most β,
then every Σ-clique in G has size at most 3

2 β + γS.

The main steps in the proof of Theorem 1.2 can be found in Section 2. The proof relies
on two technical lemmas; the proofs of those can be found in Section 3. After that we use
one of those lemmas to provide the relatively short proof of Theorem 1.3 in Section 4. In
Section 5 we discuss some of the aspects of our work and discuss open problems related
to (list) Σ-colouring of graphs. The final section provides some background regarding the
proof by Kahn [17] of the asymptotical equality of the fractional chromatic index and the list
chromatic index of multigraphs. A more general result, contained implicitly in Kahn’s work,
is of crucial importance to our proof in this paper.

In the next two subsections, we discuss two special consequences of these results. These
special versions of Theorems 1.2 and 1.3 also show that the term 3

2 β is best possible.

But before presenting these applications, a remark is in order. In an earlier version of
this paper, we gave our results in terms of (A,B)-colourings. For a graph G and vertex sets
A,B ⊆ V (not necessarily disjoint), an (A,B)-colouring of G is a colouring of the vertices
in B such that adjacent vertices, and vertices with a common neighbour in A, receive different
colours.

There is an obvious way to translate an (A,B)-colouring problem into a Σ-colouring prob-
lem: For v ∈ A set Σ(v) = NG(v) ∩ B, and for v /∈ A set Σ(v) = ∅. Note that after this
translation we are required to colour all vertices, not just those in B. But the vertices out-
side B do not appear in any Σ(v), hence colouring them for a graph embeddable in a fixed
surface requires at most a constant number of colours.

On the other hand, it is easy to construct instances of Σ-colouring problems for which there
is no obvious translation to an (A,B)-colouring problem. In that sense, we feel justified in
considering Σ-colouring as a more general concept. Moreover, the concept is general enough
to allow a simplification of several arguments in Section 2, compared to the earlier version of
our results.

1.1. Colouring the Square of Graphs. — Recall that the square of a graph G, de-
noted G2, is the graph with the same vertex set as G and with an edge between any two
different vertices that have distance at most two in G. If G has maximum degree ∆, then a
vertex colouring of its square will need at least ∆+1 colours, and the greedy algorithm shows
that it is always possible to find a colouring of G2 with ∆2 + 1 colours. Cages of diameter
two, such as the 5-cycle, the Petersen graph and the Hoffman-Singleton graph (see, e.g., [2,
page 84]), show that there exist graphs that in fact require ∆2 + 1 colours.

Regarding the chromatic number of the square of a planar graph, Wegner [33] posed the
following conjecture (see also the book of Jensen and Toft [14, Section 2.18]), suggesting that
for planar graphs far less than ∆2 + 1 colours suffice.
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Conjecture 1.4 (Wegner [33]). — For a planar graph G of maximum degree ∆, χ(G2) ≤



7, if ∆ = 3,
∆ + 5, if 4 ≤ ∆ ≤ 7,⌊

3
2 ∆

⌋
+ 1, if ∆ ≥ 8.

Wegner also gave examples showing that these bounds would be tight. For even ∆ ≥ 8, these
examples are sketched in Figure 1(a). The graph in the picture has maximum degree 2k and
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Figure 1. (a) A planar graph G with maximum degree ∆ = 2k and ω(G2) = χ(G2) =
3k + 1 =

⌊
3

2
∆

⌋
+ 1.

(b) A planar graph H with maximum face order ∆∗ = 2k and χ∗(H) = 3k =
⌊

3

2
∆∗

⌋

(see Subsection 1.2).

yet all the vertices except z are pairwise adjacent in its square. Hence to colour these 3k + 1
vertices, we need at least 3k + 1 = 3

2 ∆ + 1 colours. Note that the same arguments also show

that the graph G in the picture has ω(G2) = 3
2 ∆ + 1.

Kostochka and Woodall [19] conjectured that for every square of a graph, the chromatic
number equals the list chromatic number. This conjecture and Wegner’s one together imply
the conjecture that for planar graphs G with ∆ ≥ 8, we have ch(G2) ≤

⌊
3
2 ∆

⌋
+ 1.

The first upper bound on χ(G2) for planar graphs in terms of ∆, χ(G2) ≤ 8∆ − 22,
was implicit in the work of Jonas [15]. This bound was later improved by Wong [34] to
χ(G2) ≤ 3∆ + 5 and then by Van den Heuvel and McGuinness [13] to χ(G2) ≤ 2∆ + 25.
Better bounds were then obtained for large values of ∆. It was shown that χ(G2) ≤ ⌈9

5 ∆⌉+1
for ∆ ≥ 750 by Agnarsson and Halldórsson [1], and the same bound for ∆ ≥ 47 by Borodin
et al. [4]. Finally, the best known upper bound so far has been obtained by Molloy and
Salavatipour [25]: χ(G2) ≤ ⌈5

3 ∆⌉+78. As mentioned in [25], the constant 78 can be reduced
for sufficiently large ∆. For example, it was improved to 24 when ∆ ≥ 241.

Since ch(G2) = ch(G;NG) (i.e., Σ(v) = NG(v) for all v ∈ V ), as an immediate corollary of
Theorem 1.2 we obtain.

Corollary 1.5. — Let S be a fixed surface. Then the square of every graph G embeddable
in S and of maximum degree ∆ has list chromatic number at most 3

2 ∆ + o(∆).

In fact, the same asymptotic upper bound as in Corollary 1.5 can be proved even for larger
classes of graphs. Additionally, a stronger conclusion on the colouring is possible. For the
following result, we assume that colours are integers, which allows us to talk about the
‘distance’ |α1 − α2| between two colours α1, α2.
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Theorem 1.6 (Havet, Van den Heuvel, McDiarmid & Reed [10])
Let k be a fixed positive integer. The square of every K3,k-minor free graph G of maximum

degree ∆ has list chromatic number (and hence clique number) at most 3
2 ∆+o(∆). Moreover,

given lists of this size, there is a proper colouring in which the colours on every pair of adjacent
vertices of G differ by at least ∆1/4.

Note that planar graphs do not have a K3,3-minor. In fact, for every surface S, there is
a constant k such that no graph embeddable in S has K3,k as a minor. That shows that
Theorem 1.6 is stronger than our Corollary 1.5. On the other hand, Theorem 1.6 gives a
weaker bound for the clique number than the one we obtain in Corollary 1.7 below.

Both Corollary 1.5 and Theorem 1.6 can be applied to K4-minor free graphs, since these
graphs are planar and do not have K3,3 as a minor. But the best possible bounds for this class
are actually known. Lih, Wang and Zhu [21] showed that the square of K4-minor free graphs
with maximum degree ∆ has chromatic number at most

⌊
3
2 ∆

⌋
+ 1 if ∆ ≥ 4 and ∆ + 3 if

∆ = 2, 3. The same bounds, but then for the list chromatic number of K4-minor free graphs,
were proved by Hetherington and Woodall [12].

Regarding the clique number of the square of graphs, we get the following corollary of
Theorem 1.3.

Corollary 1.7. — Let S be a fixed surface. Then the square of every graph G embeddable
in S and of maximum degree ∆ has clique number at most 3

2 ∆ + O(1).

From the proof of Theorem 1.3, it can be deduced that the square of a planar graph with
maximum degree ∆ ≥ 11616 has clique number at most 3

2 ∆ + 76.
Very recently, this was improved by the following result.

Theorem 1.8 (Cohen & Van den Heuvel [7]). — For a planar graph G of maximum de-
gree ∆ ≥ 41, we have ω(G2) ≤

⌊
3
2 ∆

⌋
+ 1.

Apart from the bound ∆ ≥ 41, this theorem is best possible, as is shown by the same graphs
that show that Wegner’s Conjecture 1.4 is best possible for ∆ ≥ 8 (see also Figure 1(a)).

1.2. Cyclic Colourings of Embedded Graphs. — Given a surface S and a graph G
embeddable in S, we denote by GS that graph with a prescribed embedding in S. If the
surface S is the sphere, we talk about a plane graph GP . The order of a face of GS is the
number of vertices in its boundary; the maximum order of a face of GS is denoted by ∆∗(GS).

A cyclic colouring of an embedded graph GS is a vertex colouring of G such that any two
vertices in the boundary of the same face have distinct colours. The minimum number of
colours required in a cyclic colouring of an embedded graph is called the cyclic chromatic
number χ∗(GS). This concept was introduced for plane graphs by Ore and Plummer [26],
who also proved that for a plane graph GP we have χ∗(GP ) ≤ 2∆∗. Borodin [3] (see also
Jensen and Toft [14, page 37]) conjectured the following.

Conjecture 1.9 (Borodin [3]). — For a plane graph GP of maximum face order ∆∗ we
have χ∗(GP ) ≤

⌊
3
2 ∆∗

⌋
.

The bound in this conjecture is best possible. Consider the plane graph depicted in Fig-
ure 1(b): It has 3k vertices and has three faces of order ∆∗ = 2k. Since all pairs of vertices
have a face they are both incident with, we need 3k =

⌊
3
2 ∆∗

⌋
colours in a cyclic colouring.
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Borodin [3] also proved Conjecture 1.9 for ∆∗ = 4. For general values of ∆∗, the original
bound χ∗(GP ) ≤ 2∆∗ of Ore and Plummer [26] was improved by Borodin et al. [6] to
χ∗(GP ) ≤

⌊
9
5 ∆∗

⌋
. The best known upper bound in the general case is due to Sanders and

Zhao [29]: χ∗(GP ) ≤
⌈

5
3 ∆∗

⌉
.

Although Wegner’s and Borodin’s Conjectures seem to be closely related, nobody has ever
been able to bring to light a direct connection between them. Most of the results approaching
these conjectures use the same ideas, but up until this point no one had proved a general
theorem implying both a result on the colouring of the square and a result on the cyclic
colouring of plane graphs (let alone on embedded graphs).

In order to show that our Theorem 1.2 provides an asymptotically best possible upper
bound for the cyclic chromatic number for a graph G with some fixed embedding GS , we
need some extra notation. For each face f of GS , add a vertex xf . For any face f of GS

and any vertex v in the boundary of f , add an edge between v and xf , and denote by GF

the graph obtained from GS by this construction. Note that the vertex set of GF consists
of V (G) and all the new vertices xf , for f a face of GS . Define a Σ-system ΣF for GF as
follows: For each vertex v ∈ V (G), let ΣF (v) = ∅. For each vertex xf , let ΣF (xf ) be all the
neighbours of xf . Observe that a (list) ΣF -colouring of GF colours the vertices of G in a way

required for a cyclic (list) colouring of GS , and that ∆(GF ; ΣF ) = ∆∗(GS).
(Note that in fact we have χ∗(GS) ≤ χ(GF ,ΣF ) ≤ χ∗(GS)+1. To get the second inequality,

start with a cyclic colouring of GS , add one extra colour, and colour all the vertices xf with
that colour. Similar inequalities hold for the list version.)

Using the upper bound on χ∗(GS), we get the following corollary of Theorem 1.2.

Corollary 1.10. — Let S be a fixed surface. Every embedding GS of a graph G of maximum
face order ∆∗ has cyclic list chromatic number at most 3

2 ∆∗ + o(∆∗).

For an embedded graph GS , the cyclic clique number ω∗(GS) is the maximum size of a set
C ⊆ V such that every two vertices in C have some face they are both incident with. Note
that the plane graph depicted in Figure 1(b) satisfies ω∗(GP ) = 3k =

⌊
3
2 ∆∗

⌋
. This shows

that the following corollary of Theorem 1.3 is best possible, up to the constant term.

Corollary 1.11. — Let S be a fixed surface. Every embedded graph GS of maximum face
order ∆∗ has cyclic clique number at most 3

2 ∆∗ + O(1).

For plane graphs, the proof of Theorem 1.3 guarantees that a plane graph GP of maximum
face order ∆∗ ≥ 11616 has cyclic clique number at most 3

2 ∆∗ + 76.

2. Proof of Theorem 1.2

Our goal in this section is to show that for all surfaces S and all ε > 0, if we take β large
enough (depending on S and ε), then for every graph G = (V,E) embeddable in S, every
choice of Σ(v) ⊆ NG(v) with |Σ(v)| ≤ β for all v ∈ V , and every assignment L(v) of at least(

3
2 + ε

)
β colours to all v ∈ V , there is a list Σ-colouring of G where each vertex receives a

colour from its own list. In other words, we want an assignment c(v) for each v ∈ V such
that:
• for all v ∈ V , we have c(v) ∈ L(v);
• for all u, v ∈ V with uv ∈ E, we have c(u) 6= c(v); and
• for all u, v ∈ V for which there is a t ∈ V with u, v ∈ Σ(t), we have c(u) 6= c(v).
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Before we present the actual proofs, we recall some of the important terminology, notation
and facts concerning embeddings of graph in surfaces.

2.1. Graphs in Surfaces. — In this subsection, we give some background about graphs
embedded in a surface. For more details, the reader is referred to [23]. Here, by a surface
we mean a compact 2-dimensional surface without boundary. An embedding of a graph G in
a surface S is a drawing of G on S so that all vertices are distinct, and every edge forms a
simple arc connecting in S the vertices it joins, so that the interior of every edge is disjoint
from other vertices and edges. A face of this embedding (or just a face of G, for short) is an
arc-wise connected component of the space obtained by removing the vertices and edges of G
from the surface S.

We say that an embedding is cellular if every face is homeomorphic to an open disc in R
2.

A surface can be orientable or non-orientable. The orientable surface Sh of genus h is
obtained by adding h ≥ 0 ‘handles’ to the sphere; while the non-orientable surface Nk of
genus k is formed by adding k ≥ 1 ‘cross-caps’ to the sphere. The genus g(G) and non-
orientable genus g̃(G) of a graph G is the minimum h and the minimum k, resp., such that G
has an embedding in Sh, resp. in Nk.

The following result will allow us to suppose that a graph G with known genus g(G) or
non-orientable genus g̃(G) can be assumed to be embedded in a cellular way.

Lemma 2.1 ([23, Propositions 3.4.1 and 3.4.2]). — (i) Every embedding of a connected
graph G in Sg(G) is cellular.

(ii) If G is a connected graph different from a tree, then there is an embedding of G in Neg(G)

that is cellular.

The Euler characteristic χ(S) of a surface S is 2 − 2h if S = Sh, and 2 − k if S = Nk.
The basic result connecting all these concepts is Euler’s Formula: If G is a graph with an

embedding in S, with vertex set V , edge set E and face set F , then

|V | − |E| + |F | ≥ χ(S).

Moreover, if the embedding is cellular, then we have equality in Euler’s Formula.
Finally, if v is a vertex of a graph G embedded in a surface S, then that embedding imposes

two circular orders of the edges incident with v. Since we assume graphs to be simple, this
corresponds to two circular orders of the neighbours of v. If S is orientable, then we can
consistently choose one of the two clockwise orders for all vertices; if S is non-orientable,
then such a choice is not possible. In our proofs that follow, it is not important that we can
choose a consistent circular order; we only require that for each vertex v, there is at least one
circular order of the neighbours around v.

If u1, u2 are consecutive neighbours of v (with respect to the chosen circular order), then
there is a face that has the three vertices u1, v, u2 in its boundary. That immediately gives
the following observation.

Lemma 2.2. — Let G be a graph embedded in a surface S. Suppose u1, u2 are consecutive
neighbours of v (with respect to the chosen circular order). Then the graph obtained by adding
the edge u1u2 (if it is not already present) is still embeddable in S.

That observation has the following corollary.
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Lemma 2.3. — Let G be a connected graph embedded in a surface S. If G has more than
three vertices and is edge-maximal with respect to being embeddable in S, then every vertex
has degree at least three.

2.2. The First Steps. — For P,Q ⊆ V , the set of edges between P and Q is denoted by
E(P,Q), and the number of edges between P and Q is denoted by e(P,Q) (edges with both
ends in P ∩ Q are counted twice).

For a graph G with a Σ-system, and a vertex v ∈ V , we denote by σ(v) the size of Σ(v),
i.e., σ(v) = |Σ(v)|. A Σ-neighbour of a vertex v is a vertex u 6= v such that either u and v are
adjacent, or there is some t ∈ V with u, v ∈ Σ(t). Denote the number of Σ-neighbours of v
by dΣ(v). Note that we have

dΣ(v) ≤ d(v) +
∑

t with v∈Σ(t)

(σ(t) − 1).

An important tool in our proof of Theorem 1.2 is the following technical structural result,
Lemma 2.4. Before stating this lemma, we need a few extra definitions. For an integer ζ, a
special ζ-pair is a pair (X,Y ) of disjoint subsets of vertices X and Y (possibly empty) with
the following property:

(i) Every vertex in X has degree at least ζ + 1. Every vertex y ∈ Y has degree four, is
adjacent to exactly two vertices of X, and the remaining neighbours of y have degree
four as well.

Given a special ζ-pair (X,Y ), for any y ∈ Y , let Xy be the set of two neighbours of y in X.
For W ⊆ X, let Y W be the set of all vertices y ∈ Y with Xy ⊆ W (that is, the set of vertices
of Y having their two neighbours from X in W ).

A special ζ-pair (X,Y ) is called very special if in addition the following condition holds:

(ii) For all pairs of vertices y, z ∈ Y , if y and z are adjacent or have a common neighbour
w /∈ X, then Xy = Xz.

The general structure of a very special ζ-pair is sketched in Figure 2.

Figure 2. Sets X (white vertices) and Y (grey vertices) forming a very special 8-pair
(X, Y ) in a graph. Neighbours of vertices of Y not in X are depicted as small black
vertices, and the remaining vertices are not depicted for the sake of clarity.

With these definitions, our structural lemma can be stated as follows:



A UNIFIED APPROACH TO DISTANCE-TWO COLOURING OF GRAPHS ON SURFACES 9

Lemma 2.4. — Let S be a fixed surface, set ζ∗S = 132 (3 − χ(S)), and let G be a graph
embeddable in S. If G is edge-maximal with respect to being embeddable in S, then one of the
following three properties holds.

(S1)Every vertex has degree at most ζ∗S.

(S2)There is a vertex of degree at most five with at most one neighbour of degree more than ζ∗S.

(S3)There exists a very special ζ∗S-pair (X,Y ) such that X,Y are both non-empty and for all
non-empty subsets W ⊆ X, the following inequality holds:

e(W,V \ Y ) ≤ e(W,Y \ Y W ) + ζ∗S |W |.

Very informally, Lemma 2.4 states that a graph that is maximally embeddable in some fixed
surface, either contains one of two fairly simple configurations, or it contains a structure that
internally satisfies a specific density-type condition.

Structure (S3) is at the heart of the above lemma. Although its description might appear
technical at first sight, it will be clear later that it is the exact kind of density condition
needed in the proofs of Theorems 1.2 and 1.3.

The proof of Lemma 2.4 can be found in Subsection 3.1. Observe that the value we use
for ζ∗S is probably far from best possible. The important point, to our mind, is that it only
depends on (the Euler characteristic of) the surface S.

We continue with a description how to apply the lemma to prove Theorem 1.2. Suppose
the theorem is false. Then there is a surface S and a real ε > 0 such that for every βS,ε we
can find β ≥ βS,ε and a graph G, together with a Σ-system of width at most β, such that

ch(G; Σ) >
(

3
2 + ε

)
β. Set ζ∗S = 132 (3 − χ(S)) and β∗

S = 2
3 (ζ∗S)2 = 11616 (3 − χ(S))2. Note

that, as χ(S) ≤ 2, this means ζ∗S ≥ 132 and β∗
S ≥ 11616.

We start by assuming β ≥ β∗
S ; later (at the end of Subsection 2.3) we will add some further

lower bounds for β that will depend on ε. With respect to this (yet to come) final choice
of β, there exists a graph G = (V,E) embeddable in S, together with a Σ-system of width at
most β and a list-assignment L of at least

(
3
2 + ε

)
β colours to each vertex v ∈ V , such that

G has no Σ-colouring from these lists. Choose such a graph G with the minimum number of
vertices, and subject to this, with the maximum number of edges.

Certainly we can assume that G is connected (otherwise one of the components will be a
smaller counterexample). Also, since each vertex has a list of more than 3

2 β ≥ 17424 colours,
G itself will have more than 17424 vertices.

Next we can assume that G is edge-maximal with respect to being embeddable in S.
Otherwise we can add a new edge uv to G so that the resulting graph G1 is still embeddable
in S, and set Σ1 ≡ Σ. It is clear that a list Σ1-colouring of G1 is also is a list Σ-colouring
of G.

Fix some embedding of G in S. We continue with applying Lemma 2.4 to G.

2.2.1. The structure from (S1) is present in G. — This is the easiest case: If the degree
of every vertex is at most ζ∗S, then the number of Σ-neighbours of any vertex is at most

ζ∗S + ζ∗S · (ζ∗S − 1) = (ζ∗S)2. But the number of colours in each list L(v) is at least
(

3
2 +

ε
)
β > 3

2 β∗
S = (ζ∗S)2. So a simple greedy colouring will do the job; contradicting that G is a

counterexample.

2.2.2. The structure from (S2) is present in G. — So there is a vertex v of degree at most five,
and at most one of its neighbours has degree more than ζ∗S . By Lemma 2.3, since |V | ≥ 17424,
v has degree at least three. Hence it has a neighbour u of degree at most ζ∗S. Form the
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graph G2 by contracting uv into a new vertex w (removing multiple edges if they appear).
Set V2 = (V \ {u, v}) ∪ {w}. Let Σ2(w) = (Σ(u) ∪ Σ(v)) \ {u, v}. For a vertex t ∈ V2 \ {w},
if Σ(t) contains u, then set Σ2(t) = (Σ(t) \ {u, v}) ∪ {w}; otherwise set Σ2(t) = Σ(t) \ {v}.
Finally, give w the list of colours L(w) = L(u). Note that G2 is smaller than G and is still
embeddable in S. Moreover, for every t ∈ V2 \ {w} we have |Σ2(t)| ≤ |Σ(t)| ≤ β; while for w
we have |Σ2(w)| ≤ dG(u) + dG(v) ≤ 5 + ζ∗S ≤ β.

So there exists a list Σ2-colouring of G2. We define a colouring of G as follows: Every
vertex different from u and v keeps its colour from the colouring of G2. We give u the colour
given to w in G2. Finally, we observe that for v we have

dΣ(v) ≤ d(v) +
∑

t with v∈Σ(t)

(σ(t) − 1) ≤ 5 + 4 (ζ∗S − 1) + (β − 1) = 4ζ∗S + β ≤ 3
2 β,

since β ≥ 2
3 (ζ∗S)2 ≥ 8ζ∗S . Since v has at least

(
3
2 + ε)β colours in its list, there exists a free

colour for v, i.e., a colour different from the colour of all the vertices in conflict with v. We
colour v with such a free colour. By the construction of G2 and Σ2, it is easy to verify that
this defines a list Σ-colouring of G, contradicting the choice of G as a counterexample.

2.2.3. The structure from (S3) is present in G. — Let X and Y be two non-empty disjoint
subsets of V such that the pair (X,Y ) is a very special ζ∗S-pair satisfying the condition of (S3).
We can remove from X any vertex not adjacent to any vertex in Y .

Claim 2.5. — For all y ∈ Y we have that if Xy = {x1, x2}, then y ∈ Σ(x1) ∩ Σ(x2).

Proof. — Suppose we have y /∈ Σ(x1). Since (X,Y ) is special, y has degree four, and it has a
neighbour u not in Xy of degree four. We also have dΣ(y) ≤ 4+2·(4−1)+(σ(x2)−1) ≤ 9+β.
By contracting the edge uy, we can argue similarly to Subsection 2.2.2 (with y now playing
the role of v) to obtain a contradiction.

In the remainder of this subsection we describe how to reduce this case to a list edge-colouring
problem. More precisely, we first define a modification of the original graph G into a smaller
graph G0 with vertex set V \Y , inheriting a Σ-system from that of G, so that the minimality
of G as a counterexample implies that G0 admits a Σ-colouring. This colouring then provides
a partial Σ-colouring of G, giving a colour to every vertex outside Y . In order to extend this
partial colouring to the whole graph, we define a multigraph whose edges are indexed by the
vertices in Y , so that an edge-colouring of that multigraph is exactly the extension of the
Σ-colouring to Y we are looking for. In the next subsection we then describe how Kahn’s
approach to prove that the list chromatic index is asymptotically equal to the fractional
chromatic index, can be used to conclude the proof of Theorem 1.2.

To define G0, we divide the vertices of Y into three parts according to their number of
neighbours outside X ∪ Y . Let Y ′ be the set of vertices in Y with no neighbour outside
X ∪Y . Consider first the graph G[V \ Y ′] induced on the set of vertices outside Y ′. For each
vertex y ∈ Y ′, add an edge between its two neighbours {x1, x2} = Xy, if those are not already
joined by an edge, and remove y from Σ(x1) and Σ(x2). Also, add x1 to Σ(x2) and x2 to
Σ(x1). Note that after these changes, Σ(x1) and Σ(x2) cannot be larger than before (since,
by Claim 2.5, y ∈ Σ(xi) for i = 1, 2).

For any vertex y ∈ Y \ Y ′ with a unique neighbour u outside X ∪ Y , contract the edge yu
(removing multiple edges if they appear), and, by an abuse of the notation, call the new
vertex u again. For the two vertices x1 and x2 in Xy, remove y from Σ(x1) and Σ(x2) For
the vertex u itself, let Σ(u) be equal to the set of all its neighbours.
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And, finally, for any vertex y ∈ Y \ Y ′ with exactly two neighbours u and u′ outside
X ∪ Y , contract the edge yu (removing multiple edges if they appear), and, by an abuse of
the notation, call the new vertex u again. For the two vertices x1 and x2 in Xy, remove y
from Σ(x1) and Σ(x2). Add u to Σ(u′) and remove y from Σ(u′) (if it was in this set). For
the vertex u itself, let Σ(u) be equal to the set of all its neighbours. Note that u′ has degree
at most four in G, hence certainly |Σ(u′)| ≤ β.

The graph obtained after the modifications described above is denoted by G0 , and the
resulting sets by Σ0(v), v ∈ V (G0). Note that, by our abuse of the notation, G0 has the
vertex set V0 = V \Y . Next we observe that a vertex u of G outside X ∪Y that was adjacent
to a vertex y ∈ Y (and hence may have been involved in one or more contractions) has degree
four in G. Since vertices in Y have degree four as well, each contraction increases the degree
by at most two. So in G0, such a vertex u has degree at most twelve, hence we certainly have
|Σ0(u)| ≤ β. By the construction above, we saw that for every other vertex v ∈ V0, we also
have |Σ0(v)| ≤ |Σ(v)| ≤ β or |Σ0(v)| ≤ dG0(v) ≤ β.

By its construction, G0 is embeddable in S. Also by construction, and the remarks above,
it is easy to verify the following statement.

Claim 2.6. — If u, v ∈ V0 are adjacent in G, then u, v are adjacent in G0. If u, v ∈ V0 and
there is a t ∈ V with u, v ∈ Σ(t), then u, v are either adjacent in G0, or there is a t0 ∈ V0

with u, v ∈ Σ(t0).

For each vertex v ∈ V0 set L0(v) = L(v). Since Y 6= ∅, by the minimality of G, the graph G0

admits a list Σ0-colouring c0 with respect to the list assignment L0.
We now transform this colouring into a partial list Σ-colouring of G with respect to the

original list assignment L, by just setting c(v) = c0(v) for each vertex v ∈ V0 = V \ Y . By
Claim 2.6, this is indeed a good partial Σ-colouring of all the vertices of V \ Y in G. The
difficult part of the proof is to show that c can be extended to Y .

By assumption, at the beginning every vertex in Y has a list of at least
(

3
2 + ε

)
β available

colours. For each vertex y in Y , let us remove from L(y) the colours which are forbidden
for y according to the partial Σ-colouring c of G. In the worst case, these forbidden colours
are exactly the colours of the vertices of V \ Y at distance at most two from y.

Let us define the multigraph H as follows: H has vertex set X. And for each vertex y ∈ Y
we add an edge ey between the two neighbours of y in X (in other words, between the two
vertices in Xy). Note that this process may produce multiple edges. We associate a list L(ey)
to ey in H by taking the list of y obtained after removing the set of forbidden colours for y
from the original list L(y).

In what follows, following the usual terminology for multigraphs, we denote by dH(x) the
degree of the vertex x in the multigraph H, i.e., the number of edges incident with x in H.
By Claim 2.5 we have NG(x) ∩ Y ⊆ Σ(x) for every x ∈ X, which guarantees dH(x) ≤ σ(x).

We now prove the following lemma.

Lemma 2.7. — A list edge-colouring for H, with the list assignment L defined as above,
provides an extension of c to a list Σ-colouring of G by giving to each vertex y ∈ Y the colour
of the edge ey in H.

Proof. — This follows since the pair (X,Y ) is very special: For every two vertices y, z ∈ Y ,
if y and z are adjacent or have a common neighbour w /∈ X, then Xy = Xz. This proves
that the two vertices adjacent in Y or with a common neighbour not in X define parallel
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edges in H and so will have different colours. If two vertices y1 and y2 of Y have a common
neighbour in X, ey1 and ey2 will be adjacent in H and so will get different colours. Since
we have already removed from the list of vertices in Y the set of forbidden colours (defined
by the colours of the vertices in V \ Y ), there will be no conflict between the colours of a
vertex in Y and a vertex in V \ Y . We conclude that the edge-colouring of H will provide an
extension of c to a list Σ-colouring of G.

The following lemma provides a lower bound on the size of L(e) for the edges e in H.

Lemma 2.8. — Let e = x1x2 be an edge in H. Then we have

|L(e)| ≥
(

3
2 + ε

)
β − (σ(x1) − dH(x1)) − (σ(x2) − dH(x2)) − 10.

Proof. — Let y be the vertex in Y such that e = ey. By the definition of H, Xy = {x1, x2}.
Let Z be the set of vertices in V \ X adjacent to y in G. Then, since (X,Y ) is a special
ζ∗S-pair, |Z| ≤ 2 and |NG(Z) \ Y | ≤ 6. The colours that are possibly forbidden for y are the
colours of {x1, x2}, plus the colours of vertices in (Z ∪NG(Z))\Y , plus the colours of vertices
in (Σ(x1)\Y )∪(Σ(x2)\Y ) (note that these colours all come from the vertices outside Y ). The
number of vertices in these three sets add up to at most 10+(σ(x1)−dH(x1))+(σ(x2)−dH(x2)).
The lemma follows.

We finish this subsection by applying Lemma 2.4 in order to obtain information on the density
of subgraphs in H, which we will need in the next subsection. Recall that for all non-empty
subsets W ⊆ X, Y W denotes the set of vertices y ∈ Y with Xy ⊆ W (that is, the set of
vertices of Y having their two neighbours from X in W ). By (S3) we have for all non-empty
W ⊆ X,

eG(W,V \ Y ) ≤ eG(W,Y \ Y W ) + ζ∗S |W |.

This inequality has the following interpretation in H.

Lemma 2.9. — For all non-empty subsets W ⊆ X( = V (H) ), we have
∑

w∈W

(σ(w) − dH(w)) ≤ eH(W,X \ W ) + ζ∗S |W |.

Proof. — First note that
∑

w∈W
(σ(w) − dH(w)) ≤

∑
w∈W

(dG(w) − dH(w)) = eG(W,V \ Y ).

We also have eG(W,Y \ Y W ) = eH(W,X \ W ). Combining these two observations with the
formula in (S3) immediately gives the required inequality.

At this point, our aim will be to apply Kahn’s approach to the multigraph H with the list
assignment L, to prove the existence of a proper list edge-colouring for H. This is described
in the next subsection.

We summarise the properties we assume are satisfied by the multigraph H and the list
assignment L of the edges of H. For these conditions we just consider σ(v) as an integer with
certain properties, assigned to each vertex v of H.

(H1) For all vertices v in H, we have dH(v) ≤ σ(v) ≤ β.

(H2) For all edges e = uv in H, |L(e)| ≥
(

3
2 + ε

)
β − (σ(u) − dH(u)) − (σ(v) − dH(v)) − 10.

(H3) For all non-empty subsets W ⊆ V (H),
∑

w∈W
(σ(w)−dH (w)) ≤ eH(W,V (H)\W )+ζ∗S |W |,

for some constant ζ∗S.
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2.3. The Matching Polytope and Edge-Colourings. — We briefly describe the match-
ing polytope of a multigraph. More about this subject can be found in [30, Chapter 25].

Let H be a multigraph with m edges. Let M(H) be the set of all matchings of H, including
the empty matching. For each M ∈ M(H), let us define the m-dimensional characteristic
vector 1M as follows: 1M = (xe)e∈E(H), where xe = 1 for an edge e ∈ M , and xe = 0
otherwise. The matching polytope of H, denoted MP(H), is the polytope defined by taking
the convex hull of all the vectors 1M for M ∈ M(H). Also, for any real number λ, we set
λMP(H) = {λx | x ∈ MP(H) }.

Edmonds [9] gave the following characterisation of the matching polytope.

Theorem 2.10 (Edmonds [9]). — A vector ~x = (xe) is in MP(H) if and only if xe ≥ 0
for all xe and the following two types of inequalities are satisfied:

• For all vertices v ∈ V (H),
∑

e: v incident to e

xe ≤ 1;

• for all subsets W ⊆ V (H) with |W | ≥ 3 and |W | odd,
∑

e∈E(W )

xe ≤
1
2 (|W | − 1).

The significance of the matching polytope and its relation to list edge-colouring is indicated
by the following important result.

Theorem 2.11 (Kahn [17]). — For all real numbers δ, ν, 0 < δ < 1 and ν > 0, there exists
a ∆δ,ν such that for all ∆ ≥ ∆δ,ν the following holds. If H is a multigraph and L is a list
assignment of colours to the edges of H so that

• H has maximum degree at most ∆;

• for all edges e ∈ E(H), |L(e)| ≥ ν∆;

• the vector ~x = (xe) with xe =
1

|L(e)|
for all e ∈ E(H) is an element of (1 − δ)MP(H).

Then there exists a proper edge-colouring of H where each edge gets a colour from its own
list.

The theorem above is actually not explicitly stated this way in [17], but can be obtained
from the appropriate parts of that paper. We give some further details about this in the final
section of this paper.

The next lemma allows us to use Theorem 2.11 to complete the proof.

Lemma 2.12. — Let β and ζ be positive real numbers. Let H be a multigraph with a map
σ : V (H) → N, and a weighting (be)e∈E(H) of the edges with positive real numbers satisfying
the following three conditions:

(H1’) For all vertices v in H, dH(v) ≤ σ(v) ≤ β.

(H2’) For all edges e = uv in H, be ≥
(

3
2 β + 9

2 ζ
)
− (σ(u) − dH(u)) − (σ(v) − dH(v)).

(H3’) For all non-empty W ⊆ V (H),
∑

w∈W
(σ(w) − dH(w)) ≤ eH(W,V (H) \ W ) + ζ |W |.

Then for all edges e ∈ E(H), we have be ≥
1
2 β. And the vector (1/be)e∈E(H) is in MP(H).

The proof of Lemma 2.12 will be given in Subsection 3.2. This lemma guarantees that for
all ε > 0, there exists a βε such that for all β ≥ βε, Theorem 2.11 can be applied to a
multigraph H with an edge list assignment L satisfying properties (H1) – (H3) stated at the
end of the previous subsection.
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To see this, take δε =
ε

3 + 2ε
, so 0 < δε < 1. In order to be able to apply Theorem 2.11,

we want to prove the existence of βε,ζ∗
S

such that for any β ≥ βε,ζ∗
S
, the vector ~x = (xe),

xe =
1

|L(e)|
, is in (1 − δε)MP(H). Let ζ∗S be the constant described in condition (H3). By

condition (H2), we have for all e = uv in H,

(1 − δε) |L(e)| ≥ (1 − δε)
((

3
2 + ε

)
β − (σ(u) − dH(u)) − (σ(v) − dH(v)) − 10

)

≥ (1 − δε)
(

3
2 + ε

)
β − (σ(u) − dH(u)) − (σ(v) − dH(v)) − 10

=
(

3
2 β + 1

2 εβ
)
− (σ(u) − dH(u)) − (σ(v) − dH(v)) − 10.

Let βε,ζ∗
S

=
9ζ∗S + 20

ε
. For β ≥ βε,ζ∗

S
we have

(1 − δε) |L(e)| ≥
(

3
2 β + 9

2 ζ∗S
)
− (σ(u) − dH(u)) − (σ(v) − dH(v)).

So by Lemma 2.12, taking be = (1 − δε) |L(e)|, the vector
( xe

1 − δε

)
e∈E(H)

is in MP(H). We

infer that ~x ∈ (1 − δε)MP(H).
Now set βS,ε = max{β∗

S , βε,ζ∗
S
, ∆δε,1/2 } (where β∗

S , ζ∗S are determined by Lemma 2.4, δε

and βε,ζ∗
S

are given above, and ∆δε,1/2 is according to Theorem 2.11), and assume β ≥ βS,ε.
Then, using Lemma 2.12, we can apply Theorem 2.11 which implies that the multigraph H
defined in Subsection 2.2 has a list edge-colouring corresponding to the list assignment L.
Lemma 2.7 then implies that the colouring c can be extended to a list Σ-colouring of the
original graph G. This final contradiction completes the proof of Theorem 1.2.

3. Proofs of the Main Lemmas

We use the terminology and notation from the previous sections.

3.1. Proof of Lemma 2.4. — Let S be a surface, set ζ∗S = 132 (3 − χ(S)), and let G be a
graph embeddable in S, so that G is edge-maximal with respect to being embeddable in S.

From Lemma 2.2, we immediately obtain the following.

Claim 3.1. — For any vertex v and any two consecutive neighbours u1, u2 of v (consecutive
with respect to the chosen circular order imposed by the embedding), we have u1u2 ∈ E(G).

Next we prove that we can assume G has a cellular embedding in S. If G is a tree, then
every leaf will give a structure from (S2). So we can assume G is not a tree. Assume S
is orientable with genus h. By the definition of g(G), we must have g(G) ≤ h, and hence
χ(Sg(G)) = 2 − 2g(G) ≥ 2 − 2h = χ(S). That also means that the constant in Lemma 2.4
satisfies ζ∗

Sg(G)
≤ ζ∗S . Hence if we prove the lemma assuming G is embeddable in Sg(G),

then the lemma for G embeddable in S directly follows. So we can use Lemma 2.4 with the
surface Sg(G) instead of S, and by Lemma 2.1, we can use a cellular embedding of G in Sg(G).

If S is non-orientable, then exactly the same argument can be applied, this time using the
surface Neg(G) (and using the assumption that G is not a tree).

We need some further notation and terminology. The set of faces of G is denoted by F .
Recall that since the embedding in S is cellular, every face is homeomorphic to an open disk
in R

2. For such a face f , a boundary walk of f is a walk consisting of vertices and edges as
they are encountered when walking along the whole boundary of f , starting at some vertex.
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The degree of a face f , denoted d(f), is the number of edges on the boundary walk of f . Note
that this means that some edges may be counted more than once. The order of a face is the
number of vertices in its boundary. We always have that the order of f is at most d(f).

Now suppose that G does not contain any of the structures (S1) or (S2). In order to prove
Lemma 2.4, we only need to prove that G contains structure (S3). In other words, we need to
prove that G contains a very special ζ∗S-pair (X,Y ) with X and Y non-empty which satisfies
the inequality of (S3) for all non-empty subsets W ⊆ X.

We easily see that G has at least ζ∗S+2 ≥ 134 vertices (otherwise it contains structure (S1)).
So by Lemma 2.3 we know that all vertices have degree at least three.

Let us call the vertices of degree at least ζ∗S + 1 big ; the other vertices are called small. We
use B to denote the set of big vertices.

Since we assumed that G does not contain structure (S2), we immediately get:

Claim 3.2. — All vertices of degree at most five have at least two big neighbours.

We continue our analysis using the classical technique of discharging. Give each vertex v
an initial charge ρ(v) = 6d(v) − 36. Since G is simple and has a cellular embedding in S,
every face has degree at least three. This gives 2 |E| ≥ 3 |F |, and hence, by Euler’s Formula,∑
v ∈V

ρ(v) = 12 |E| − 36 |V | ≤ −36 |V | + 36 |E| − 36 |F | = −36χ(S).

We further redistribute charges according to the following rules:

(R1) Each vertex of degree three that is adjacent to three big vertices receives a charge 6 from
each of its neighbours.

(R2) Each vertex of degree three that is adjacent to two big vertices receives a charge 9 from
each of its big neighbours.

(R3) Each vertex of degree four that is adjacent to four big vertices receives a charge 3 from
each of its big neighbours.

(R4) Each vertex of degree four that is adjacent to three big vertices receives a charge 4 from
each of its big neighbours.

(R5) Each vertex of degree four that is adjacent to two big vertices receives a charge 6 from
each of its big neighbours.

(R6) Each vertex of degree five receives a charge 3 from each of its big neighbours.

Denote the resulting charge of a vertex v ∈ V after applying rules (R1) – (R6) by ρ′(v). Since
the global charge has been preserved, we have

∑
v ∈V

ρ′(v) ≤ −36χ(S). We will show that for

most v ∈ V , ρ′(v) is non-negative.
Combining Claim 3.2 with rules (R1) – (R6) and our knowledge that ρ(v) = 6d(v) − 36,

we find that ρ′(v) = 0 if d(v) = 3, 4, while ρ′(v) ≥ 0 if d(v) = 5. If v is a small vertex with
d(v) ≥ 6, we have ρ′(v) = ρ(v) = 6d(v) − 36 ≥ 0.

It follows that we must have

(1)
∑

v∈B

ρ′(v) ≤ −36χ(S).

To derive the relevant consequence of that formula, we must make a detailed analysis of the
neighbours of vertices in B.

As we explained in Subsection 2.1, the embedding of G in S allows us to choose a circular
order on the neighbours of each vertex v. By Claim 3.1 we know that two consecutive vertices
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in this order are adjacent. If u is a neighbour of v, then by u+, u++ we denote the successor
and second successor of u in the circular order of neighbours of v, while u−, u−− denote the
predecessor and second predecessor of u in that order.

We distinguish five different types of neighbours of a vertex v ∈ B:

M1(v) = {u ∈ N(v) | {u−, u−−, u+, u++} ∩ B 6= ∅ };

M4a(v) = {u ∈ N(v) \ M1(v) | d(u) = 4 and u− or u+ have degree at least five };

M4b(v) = {u ∈ N(v) \ M1(v) | d(u) = d(u−) = d(u+) = 4 };

M5(v) = {u ∈ N(v) \ M1(v) | d(u) = 5 };

M6(v) = {u ∈ N(v) \ M1(v) | d(u) ≥ 6 }.

First observe that if a neighbour u of v has degree three, then u− or u+ is in B. This
follows since by Claim 3.1, u− and u+ are also neighbours of u. And by Claim 3.2, a vertex
of degree three has at least two big neighbours. From this observation we also get that if
u ∈ N(v) \ M1(v) is a small vertex, then u− and u+ both have degree at least four.

As a consequence, every neighbour of v is in exactly one set. Our aim in the following, in
order to prove Lemma 2.4, is to show that most neighbours of vertices v ∈ B are in M4b(v).

We now evaluate the charge that a vertex v ∈ B has given to its neighbours. If u ∈ M1(v),
then v gave at most 9 + 9 + 9 = 27 to {u−, u, u+}; if u ∈ M4a(v), then v gave at most
3+6+6 = 15 to {u−, u, u+}; if u ∈ M4b(v), then v gave at most 6+6+6 = 18 to {u−, u, u+};
if u ∈ M5(v), then v gave at most 6 + 3 + 6 = 15 to {u−, u, u+}; and, finally, if u ∈ M6(v),
then v gave at most 6 + 0 + 6 = 12 to {u−, u, u+}. Setting m1 = |M1(v)|, m4a = |M4a(v)|,
m4b = |M4b(v)|, m5 = |M5(v)|, and m6 = |M6(v)|, we can conclude that v gave at most

1
3 (27m1 + 15m4a + 18m4b + 15m5 + 12m6)

≤ 9m1 + 6m4b + 5(m4a + m5 + m6) ≤ 5d(v) + 4m1 + m4b

to its neighbourhood. This means that the remaining charge ρ′(v) of a vertex v ∈ B must
satisfy

ρ′(v) ≥ (6d(v) − 36) − (5d(v) + 4m1 + m4b) = d(v) − m4b − 4m1 − 36.

By definition, |M1(v)| is at most four times the number of neighbours of v in B. Consider
the subgraph G[B] of G induced by B. As a subgraph of G, this graph is embeddable in S.
As it is simple as well, no face of such an embedding is incident with two or fewer edges. So
Euler’s Formula means that G[B] has at most 3 |B| − 3χ(S) edges, and hence

∑

v∈B

|M1(v)| ≤
∑

v∈B

4dG[B](v) = 8 |E(G[B])| ≤ 24 |B| − 24χ(S).

Combining the last two inequalities with (1) gives

−36χ(S) ≥
∑

v∈B

ρ′(v) ≥
∑

v ∈B

(d(v) − |M4b(v)|) − 4 (24 |B| − 24χ(S)) − 36 |B|.

Using that B 6= ∅ (otherwise G contains structure (S1)) and χ(S) ≤ 2, this can be written as
∑

v ∈B

(d(v)− |M4b(v)|) ≤ 132 |B| − 132χ(S) < 132 |B|+ 132 (2− χ(S)) ≤ 132 (3− χ(S)) |B|.
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Define X0 = B and Y0 =
⋃

v∈B M4b(v). Note that the previous inequality can be written

(2) e(X0, V \ Y0) < ζ∗S |X0|.

Also observe that the pair (X0, Y0) is a special ζ∗S-pair: The vertices in X0 are the big vertices,
hence have degree at least ζ∗S + 1. For all vertices u ∈ Y we have u ∈ M4b(v) for some v ∈ B,
and hence u, u− and u+ have degree four in G, and the fourth neighbour of u is in B = X0

by Claim 3.2.

We need some more information about the neighbours of vertices in Y0.

Claim 3.3. — Let v be a big vertex, u ∈ M4b(v), and w be the big neighbour of u different
from v. Then all of vu+, vu−, wu+ and wu− are edges of G.

Proof. — Consider the circular order of the neighbours of u imposed by the embedding. In
any circular order different from (v, u+, w, u−) or the reverse, u+ and u− are consecutive. By
Claim 3.1, this means that u+u− ∈ E. So the neighbours of u− are {v, u, u+, u−−}. Since
u, u+, u−− /∈ B, by the definition of M4b(v), that means u− has only one big neighbour,
contradicting Claim 3.2.

So the only possible circular orders are (v, u+, w, u−) or the reverse, and the result follows
by Claim 3.1.

Using Claim 3.3, it follows easily that if y, z ∈ Y0 are adjacent, then Xy
0 = Xz

0 ; while if
y, z ∈ Y0 share a neighbour u /∈ X0, then u has degree four and its two neighbours distinct
from y and z are in Xy

0 and in Xz
0 . This gives Xy

0 = Xz
0 .

Thus, we have shown that the pair (X0, Y0) is very special.

Since X0 and Y0 are non-empty, we are done if the pair (X0, Y0) also satisfies the inequalities
of (S3) for any non-empty subset W ⊆ X0. Suppose this is not the case. So there must exist
a set Z1 ⊆ X0 with

e(Z1, V \ Y0) > e(Z1, Y0 \ Y Z1
0 ) + ζ∗S |Z1|.

Define X1 = X0 \Z1 and Y1 = Y X1
0 . Again, by construction, it is easy to see that (X1, Y1) is a

very special ζ∗S-pair. If it does not satisfy condition (S3), we iterate the process (see Figure 3)
and eventually obtain a very special ζ∗S-pair (Xk, Yk) satisfying condition (S3). To conclude
the proof, we only need to check that Xk and Yk are non-empty.

Zi

Xi
Yi

Xi−1 Yi−1

Figure 3. Xi = Xi−1 \ Zi and Yi = Y Xi

i−1
.
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Let 1 ≤ i ≤ k. Since Xi = Xi−1 \ Zi, we have

e(Xi, V \ Yi) = e(Xi−1, V \ Yi) − e(Zi, V \ Yi)

= e(Xi−1, V \ Yi−1) + e(Xi−1, Yi−1 \ Yi) − e(Zi, V \ Yi−1) − e(Zi, Yi−1 \ Yi)

= e(Xi−1, V \ Yi−1) − e(Zi, V \ Yi−1) + e(Xi, Yi−1 \ Yi).

Since Yi = Y Xi

i−1, every neighbour u ∈ Yi−1 \ Yi of a vertex in Xi has exactly one neighbour

in Zi (see Figure 3). Hence, e(Xi, Yi−1 \ Yi) = e(Zi, Yi−1 \ Y Zi

i−1). So we have

e(Xi−1, V \ Yi−1) = e(Xi, V \ Yi) + e(Zi, V \ Yi−1) − e(Zi, Yi−1 \ Y Zi

i−1).

By the definition of Zi, we have e(Zi, V \ Yi−1) > e(Zi, Yi−1 \ Y Zi

i−1) + ζ∗S |Zi|. Combining the
last two expressions gives

e(Xi−1, V \ Yi−1) > e(Xi, V \ Yi) + ζ∗S |Zi|.

Setting Z∗ =
⋃

1≤i≤k

Zi, we have e(Xk, V \ Yk) < e(X0, V \ Y0) − ζ∗S |Z∗|. As a consequence,

using (2),

|Z∗| <
e(X0, V \ Y0) − e(Xk, V \ Yk)

ζ∗S
≤

e(X0, V \ Y0)

ζ∗S
<

ζ∗S |X0|

ζ∗S
= |X0|.

Since Xk = X0 \ Z∗, this implies |Xk| > 0, which leads to Xk 6= ∅.
Finally, let v ∈ Xk 6= ∅ and assume Yk = ∅. Taking W = {v} in the inequality in (S3)

(which by construction is satisfied by (Xk, Yk)), we obtain d(v) ≤ ζ∗S. Since v is a big vertex,
d(v) ≥ ζ∗S + 1. This contradiction means that we must have Yk 6= ∅, which concludes the
proof of Lemma 2.4.

3.2. Proof of Lemma 2.12. — We recall the hypotheses of the lemma: We have positive
real numbers β and ζ; H is a multigraph; each vertex v of H has an associated integer σ(v);
and for each edge e a positive real number be is given. In this subsection, all degrees d(v) are
in the multigraph H.

The following three conditions are satisfied:

(H1’) For all vertices v in H, d(v) ≤ σ(v) ≤ β.

(H2’) For all edges e = uv in H, be ≥
(

3
2 β + 9

2 ζ) − (σ(u) − d(u)) − (σ(v) − d(v)).

(H3’) For all non-empty subsets W ⊆ V (H),
∑

w∈W
(σ(w)−d(w)) ≤ eH(W,V (H)\W )+ ζ |W |.

In the proof that follows, we will show that the vector ~x = (xe), xe = 1/be, is in MP(H).
For an edge e = uv in H, define

(3) ae =
(

3
2 β + 9

2 ζ
)
− (σ(u) − d(u)) − (σ(v) − d(v)) and ye =

1

ae
.

We will in fact prove that the vector ~y = (ye) is in the matching polytope MP(H). Since
be ≥ ae, we have xe = 1/be ≤ 1/ae = ye. So, by Edmonds’ characterisation of the matching
polytope, if ~y ∈ MP(H), this guarantees that ~x ∈ MP(H), as required.

Applying condition (H3’) to the set W = {v} gives σ(v) − d(v) ≤ d(v) + ζ, which implies:

(a) For all vertices v ∈ V (H), we have d(v) ≥ 1
2 (σ(v) − ζ).
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Let e = uv be an edge of H. If we use the estimate above for both u and v in the definition
of ae in (3), and recalling that σ(u), σ(v) ≤ β, we obtain

ae ≥ 3
2 β + 9

2 ζ − 1
2 σ(u) − 1

2 σ(v) − ζ ≥ 1
2β + 7

2 ζ.

On the other hand, if we use observation (a) for u only, we get

ae ≥ d(v) + 3
2 β + 9

2 ζ − 1
2 σ(u) − σ(v) − 1

2 ζ ≥ d(v) + 4ζ.

Hence, the following two conclusions hold.

(b) For all edges e = uv in E(H), we have ae ≥ d(v) + 4ζ.

(c) For all edges e ∈ E(H), we have ae ≥
1
2 β + 7

2 ζ.

Note that observation (c) also gives be ≥ ae ≥
1
2 β for all e ∈ E(H), as required.

By observation (b), we find, since ζ > 0,
∑

e∋ v

1

ae
≤ d(v) ·

1

d(v) + 4ζ
< 1,

which shows that

Claim 3.4. — For all vertices v ∈ V (H), we have
∑

e∋ v

ye < 1.

Using Theorem 2.10, all that remains is to prove that for all W ⊆ V (H) with |W | ≥ 3 and |W |
odd, we have

∑
e∈E(W )

ye ≤
1
2 (|W | − 1). We will actually prove this for all |W | ≥ 3. Note that

we can certainly assume E(W ) 6= ∅.
Using observation (b), we infer that

∑

e∈E(W )

1

ae
≤ 1

2

∑

u∈W

dH[W ](u)

d(u) + 4ζ
= 1

2

∑

u∈W

( d(u)

d(u) + 4ζ
−

d(u) − dH[W ](u)

d(u) + 4ζ

)
.

Since
d(u)

d(u) + 4ζ
≤

β

β + 4ζ
and

d(u) − dH[W ](u)

d(u) + 4ζ
≥

d(u) − dH[W ](u)

β + 4ζ
, this implies

∑

e∈E(W )

1

ae
≤ 1

2 |W |
β

β + 4ζ
− 1

2

e(W,W c)

β + 4ζ
.

Here we used that
∑

u∈W

(
d(u) − dH[W ](u)

)
= e(W,W c), where W c = V (H) \ W .

If e(W,W c) ≥ β, we obtain, since ζ > 0,

∑

e∈E(W )

ye ≤ 1
2 (|W | − 1) ·

β

β + 4ζ
< 1

2 (|W | − 1).

So we can assume in the following that e(W,W c) ≤ β, in which case Condition (H3’) of
Lemma 2.12 implies

∑

u∈W

(σ(u) − d(u)) ≤ e(W,W c) + ζ |W | ≤ β + ζ |W |.

For a vertex u set c(u) = σ(u) − d(u), and for a set of vertices U define c(U) =
∑

u∈U
c(u). So

we can write the inequality above as c(W ) ≤ β + ζ |W |.
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In the following we use the fact that all ae are large enough to find a bound for the sum∑
e∈E(W )

a−1
e . To this aim, recall from (3) that ae =

(
3
2 β+ 9

2 ζ
)
−c(u)−c(v) for all edges e = uv

in H. This gives
∑

e∈E(W )

ae =
(

3
2 β + 9

2 ζ
)
|E(W )| −

∑

u∈W

c(u) dH[W ](u).

Since dH[W ](u) ≤ d(u) = σ(u) − c(u) ≤ β − c(u), we have
∑

e∈E(W )

ae ≥
(

3
2 β + 9

2 ζ
)
|E(W )| − β c(W ) +

∑

u∈W

c(u)2.

Set q = 3
2 β+ 9

2 ζ and p = min
uv∈E(W )

{
q−c(u)−c(v)

}
. This means that q−p = max

uv∈E(W )

{
c(u)+

c(v)
}
. Let e = uv be an edge in E(W ) so that c(u) + c(v) = q − p. Then c(u)2 + c(v)2 ≥

1
2 (q − p)2, and hence we can be sure that

∑

e∈E(W )

ae ≥ q |E(W )| − β c(W ) + 1
2 (q − p)2.

We now use this inequality and the following claim to bound
∑

e∈E(W )

a−1
e .

Claim 3.5. — Let r1, . . . , rm be m real numbers such that 0 < p ≤ r1, . . . , rm ≤ q and
∑

1≤ i≤m
ri ≥ q m − (q − p)S, for some S ≥ 0. Then we have

∑
1≤ i≤m

r−1
i ≤

S

p
+

m − S

q
.

Proof The result is trivial if p = q, so suppose p < q. For any 1 ≤ i ≤ m, set ci =
q − ri

q − p
.

Now we have 0 ≤ ci ≤ 1 for all 1 ≤ i ≤ m, and
∑

1≤ i≤m
ci ≤ S. Since the function x 7→

1

x
is

convex, we have that for 1 ≤ i ≤ m,

1

ri
=

1

q − ci (q − p)
=

1

ci p + (1 − ci) q
≤ ci

1

p
+ (1 − ci)

1

q
= ci

(1

p
−

1

q

)
+

1

q
.

As a consequence,
∑

1≤ i≤m

1

ri
≤

(1

p
−

1

q

) ∑

1≤ i≤m

ci +
m

q
≤

(1

p
−

1

q

)
S +

m

q
≤

S

p
+

m − S

q
.

2

We set R = β c(W ) − 1
2 (q − p)2 and S =

R

q − p
. Using Claim 3.5, at this point we have

∑

e∈E(W )

1

ae
≤

S

p
+

|E(W )| − S

q
=

S (q − p)

pq
+

|E(W )|

q
=

R

pq
+

2 |E(W )|

3β + 9ζ
.

Notice that by condition (H3’) of Lemma 2.12, 2 |E(W )| ≤
∑

u∈W
σ(u) − 2c(W ) + ζ |W | ≤

β |W | − 2c(W ) + ζ |W |. Hence we find

(4)
∑

e∈E(W )

1

ae
≤

β |W |

3β + 9ζ
+

R

pq
−

2c(W )

3β + 9ζ
+

ζ |W |

3β + 9ζ
.
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Claim 3.6. — We have
R

pq
−

2c(W )

3β + 9ζ
+

ζ |W |

3β + 9ζ
≤

ζ

β + 3ζ
|W |.

Proof. — Since q = 3
2 β + 9

2 ζ, we only have to prove that
2R

p
− 2c(W ) ≤ 2ζ |W |.

Let us write q − p = αβ, and so p = 1
2 (3− 2α)β + 9

2 ζ and R = β c(W )− 1
2 α2 β2. We have

2R

p
− 2c(W ) =

2β c(W )

p
−

α2 β2

p
− 2c(W ).

If p ≥ β, this expression is negative, so we can assume that p < β. In this case, using that
c(W ) ≤ β + ζ |W |, we have

2R

p
− 2c(W ) =

2β c(W )

p
−

α2 β2

p
− 2c(W )

= 2c(W )
β − p

p
−

α2 β2

p
≤

β

p
(2β − 2p − α2 β) + 2ζ |W |

β − p

p
.

As 2p = (3−2α)β+9ζ, we have 2β−2p−α2 β = (−1+2α−α2)β−9ζ = −(α−1)2 β−9ζ < 0.
Since p = ae for some edge e, we have p ≥ 1

2 β by observation (c). Hence, (β − p)/p ≤ 1 and
we can conclude that 2R/p − 2c(W ) ≤ 2ζ |W |, which completes the proof of the claim.

Combining (4) and Claim 3.6, we obtain

∑

e∈E(W )

ye =
∑

e∈E(W )

1

ae
≤

β |W |

3β + 9ζ
+

ζ |W |

β + 3ζ
=

β + 3ζ

3β + 9ζ
|W | = 1

3 |W |.

Since |W | ≥ 3, we have 1
3 |W | ≤ 1

2 (|W | − 1), which completes the proof of the lemma.

4. Proof of Theorem 1.3

We use the notation and terminology from Section 2.
We start similarly to the proof of Theorem 1.2 in Subsection 2.2. Suppose Theorem 1.3

is false. Then there exists a surface S such that for any βS , γS we can find β ≥ βS and a
graph G, with a Σ-system of width at most β, such that ω(G; Σ) > 3

2 β + γS . Let ζ∗S =

132 (3−χ(S)) be as given in Lemma 2.4. We take ζS = ζ∗S , βS = 2
3 (ζ∗S)2 = 11616 (3−χ(S))2 ,

and γS = 1
2 ζ∗S + 10 = 208 − 66χ(S). Note that χ(S) ≤ 2, so βS ≥ 11616.

By assumption, there exist β ≥ βS and a graph G, with a Σ-system of width at most β,
containing a Σ-clique having more than 3

2 β + γS vertices. Choose such graph G with the
minimum number of vertices, and, with respect to that, with the maximum number of edges.

Similarly as in the proof of Theorem 1.2, we can assume G is connected, has at least 17424
vertices, and is edge-maximal with respect to being embeddable in S. By Lemma 2.3 we get
that each vertex has degree at least three.

The following is an easy observation.

Claim 4.1. — For any vertex v, every Σ-clique containing v has size at most 1 + dΣ(v).

Next we prove the following.

Claim 4.2. — Let adjacent vertices v, u satisfy d(v) ≤ 5 and d(u) ≤ ζS. Then v is in every
Σ-clique of size larger than 3

2 β + γS, and dΣ(v) ≥ 3
2 β + γS.
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Proof. — The argument is similar to the one in Subsection 2.2.2: Construct a graph G2 by
contracting the edge vu into a new vertex w (removing multiple edges if they appear). Set
V2 = (V \ {v, u}) ∪ {w}. Let Σ2(w) = Σ(u) ∪ Σ(v) \ {u, v}. For a vertex t ∈ V2 \ {w}, if Σ(t)
contains u, then set Σ2(t) = (Σ(t) \ {u, v}) ∪ {w}; otherwise set Σ2(t) = Σ(t) \ {v}. Note
that G2 is smaller than G and is still embeddable in S. Moreover, for every t ∈ V2 \ {w} we
have |Σ2(t)| ≤ |Σ(t)| ≤ β; while for w we have |Σ2(w)| ≤ |Σ(u)| + |Σ(v)| ≤ dG(u) + dG(v) ≤
5 + ζS ≤ β.

By construction, it is easy to check that every Σ-clique in G not containing v corresponds
to a Σ2-clique in G2 of the same size. Since G was chosen as a smallest counterexample, this
means that every Σ-clique in G of size larger than 3

2 β + γS must contain v.
For the second part we use that G, as a counterexample, must contain Σ-cliques larger

than 3
2 β + γS , whereas any Σ-clique in G containing v has size at most 1 + dΣ(v).

We continue going through the cases of Lemma 2.4. If all vertices of G have degree at most ζS ,
then the number of Σ-neighbours of any vertex is at most (ζS)2. So the maximum size of a
Σ-clique is at most (ζS)2 + 1 ≤ 3

2 β + 1 ≤ 3
2 β + γS , a contradiction.

Next suppose there is a vertex v of degree at most five with at most one neighbour of degree
more than ζS. Then, since β ≥ 2

3 (ζ∗S)2 ≥ 8ζ∗S , we have

dΣ(v) ≤ d(v) +
∑

t∈N(v), v ∈Σ(t)

(|Σ(t)| − 1) ≤ 5 + 4 (ζ∗S − 1) + (β − 1) = 4ζ∗S + β ≤ 3
2 β.

But every vertex has degree at least three, hence v has a neighbour u of degree at most ζ∗S .
We obtain a contradiction with Claim 4.2.

Let X and Y be the two disjoint, non-empty, sets forming a very special ζ∗S-pair in G
satisfying (S3) in Lemma 2.4. For convenience, we repeat the essential properties of those
sets:

(i) Every vertex in X has degree at least ζ∗S + 1. Every vertex y ∈ Y has degree four, is
adjacent to exactly two vertices of X, and the remaining neighbours of y have degree four
as well.

(ii) For all pairs of vertices y, z ∈ Y , if y and z are adjacent or have a common neighbour
w /∈ X, then Xy = Xz.

(iii)For all non-empty subsets W ⊆ X, we have e(W,V \ Y ) ≤ e(W,Y \ Y W ) + ζ∗S |W |.

We can remove from X any vertex not adjacent to any vertex in Y .
We can use arguments similar to the first part of Subsection 2.2.3 to show the following.

Claim 4.3. — For all y ∈ Y , we have that if Xy = {x1, x2}, then y ∈ Σ(x1) ∩ Σ(x2).

Next, by (i), every y ∈ Y has degree four and a neighbour u of degree four. From Claim 4.2
we can conclude:

Claim 4.4. — For every y ∈ Y we have that y is in every Σ-clique of size larger than
3
2 β + γS, and dΣ(y) ≥ 3

2 β + γS.

Also by the properties of the vertices in Y according to (i) and (ii), we have for all y ∈ Y and
Xy = {x1, x2},

dΣ(y) ≤ 4 + 2 · (4 − 1) + |Σ(x1) \ {y}| + |Σ(x2) \ {y}| − |Y {x1,x2} \ {y}|

= 9 + |Σ(x1)| + |Σ(x2)| − |Y {x1,x2}|
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Here we use that by Claim 4.3 all vertices in Y {x1,x2} are contained in both Σ(x1) and Σ(x2);

hence we can subtract the term |Y {x1,x2} \ {y}|, since these vertices are counted twice in
|Σ(x1) \ {y}| + |Σ(x2) \ {y}|. Since |Σ(x1)|, |Σ(x2)| ≤ β, from Claim 4.4 we can conclude the
following.

Claim 4.5. — For every pair x1, x2 ∈ X for which there is a y ∈ Y with Xy = {x1, x2}, we

have |Y {x1,x2}| ≤ 1
2 β − γS + 9.

Since every vertex in Y is in every Σ-clique of size larger than 3
2 β +γS , and by the hypothesis

there is at least one such clique, we must have that all pairs of vertices in Y are adjacent or
appear together in some Σ(v). By (ii), this proves that for every two vertices y1, y2 ∈ Y , we
have Xy1 ∩Xy2 6= ∅. As a consequence, if GX denotes the graph with vertex set X in which
two vertices are adjacent if they have a common neighbour in Y , then GX is either a triangle
or a star. (Here we use that we can assume all vertices in X to have at least one neighbour
in Y .)

Case 1. GX is a triangle.
Let X = {x1, x2, x3}. This means that Y = Y {x1,x2}∪Y {x1,x3}∪Y {x2,x3}, and so by Claim 4.5
we get |Y | ≤ 3

2 β − 3γS + 27.

Since Y X = Y by definition of X, we have e(X,Y \Y X) = 0. So using the inequality in (iii)
with W = X leads to e(X,V \ Y ) ≤ 3ζ∗S . That means there must be xj1 and xj2 such that

e({xj1 , xj2}, V \ Y ) ≤ 2ζ∗S . And so for y ∈ Y {xj1
,xj2

}, we can estimate, using (i) and |X| = 3,

dΣ(y) ≤ 2 + 2 · (4 − 1) + |X| + (|Y | − 1) + e({xj1 , xj2}, V \ (X ∪ Y ))

≤ 3
2 β − 3γS + 37 + 2ζ∗S .

But this contradicts Claim 4.4, since 4γS > 2ζ∗S + 37.

Case 2. GX is a star.
We denote by x the vertex of X corresponding to the centre of the star GX , and by x1, . . . , xk,
k ≥ 1, the vertices of X corresponding to the leaves.

Using the inequality in (iii) with W = X again, we get e(X,V \ Y ) ≤ ζ∗S |X| = (k + 1) ζ∗S .

Since X = {x, x1, . . . , xk}, there must be an xj such that e({xj}, V \Y ) ≤
1

k
(k +1) ζ∗S ≤ 2ζ∗S .

Now for y ∈ Y {x,xj}, we can estimate

dΣ(y) ≤ 4 + 2 · (4 − 1) + |(Σ(x) ∪ Σ(xj)) \ {y}| = 9 + |Σ(x)| + |Σ(xj) \ Σ(x)|.

Since Y ⊆ Σ(x), we have |Σ(xj) \ Σ(x)| ≤ e({xj}, V \ Y ) ≤ 2ζ∗S . Together with |Σ(x)| ≤ β,

this means dΣ(y) ≤ β + 9 + 2ζ∗S . This contradicts Claim 4.4, since 1
2 β > 9 + 2ζ∗S .

In the proof of Theorem 1.3, we used βS = 11616 (3 − χ(S))2 and γS = 208 − 66χ(S). Since
the sphere S

2 has χ(S2) = 2, following the proof above means we can obtain βP = 11616 and
γP = 76 for the planar case. But it is clear that these values are far from best possible. Using
more careful estimates in the proof above and more careful reasoning in certain parts of the
proof of Lemma 2.4 can give significantly smaller values. Since our first goal is to show that
we can obtain constant values for these results, we do not pursue this further.
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5. Concluding Remarks and Discussion

5.1. About the Proof. — The proof of our main theorem for major parts follows the same
lines as the proof of Theorem 1.6 in [10]. In particular, the proof of that theorem also starts
with a structural lemma comparable to Lemma 2.4, uses the structure of the graph to reduce
the problem to edge-colouring a specific multigraph, and then applies (and extends) Kahn’s
approach to that multigraph. Of course, a difference is that Theorem 1.6 only deals with list
colouring the square of a graph, but it is probably possible to generalise the whole proof to
the case of list Σ-colouring. Nevertheless, there are some important differences in the proofs
we feel deserve highlighting.

Lemma 2.4 is stronger than the comparable [10, Lemma 3.3]. We obtain a set Y of vertices
with degree four and with a very specific structure of their neighbourhoods. This structure
allows us to construct a multigraph H so that a standard list edge-colouring of H provides the
information to colour the vertices in Y (see Lemma 2.7). In the lemma in [10], the vertices in

the comparable set Y are only guaranteed to have degree at most ∆1/4, and knowledge about
their neighbourhood is far sketchier. This means that the translation to list edge-colouring
of a multigraph is not so clean; apart from the normal condition in the list edge-colouring
of H (that adjacent edges need different colours), for each edge there may be up to O(∆1/2)
non-adjacent edges that also need to get a different colour. In particular this means that
in [10], Kahn’s result in Theorem 2.11 cannot be used directly. Instead, a new, stronger,
version has to be proved that can deal with a certain number of non-adjacent edges that need
to be coloured differently. Lemma 2.4 allows us to use Kahn’s Theorem directly.

A second aspect in which our Lemma 2.4 is stronger is that in the final condition (S3), we

have an ‘error term’ that is a constant times |W |. In [10] the comparable term is ∆9/10 |W |,
where ∆ is the maximum degree of the graph. This in itself already means that the approach
in [10] at best can give a bound of the type 3

2 ∆+o(∆). The fact that we cannot do better with
the stronger structural result is because of the limitations of Kahn’s Theorem, Theorem 2.11.
If it would be possible to replace the condition in that theorem by a condition of the form
‘the vector ~x = (xe) with xe = 1

|L(e)|−K for all e ∈ E(H) is an element of MP(H)’, where K

is some positive constant, the work in this paper would directly give an improvement for the
bound in Theorem 1.2 to 3

2 β + O(1). Note that our version of Lemma 2.12 is also already
strong enough to support that case.

Lemma 2.4 also allows us to prove a bound 3
2 β + O(1) for the Σ-clique number in Theo-

rem 1.3. The important corollary that the square of a graph embeddable on a fixed surface
has clique number at most 3

2 ∆ + O(1) would have been impossible without the improved
bound in the lemma.

Also Lemma 2.12 is stronger than its compatriot [10, Lemma 5.9]. The lemma in [10] only
deals with the case dG(v) = β for all vertices v in H. Because of this, it can only be applied
to the case that all vertices in H have maximum degree ∆(G) in G. Some non-trivial trickery
then has to be used to deal with the case that there are vertices in H of degree less than ∆(G)
in G. Moreover, the proof of Lemma 2.12 is completely different from the proof in [10]. We
feel that our new proof is more natural and intuitive, giving a clear relation between the lower
bounds on the sizes of the lists and the upper bound of the sum of their inverses. The proof
in [10] is more ad-hoc, using some non-obvious distinction in a number of different cases,
depending on the size of W and the degrees of some vertices in W .
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5.2. Further Work. — We feel that our work is just the beginning of the study of general
Σ-colouring problems. It should be possible to obtain deeper results taking into account the
structure of the Σ-system, and not just the sizes of the sets Σ(v). The following easy result
is an example of this.

Recall that a graph is q-degenerate if there exists an ordering v1, v2, . . . , vn of the vertices
such that every vi has at most q neighbours in {v1, . . . , vi−1}. A class of graphs is degenerate
if there is some q such that every graph in the class is q-degenerate. Examples of degenerate
graph classes are graphs embeddable on a fixed surface, and proper minor-closed classes.

Proposition 5.1. — For any degenerate graph class F , there exists a constant cF such that
the following holds. Let G be a graph in F , together with a Σ-system so that Σ(u)∩Σ(v) = ∅

for every two distinct vertices u, v. Then ch(G; Σ) ≤ ∆(G; Σ) + cF .

Proof Suppose every graph in F is q-degenerate, and set cF = q + 1. For a graph G in F ,
take an ordering v1, . . . , vn of its vertices such that each vi has at most q neighbours in
{v1, . . . , vi−1}. We greedily colour the vertices v1, . . . , vn in G in that order.

Note that by the hypothesis, each vertex v has at most one neighbour w with v ∈ Σ(w).
When colouring the vertex vi, we need to take into account its neighbours in {v1, . . . , vi−1},
plus the vertices in Σ(w)∩ {v1, . . . , vi−1} for a vertex w with vi ∈ Σ(w) (where that vertex w
can be in {vi+1, . . . , vn}). By construction of the ordering, there are at most q neighbours of vi

in {v1, . . . , vi−1}. And a vertex w with vi ∈ Σ(w) has at most |Σ(w)| ≤ ∆(G; Σ) vertices in
Σ(w) ∩ {v1, . . . , vi−1}. So the total number of forbidden colours when colouring vi is at most
∆(G; Σ) + q. Since each vertex has ∆(G; Σ) + q + 1 colours available, the greedy algorithm
will always find a free colour.

We think that it is possible to combine our main theorem and the theorem above in the
following way. For a Σ-system for a graph G, let k(G; Σ) be the maximum of |Σ(u) ∩ Σ(v)|
over all pairs u, v of distinct vertices.

Conjecture 5.2. — Let S be a fixed surface. Then there exists a constant cS such that for
all graphs G embeddable on S, with a Σ-system, we have

ch(G; Σ) ≤ ∆(G; Σ) + k(G; Σ) + cS .

This conjecture would fit with our current proof of Theorem 1.2, the main part of which
is a reduction of the original problem to a list edge-colouring problem. For this approach,
Shannon’s Theorem [31] that a multigraph with maximum degree ∆ has an edge-colouring
using at most

⌊
3
2 ∆(G)

⌋
colours, forms a natural base for the bounds conjectured in Conjec-

ture 1.1. If the relation between colouring the square of graphs embeddable on a fixed surface
and edge-colouring multigraphs holds in a stronger sense, then Conjecture 5.2 forms a logical
extension of Vizing’s Theorem [32] that a multigraph with maximum degree ∆ and maximum
edge-multiplicity µ has an edge-colouring with at most ∆ + µ colours.

In Borodin et al. [5], a weaker version of Conjecture 5.2 for cyclic colouring of plane graphs
was proved. Recall that if GP is a plane graph, then ∆∗ is the maximum number of vertices in
a face. Let k∗ denote the maximum number of vertices that two faces of GP have in common.

Theorem 5.3 (Borodin, Broersma, Glebov & Van den Heuvel [5])
For a plane graph GP with ∆∗ ≥ 4 and k∗ ≥ 4 we have χ∗(GP ) ≤ ∆∗ + 3k∗ + 2.
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Σ-Colouring and Minor-Closed Classes.— It seems natural to expect that our work on graphs
embeddable in a fixed surface can be extended to arbitrary proper minor-closed classes of
graphs. Compare our main Theorem 1.2 with Theorem 1.6, the main result from [10]. But
there exist some obstacles to a direct generalisation.

It is easy to show that if a graph G is q-degenerate, then its square is ((2q − 1)∆(G))-
degenerate. It is well-known, see e.g. [22], that for every proper minor-closed family F , there
is a constant CF such that every graph in F is CF -degenerate. Hence G2 is ((2CF −1)∆(G))-
degenerate, and so for every G ∈ F we have ch(G2) ≤ (2CF − 1)∆(G) + 1.

For Σ-colouring, there is no comparable upper bound on ch(G; Σ) in terms of the degeneracy
of G and ∆(G; Σ). To see this, let G be the graph obtained from the complete graph Kn,
n ≥ 4, by subdividing all edges of Kn once. For a vertex v corresponding to an original vertex
in Kn, set Σ(v) = ∅; while for a “new” vertex v of degree two, set Σ(v) = NG(v). Then we
have that G is 2-degenerate and ∆(G; Σ) = 2, but ch(G; Σ) = n.

Nevertheless, combining the Robertson and Seymour graph minor structure theorem [28]
with our main theorem on graphs embeddable in bounded genus surfaces, one can fairly easily
obtain the following.

Theorem 5.4. — Let F be a proper minor-closed family of graphs. Then there exist con-
stants CF and cF such that the following holds: For any graph G in F with a Σ-system, we
have ch(G; Σ) ≤ CF ∆(G; Σ) + cF .

Giving more details of the ideas of the proof would require a number of additional definitions,
and is beyond the scope of this short discussion. It would be interesting to find a proof of
this theorem that does not require the full force of the graph minor structure theorem.

Also finding the smallest possible constant CF for certain minor-closed families F appears
an interesting question. Theorem 1.6 clearly suggests that if Fk denotes the class of K3,k-
minor free graphs (k ≥ 3), CFk

should be equal to 3/2.

6. Kahn’s Work on List Edge-Colourings

As mentioned earlier, Theorem 2.11 is not explicitly stated in [17], but is implicit in the
proof of the main result of that paper. In this final section, we give an overview of how this
theorem can be obtained from the ideas in Kahn’s paper.

The main result in [17] is that the list chromatic index is asymptotically equal to the
fractional chromatic index of a multigraph.

Theorem 6.1 (Kahn [17]). — For all ε > 0, there exists a ∆ε such that for all ∆ ≥ ∆ε

the following holds. If H is a multigraph with maximum degree at most ∆, then

χ′
f (H) ≤ χ′(H) ≤ ch ′(H) ≤ (1 + ε)χ′

f (H).

Here χ′(H) is the normal chromatic index (or edge-chromatic number) of H, χ′
f (H) is the

fractional chromatic index of H, and ch ′(H) is the list chromatic index of H. The cru-
cial step to relate this result to the matching polytope MP(H) is the following well-known
characterisation of the fractional chromatic index:

χ′
f (H) = min{ γ > 0 | the vector (xe)e∈E(H) with xe = γ−1 is in MP(H) }.
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So Theorem 6.1 is just a special case of Theorem 2.11 if we set |L(e)| ≥
χ′

f (H)

1 − δ
for all edges e.

(The second condition of Theorem 2.11 is automatically satisfied in that case, since trivially
χ′

f (H) ≥ ∆(H).)
In order to prove Theorem 6.1, Kahn describes a randomised iterative procedure that

colours the edges of H in a number of stages. During this procedure, the lists of available
colours for each edge will change, and the lists will not be the same size for the uncoloured
edges. This is why, roughly speaking, Kahn’s actual proof deals with the more general case,
as described in Theorem 2.11.

In order to give the reader a better understanding of the background of Kahn’s approach,
we give an overview of the crucial elements in the following subsections.

6.1. Hardcore Distributions. — Hardcore distributions are distributions that originally
arose in Statistical Physics, and that satisfy very natural conditions and generally provide
strong independence properties allowing good sampling from a given family. Given a family
of subsets F of a given set E , a natural way of picking at random an element of F (or, in an
other words, a probability distribution on F) is as follows.

Let us suppose that each element e of E has been assigned a positive weight λe. Then
we pick each element M ∈ F with probability proportional to

∏
e∈M

λe. More precisely, the

probability PM of picking M ∈ F at random is given by

PM =

∏
e∈M

λe

∑
M ′ ∈F

∏
e∈M ′

λe
.

We define the vector ~x = (xe)e∈E by setting xe =
∑

M ∈F , e∈M

PM . It is clear that xe is the

probability that a given random element of F contains the element e. The probability distri-
bution {PM} is called a hardcore distribution with activities {λe} and marginals {xe}. The
vector ~x is called the marginal vector associated with the hardcore distribution {PM}.

Given a vector ~x, it is not always true that ~x is the marginal vector of some hardcore
distribution. Indeed if P(F) denotes the polytope defined by taking the convex hull of the

characteristic vectors of the elements of F (1), then the marginal vector ~x of a hardcore dis-
tribution is in P(F):

~x =
∑

M ∈F

PM 1M .

This provides a necessary condition for a vector to be the marginal vector of a hardcore
distribution. It is not difficult to prove that the activities λe corresponding to ~x, if they exist,
are unique.

From now on, let H be a given multigraph. We recall that M(H) and MP(H) are the
family of matchings and the matching polytope of H, respectively. (So M(H) will play the role
of the family F from above. And using the notation from above means MP(H) = P(M(H)).)

We have the following theorem relating the matching polytope and hardcore distributions.

(1)Recall that the characteristic vector, 1M , of a given element M ∈ F is the |E|-dimensional vector (ye)e∈E

such that ye = 1 if e ∈ M and ye = 0 otherwise.
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Theorem 6.2 (Lee [20], Rabinovich et al. [27]). — For a given real number 0 < δ < 1,
suppose ~x is a vector in (1 − δ)MP(H), for some multigraph H. Then there exists a unique
family of activities λe such that ~x is the marginal vector of the hardcore distribution defined
by the λ’s. The hardcore distribution {PM}M∈M(H) is the unique distribution maximising the
entropy function

H(QM ) = −
∑

M ∈M(H)

QM log(QM )

among all the distributions {QM}M∈M(H) satisfying ~x =
∑

M ∈M(H)

QM 1M .

Kahn and Kayll proved in [18] a family of results, resulting in a long-range independence
property for the hardcore distributions defined by a marginal vector ~x inside (1− δ)MP(H),
see [17]. We refer to the original papers of Kahn [16, 17] and Kahn and Kayll [18], and the
book by Molloy and Reed [24] for more on these issues. We settle here for citing the following
lemma.

Lemma 6.3 ([18, Lemma 4.1]). — For every δ, 0 < δ < 1, there is a ρδ > 0 such that
if {PM} is a hardcore distribution with marginal vector ~x ∈ (1 − δ)MP(H), then for all
u, v ∈ V (H),

Pr(M does not touch u and v) > ρδ.

6.2. Hardcore Distributions and Edge-Colouring. — We present here Kahn’s algo-
rithm for list edge-colouring of multigraphs first introduced and analysed in [17]. We con-
tinue to use the notation of the previous subsection. In particular, we suppose that H is a
multigraph and L a list assignment of colours to the edges of H so that the conditions of
Theorem 2.11 are satisfied. By Lemma 6.2 there exists a hardcore distribution {PM} with
marginals {|L(e)|−1}e∈E(H), which in addition satisfies the property of Lemma 6.3. Let {λe}
be the activities on the edges (which are unique by Theorem 6.2) corresponding to this dis-
tribution. An extra condition is indeed true: For every subgraph H∗ of H it is possible to
find a hardcore distribution {P ∗

M} with corresponding marginals |L(e)|−1 for e ∈ E(H∗). The
corresponding activities λ∗

e will in general be different from the λe’s.
The algorithm works as follows: Let L =

⋃
e∈E(H)

L(e) be the union of the colours in the lists.

For each colour α, let us define the colour graph Hα to be the graph containing all the edges
whose lists contain the colour α. And denote by {λα,e} the activities producing the hardcore
distribution with marginals |L(e)|−1 for e ∈ E(Hα). The colouring procedure consists in a
finite number of iterations of a procedure that we may call naive colouring. At step i of the
iteration, we are left with subgraphs H i

α containing some uncoloured edges whose lists contain
the colour α. Of course we have H i

α ⊆ H i−1
α ⊆ · · · ⊆ H0

α = Hα.
The naive colouring procedure at step i + 1 consists of the following sub-steps.

(a) For each colour α ∈ L, choose independently of the other colours a random matching
M i+1

α ⊆ E(H i
α). The distribution of the matchings is the hardcore distribution defined

by the activities λα,e on the edges e ∈ E(H i
α).

(b) If an edge e is in one or more of the M i+1
α ’s, then choose one of the colours from those,

chosen uniformly at random, and colour e with that colour.
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(c) For each colour α, form H i+1
α by removing from H i

α all the edges that received some
colour at this stage, and all vertices that are incident to one of the edges coloured with α.
(While removing a vertex, all the edges incident to it are of course removed as well.)

Note that the process above can be described also in terms of subgraphs H i of the original
multigraph H, where the edges of H i are the edges that are still uncoloured after step i, and
each edge e in H i has a list of colours Li(e) formed by all colours α for which e ∈ E(H i

α).
Also note that the activities λα,e remain unchanged all through the process (but the edge sets
on which they are applied change).

A sufficient number of iterations of the naive colouring procedure results in a graph HI ,
consisting of all the uncoloured edges at this step, such that HI has maximum degree T , for
some integer T , and that the list sizes are at least 2T , i.e., each uncoloured edge is in at
least 2T of the HI

α’s. (Remember that the conditions of Theorem 2.11 imply that the lists
are quite large at the beginning.) At this stage it is easy to finish the procedure by a simple
greedy algorithm.

The heart of the analysis of the above algorithm in Kahn’s approach is the following strong
lemma, the proof of which can be found in [17].

Lemma 6.4 (Kahn [17, Lemma 3.1] ). — For each K > 0 and 0 < η < 1, there are con-
stants 0 < ξK,η ≤ η and ∆K,η such that the following holds for all ∆ ≥ ∆K,η. Let H be a
multigraph with lists L(e) of colours for each edge e. For each colour α, define the colour
graph Hα as above. Finally, for each colour α we are given a hardcore distribution with
activities {λα,e}e∈E(Hα) and marginals {xα,e}e∈E(Hα). Suppose the following conditions are
satisfied:

• for every vertex v, dH(v) ≤ ∆;

• for every colour α and edge e ∈ E(Hα), λα,e ≤
K

∆
; and

• for every edge e, 1 − ξK,η ≤
∑

α in L(e)

xα,e ≤ 1 + ξK,η.

Then with positive probability the naive colouring procedure described above gives matchings
Mα ⊆ E(Hα) for all colours α, so that if we set H∗ = H −

⋃
α′ Mα′ , H∗

α = Hα − V (Mα) −⋃
α′ Mα′ , and form lists L∗(e) for all edges e ∈ E(H∗) by removing no longer allowed colours

from L(e), we have:

• for every vertex v, dH∗(v) ≤
1 + η

1 + ξK,η
e−1 ∆; (2) and

• for every edge e in H∗, 1 − η ≤
∑

α∈L∗(e)

x∗
α,e ≤ 1 + η.

Here {x∗
α,e}e∈E(H∗

α) are the marginals associated to λα,e in H∗
α.

In other words, the lemma guarantees that after one iteration of the naive colouring proce-
dure, with positive probability the multigraph formed by the uncoloured edges has maximum

degrees bounded by
1 + η

1 + ξK,η
e−1 ∆, while the sum of the marginal probabilities x∗

α,e for every

edge e will be close to 1.

(2)To avoid confusion between an edge ‘e’ and the base of the natural logarithms 2.718. . . , we will use the
roman letter ‘e’ for the latter one.
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In the next subsection we will combine all the strands and use the lemma above to conclude
the proof of Theorem 2.11.

6.3. Completing the Proof of Theorem 2.11 — after Kahn. — Let 0 < δ < 1 and
ν > 0. Then we should prove the existence of a ∆δ,ν such that for ∆ ≥ ∆δ,ν the following
holds. Let H be a multigraph and L a list assignment of colours to the edges of H so that

• for every vertex v, dH(v) ≤ ∆;

• for all edges e ∈ E(H), |L(e)| ≥ ν ∆;

• the vector ~x = (xe) with xe =
1

|L(e)|
for all e ∈ E(H) is an element of (1 − δ)MP(H).

Then there should exist a proper edge-colouring of H, where each edge receives a colour from
its own list.

For each colour α, define the colour graph Hα as in the previous subsection. For each

colour α and edge e, set xα,e = xe =
1

|L(e)|
, and let {λα,e}e∈E(Hα) be the activities associated

with the marginals xα,e on Hα.
Since for every edge e we have

∑
α∈L(e)

xα,e =
∑

α∈L(e)

|L(e)|−1 = 1, we certainly know that

• for every edge e and ξ > 0, 1 − ξ ≤
∑

α∈L(e)

xα,e ≤ 1 + ξ.

We next bound the activities λα,e, using Lemma 6.3. First observe that for all α the vector
(xα,e)e∈E(Hα) is in (1− δ)MP(Hα). So by Lemma 6.3 there is a constant ρδ such that if Mα

is chosen according to the hardcore distribution with marginals {xα,e} on Hα, then for all
u, v ∈ E(Hα) we have Pr(Mα does not touch u and v) > ρδ. Let e = uv be an edge of Hα.
Then we have

xα,e = Pr(Mα contains e) = λα,e ·Pr(Mα does not touch u and v) > λα,e · ρδ.

Given the fact that xα,e =
1

|L(e)|
and |L(e)| ≥ ν ∆, and setting Kδ,ν =

1

ρδ ν
, we infer that

λα,e <
xα,e

ρδ
≤

1

ρδ ν ∆
=

Kδ,ν

∆
. We have shown that there exists a Kδ,ν > 0 such that

• for every colour α and edge e ∈ E(Hα), λα,e ≤
Kδ,ν

∆
.

Suppose we repeat the naive colouring procedure from the previous subsection s = sKδ,ν
times

(where sKδ,ν
is a fixed constant to be made more precise later). Let H i be the subgraph of H

formed by the edges that are as yet uncoloured at step i, and for each e ∈ E(H i) let Li(e) be
the list of colours from L(e) that are still allowed for e at that stage.

Let ηs = 1 − e−1, and recursively in the up-to-down order for i = s − 1, . . . , 1, set ηi =
ξKδ,ν ,ηi+1 , where ξKδ,ν ,ηi+1 is the function given by Lemma 6.4. Let ∆δ,ν = max

i=1,...,s
∆Kδ,ν ,ηi

(∆Kδ,ν ,ηi
according to Lemma 6.4 again), and η0 = 0. By applying Lemma 6.4 and the

observations above, we can ensure inductively, starting from i = 0, that for ∆ ≥ ∆δ,ν , with
positive probability the following conditions are satisfied for all i = 0, . . . , s.

• For all vertices v, dHi(v) ≤ Ti, where T0 = ∆ and Ti =
1 + ηi

1 + ηi−1
e−1 Ti−1 for i ≥ 1; and
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• For all edges e ∈ E(H i), 1−ηi ≤
∑

α∈Li(e)

xi
α,e ≤ 1+ηi, where {xi

α,e}e∈E(Hi) are the marginals

associated to the hardcore distribution with activities λα,e in H i
α.

It follows that that after s steps, with positive probability we have

• for all vertices v, dHs(v) ≤ (2 − e−1) e−s ∆; and

• for all edges e ∈ E(Hs), e−1 ≤
∑

α∈Ls(e)

xs
α,e ≤ 2 − e−1.

We note that for an edge e = uv,

xs
α,e = λα,e ·Pr(M s

α does not touch u and v) ≤ λα,e,

which implies that xs
α,e ≤ λα,e ≤

Kδ,ν

∆
. We infer that for all e ∈ E(Hs),

|Ls(e)| = |{α | e ∈ E(Hs
α) }| ≥

∆

eKδ,ν
.

Let T =
∆

2eKδ,ν
. It is now clear that if we choose the value of s in such a way that 2e−s ≤

1

2eKδ,ν
(in other words, by setting s = sKδ,ν

≥ ln(4Kδ,ν) + 1), we can ensure with positive

probability that

dHs(v) ≤ T for all v ∈ V (Hs) and |Ls(e)| ≥ 2T for each e ∈ E(Hs).

This finally shows that we can proceed using the greedy algorithm in Hs, in order to extend
the resulting colouring from the naive colouring procedure in Subsection 6.2 to a colouring of
the whole graph.
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