
Counting Subgraphs via Homomorphisms∗

Omid Amini† Fedor V. Fomin‡ Saket Saurabh§

Abstract

We introduce a generic approach for counting subgraphs in a graph. The main idea is to
relate counting subgraphs to counting graph homomorphisms. This approach provides new
algorithms and unifies several well known results in algorithms and combinatorics includ-
ing the recent algorithm of Björklund, Husfeldt and Koivisto for computing the chromatic
polynomial, the classical algorithm of Kohn, Gottlieb, Kohn, and Karp for counting Hamil-
tonian cycles, Ryser’s formula for counting perfect matchings of a bipartite graph, and color
coding based algorithms of Alon, Yuster, and Zwick. By combining our method with known
combinatorial bounds, ideas from succinct data structures, partition functions and the color
coding technique, we obtain the following new results:

• The number of optimal bandwidth permutations of a graph on n vertices excluding
a fixed graph as a minor can be computed in time O(2n+o(n)); in particular in time
O(2nn3) for trees and in time 2n+O(

√
n) for planar graphs.

• Counting all maximum planar subgraphs, subgraphs of bounded genus, or more gen-
erally subgraphs excluding a fixed graph M as a minor can be done in 2O(n) time.

• Counting all subtrees with a given maximum degree (a generalization of counting
Hamiltonian paths) of a given graph can be done in time 2O(n).

• A generalization of Ryser’s formula: Let G be a graph with an independent set of size
`. Then the number of perfect matchings in G can be found in time O(2n−`n3).

• Let H be a graph class excluding a fixed graph M as a minor. Then the maximum
number of vertex disjoint subgraphs from H in a graph G on n vertices can be found in
time 2O(n). In order to show this, we prove that there exists a constant cM depending
only on M such that the number of non-isomorphic n vertex graphs in H is at most
cnM .

• Let F be a k-vertex graph of treewidth t and let G be an n-vertex graph. A subgraph
of G isomorphic to F (if one exists) can be found in O(4.32k ·k · t ·nt+1) expected time
using O(log k · nt+1) space.

Contents

1 Introduction 2
1.1 Our results and related work . 3

2 Preliminaries 5

3 Relating Counting Subgraphs to Counting Homomorphisms 6
∗An extended abstract of this paper has been presented at ICALP’09
†CNRS-DMA, École Normale Supérieure, Paris, France. omid.amini@m4x.org
‡Department of Informatics, University of Bergen, Norway. fomin@ii.uib.no
§The Institute of Mathematical Sciences, Chennai, India. saket@imsc.res.in

1

4 Classical Results 7
4.1 Counting Hamiltonian Cycles – Kohn-Gottlieb-Kohn-Karp Algorithm 7
4.2 Chromatic Polynomial – Björklund-Husfeldt-Koivisto Algorithm 8
4.3 Number of Perfect Matchings in Bipartite Graphs – Ryser’s Formula 9

5 New Applications 9
5.1 Set Saturating Homomorphisms and Ryser’s Formula 9
5.2 Subgraph Isomorphism when F has Bounded Treewidth 11
5.3 Bandwidth . 11
5.4 Degree Constrained Spanning Tree Problem . 12
5.5 Counting Graphs Excluding a Fixed Minor . 13
5.6 H-Packing and some of its Variants . 15

6 Poly-space Color Coding 17
6.1 Deterministic Algorithm . 17
6.2 Improved Randomized Version of Color-Coding 18

7 Conclusion and Discussions 19

1 Introduction

Given two undirected graphs F and G, a homomorphism from F to G is a mapping from
the vertex set of F to that of G such that the image of every edge of F is an edge of G.
Many combinatorial structures in F , for example independent sets and proper vertex colorings,
may be viewed as graph homomorphisms to a particular graph G, see the book of Hell and
Nešetřil [31] for a thorough introduction to the topic. Counting homomorphisms between graphs
has applications in a variety of areas, including extremal graph theory, properties of graph
products, partition functions in statistical physics and property testing of large graphs. We
refer to the excellent survey of Borgs et al. [16] for references on counting homomorphisms.

There is an extensive literature on the computational complexity of graph homomorphism
and counting homomorphisms. Hell and Nešetřil showed that for any fixed simple graph G, the
problem whether there exists a homomorphism from F to G is solvable in polynomial time if
G is bipartite, and NP-complete if G is not bipartite [30]. Dyer and Greenhill [22] completely
characterized the dichotomy between P and #P-complete for counting homomorphisms from F
to G. It appears that polynomial-time solvable cases arise only when G is an isolated vertex, a
complete graph with all loops present, a complete bipartite graph without loops, or a disjoint
union of these graphs. Extending a result of Grohe [28], Dalmau and Jonsson [19] proved that
counting homomorphisms from a graph F in a given family F to an arbitrary graph G is in P
if and only if all graphs in the family F have bounded treewidth (up to the assumption from
parameterized complexity that FPT 6= #W[1]).

In this paper we design exact and parameterized algorithms for counting the number of (not
necessarily induced) subgraphs isomorphic to a given graph F in a general graph. For any
graph G with n vertices and m edges, all subgraphs of G isomorphic to a given graph F can
be counted by trying all possible edge subsets of G and for each subset checking if the obtained
graph is isomorphic to F . This algorithm runs in time 2m+o(n) by making use of an algorithm
due to Babai [4] to check isomorphism in time subexponential in n. Another approach is to try
all the permutations of the vertices of G and F , and for each of these permutations, to compare
vertex neighborhoods. This will give us running time O(n!n2) = 2O(n logn). While it is an open
question whether subgraph isomorphism can be solved in time 2O(n), there are many special
cases, depending on the structure of the graph F , for which 2O(n) algorithms are known. Many

2

natural problems such as Hamiltonian Cycle, Perfect Matching, Graph Coloring,
Bandwidth Minimization, Triangle Packing, and many others can be seen as a subgraph
isomorphism problem, and for each of these problems, there are 2O(n) time algorithms known
in the literature. However, all known algorithms for these problems are tailored to their specific
properties.

The main idea behind our results is to reduce the problem of counting subgraphs of G
isomorphic to a given graph F to counting homomorphisms from F to G. Let sub(F,G) denote
the number of distinct (not necessarily induced) copies of a graph F contained in a graph G. Let
also hom(F,G) and inj(F,G) be the number of homomorphisms and injective homomorphisms
from F to G respectively. The idea of relating hom(F,G) and inj(F,G) is not new in Graph
Theory. Lovász [40, 16] gave the following identities relating hom(F,G) and inj(F,G). For an
equivalence relation Θ on V (F), or equivalently for a partition Θ of the vertex set V (F), let
F/Θ denote the graph obtained by identifying nodes that belong to the same equivalent class
of Θ. Then

inj(F,G) =
∑
Θ

µ(Θ)hom(F/Θ, G),

where

µ(Θ) =
k∏

A∈Θ

(
(−1)|A|−1(|A| − 1)!

)
,

with the product running over all the equivalence classes of Θ and the sum running over all the
equivalence relations (equivalently, over all partitions of V (F)). From an algorithmic point of
view the above formula is not efficient because the number of equivalence relations is generally
too large to be meaningful even for simple graphs such as the graph containing n isolated
vertices. We give an alternative formula which is helpful in counting “simple structures” in
time exponential in the size of the target graph G, i.e., |V (G)|. Let us denote by aut(F) the
number of automorphisms of F , that is bijective homomorphisms from F to itself. Also for a
subset W ⊂ V (G), we simply write G \W to denote the induced graph of G on V (G) \W .
Our first result shows that if |V (F)| = |V (G)|, then

sub(F,G) =
inj(F,G)
aut(F)

=

∑
W⊆V (G)(−1)|W | hom(F,G \W)

aut(F)
. (1)

This can be seen as a generalization of inclusion-exclusion based formulas which were used for
some counting problems including counting the number of perfect matchings in a graph [10, 47],
counting Hamiltonian cycles [6, 34, 36], and computing the chromatic polynomial of a graph
[11, 37]. The main advantage of using graph homomorphisms is that despite of their expressive
power, graph homomorphisms from many structures can be counted efficiently.

1.1 Our results and related work

We start by proving (1), Theorem 1, which is our main tool in the design of exact algorithms.
We observe that a number of well-known classical and more recent results can be obtained as
corollaries of Theorem 1. We demonstrate its power by reproving the following results. Let G
be a graph on n vertices. Then the number of Hamiltonian cycles in G can be computed in time
2nnO(1) and in polynomial space (this result was rediscovered several times [6, 34, 36]). The
chromatic polynomial of G can be computed in time 2n+O(

√
n) (this almost matches the running

time of the celebrated result of Björklund, Husfeldt, and Koivisto [11, 37]). The number of
perfect matchings in a bipartite graph can be counted in time 2n/2nO(1) (the classical result of
Ryser [47], see also Björklund and Husfeldt [11]).
We then use Theorem 1 and its variants to obtain improvements on the following.

3

Number of optimal permutations for bandwidth: The Bandwidth problem is a famous com-
binatorial problem where given an undirected graph G on n vertices, we wish to embed its
vertices onto an integer line such that the maximum stretch of any edge of G is minimized. And
this parameter, denoted by bw(G), is called bandwidth of G. The best known approximation
algorithm for this problem is an O(log3 n 4

√
log log n)-approximation algorithm due to Lee [39],

which is a slight improvement of the earlier algorithm of Dungan and Vempala [21]. Saxe has
shown that the bandwidth of a graph G, bw(G), can be computed in time O(nbw(G)+1) [48].

When parameterized by bandwidth bw, Bandwidth is also known to be W[t]-hard for all
t ≥ 1, in the realm of parameterized complexity [14].

Feige and Kilian [23] provided an exact algorithm computing the optimal bandwidth in time
10nnO(1). Recently algorithm with running time 4.473nnO(1) was given by Cygan and Pilipczuk
[18]. None of the known algorithms can be adapted to count the number of optimal bandwidth
assignments. Feige and Talwar [25] showed that the bandwidth of a graph of treewidth at most
t can be (1 + ε)-approximated in time 2O(logn(t+

√
n
ε

)). Vassilevska, Williams and Woo [50] gave
a hybrid algorithm which after a polynomial time test, either computes the bandwidth of a
graph in time 4n+o(n), or provides a γ(n) log2 n log logn-approximation in polynomial time for
any unbounded function γ.

The Bandwidth problem can be seen as a subgraph isomorphism problem, and by combin-
ing Theorem 1 with the techniques of counting homomorphisms on graphs of bounded treewidth,
we obtain the following: The number of optimal bandwidth permutations of a graph of treewidth
at most t on n vertices can be counted in time 2t log2 n+nnO(1) and space 2t log2 nnO(1). When
t is a constant, the algorithm uses polynomial space and runs in time 2nnO(1). Independently,
Cygan and Pilipczuk [18] announced a 2nnO(1) algorithm that computes an optimal bandwidth
layout in graphs of constant treewidth. However their algorithm uses exponential space. Our
result also yields a hybrid algorithm which after a polynomial time test, either computes the
minimum bandwidth of the graph in time 4nnO(1), or provides an O(log3/2 n)-approximation in
polynomial time, improving the algorithm presented in [50].
Counting perfect matchings: While a perfect matching in a graph can be found in polynomial
time, the problem of counting the number of perfect matchings is #P-complete [49]. For bi-
partite graphs on n vertices, the best known exact algorithm for counting perfect matchings
is to apply Ryser’s formula for the permanent [47], which runs in time O(1.414n) . Björklund
and Husfeldt [10] showed how to compute the number of perfect matchings of a graph in time
2nnO(1) and polynomial space. Koivisto [38] showed how to count perfect matchings in time
O(1.6181n) and exponential space.

We generalize the classical result of Ryser by showing that if G contains an independent set
of size k, then the number of perfect matchings in G can be found in time O(2n−kn3). Let us
remark that the case of bipartite graphs is a special case as k ≥ bn/2c.
Counting maximum subgraphs with a given property: Combining algorithms for counting homo-
morphisms with ideas from data structures, we give algorithms running in time 2O(n) for various
problems asking to count the number of subgraphs with specific properties in an n-vertex graph.
For example, it is possible to count maximum planar subgraphs, subgraphs of bounded genus,
or, even more generally, subgraphs excluding a fixed graph M as a minor in time 2O(n). The
last result requires a new combinatorial bound on the number of non-isomorphic unlabeled M -
minor-free graphs which implies as a corollary the main theorem of Norine, Seymour, Thomas,
and Wollan from [44] on minor-closed families. This answers affirmatively an open problem of
Bernardi, Noy and Welsh in [9], where they ask wether the number of unlabeled graphs of size
n in a given minor-closed class of graphs F can be bounded above by dn, for some constant d
(Problem 5 of Section 4 in [9]). We also obtain a number of algorithms for counting spanning
trees with different degree conditions. These structures can be seen as generalizations of Hamil-

4

tonian paths. Let us remark that prior to our work, the only known algorithm for many of the
problems above was the trivial edge subset enumerating algorithm running in time 2O(n2).
Packing problems: Given a graph class H, the packing problem asks for the maximum number
of vertex disjoint subgraphs of G all of which belong to H (see Section 5.6 for a more precise
definition). We also show how to answer in time 2O(n) the packing problem from a certain class
H, where H is a subclass of the class of all graphs excluding a fixed graph M as a minor. In
particular the Maximum Vertex Disjoint Cycles problem can be solved in time 2n+O(

√
n).

For these problems, no 2O(n) time algorithms were known before.
Parameterized algorithms: By applying the inclusion-exclusion idea, it is possible to refine the
celebrated Color Coding technique of Alon, Yuster, and Zwick [2]. Their probabilistic algorithm
determines whether a given graph G contains a fixed graph F as a subgraph and works in
two stages. First, one colors the vertices of G at random and then, one performs dynamic
programming on the colored graph in order to find an isomorphic subgraph of F whose vertices
have distinct colors. In [2], the authors provide an algorithm for the case when F is a forest,
and then they mention that this algorithm can be generalized to an algorithm that finds a
k-vertex graph F of treewidth t in an n-vertex graph G (if such a copy exists) in expected
time 2O(k)nt+1. One of the significant disadvantages of using dynamic programming with color
coding is that it requires exponential space. By combining ideas based on inclusion-exclusion
and graph homomorphisms with color coding, we provide a polynomial space algorithm that
in expected time O((2e)k · k · t · nt+1) finds a k-vertex graph F of treewidth t in an n-vertex
graph G (if such a copy exists). This algorithm can be derandomized resulting in a deterministic
algorithm which solves the problem in time O((2e)k+o(k) · k · t · nt+1) and space O(log k · nt+1).
Finally, by extending the approach of Hüffner, Wernicke, and Zichner [33] that was used to
speed-up the above mentioned algorithm of [2] for paths, we prove that a k-vertex graph F of
treewidth t in an n-vertex graph G can be found in O(4.32k · k · t · nt+1) expected time using
O(log k · nt+1) space.

The remaining of the paper is organized as follows. In Section 2 and Section 3, we provide
necessary definitions and some preliminary results. In Section 4, we show that several classical
results form the area of exact algorithms can be obtained by making use of graph homomor-
phisms. Section 5 provides new applications of our approach that we briefly mentioned above.
In Section 6, we revisit the Color Coding approach of Alon, Yuster, and Zwick [2].

2 Preliminaries

Let G be a simple undirected graph without self loops and multiple edges. The set of vertices
and the set of edges of G are denoted by V (G) and E(G), respectively. For a subset W ⊆ V (G),
the subgraph of G induced by W is denoted by G[W]. To simplify the notation, for a subset
W ⊂ V , we write G \ W to denote G[V \ W]. For a given vertex v ∈ V (G) and a subset
W ⊆ V (G), we denote by degW (v) the number of vertices in W which are adjacent to v.

A tree decomposition of a graph G is a pair (X,U) where U is a tree whose vertices are called
nodes, and X = ({Xi | i ∈ V (U)}) is a collection of subsets of V (G) such that

1.
⋃
i∈V (U)Xi = V (G),

2. for each edge (v, w) ∈ E(G), there is an i ∈ V (U) such that v, w ∈ Xi, and

3. for each v ∈ V (G), the set of nodes {i | v ∈ Xi} forms a subtree of U .

5

The width of a tree decomposition ({Xi | i ∈ V (U)}, U) equals maxi∈V (U){|Xi| − 1}. The
treewidth of a graph G is the minimum width over all the tree decompositions of G, and is
denoted by tw(G).

Given an edge e = uv of a graph G, the graph G/e is obtained by contracting the edge
uv, that is, we get G/e by identifying the vertices u and v and by removing all the loops and
duplicate edges. A minor of a graph G is a graph M that can be obtained from a subgraph of
G by contracting edges. A graph class G is minor closed if any minor of any graph in G is also
an element of G . A minor closed graph class G is M -minor-free or simply M -free if M /∈ G .

Given two graphs F and G, a graph homomorphism from F to G is a map f from V (F) to
V (G), that is f : V (F)→ V (G), such that if uv ∈ E(F), then f(u)f(v) ∈ E(G). Furthermore,
when the map f is injective, f is called an injective homomorphism. Given two graphs F and G,
the problem of Subgraph Isomorphism asks whether there exists an injective homomorphism
from F to G. We also recall that hom(F,G), inj(F,G) and sub(F,G) denote the number
of homomorphisms from F to G, the number of injective homomorphisms from F to G and
the number of distinct (non necessarily induced) copies of F in G, respectively. We need the
following result relating sub(F,G) and inj(F,G). This result is folklore and we omit its proof
here.

Proposition 1. sub(F,G) = inj(F,G)/aut(F, F).

Since one can compute aut(F) for a graph F on nF vertices in time 2O(
√
nF lognF) [5]1, which

is subexponential in nF , this proposition allows us to focus on computing the value of inj(F,G).

3 Relating Counting Subgraphs to Counting Homomorphisms

We first give a formula expressing the number of injective homomorphisms from F to G in terms
of the number of graphs homomorphisms from F to G, using the principle of inclusion-exclusion.

Theorem 1. Let F and G be two graphs with |V (G)| = |V (F)|. Then

inj(F,G) =
∑

W⊆V (G)

(−1)|W | hom(F,G \W),

and this is also equal to
∑

W ′⊆V (G)(−1)|V |−|W
′| hom(F,G[W ′]).

Proof. We only prove the first part, the last claim is easily obtained by a change of variable W
to W ′ = V \W . To prove the theorem, we first show that if there is an injective homomorphism
f from F to G, then its contribution to the sum is exactly one. Notice that since |V (G)| =
|V (F)|, an injective homomorphism only contributes when W = ∅. From this we conclude that
injective homomorphisms are counted only once in the right hand side. Since we are counting
homomorphisms, we also count maps which are not injective in the right hand side sum. Next
we show that if a map h is not an injective homomorphism, then its total contribution to the
sum is zero, which will conclude the proof of the theorem. Observe that since h is not an
injective homomorphism and |V (F)| = |V (G)|, it misses some vertices of V (G). Let Ṽ = im(h)
be the image of h in V (G) and X = V (G)\ Ṽ 6= ∅. We now observe that h is counted only when
we are counting homomorphisms from F to G \W such that W ⊆ X. The total contribution
of h in the sum, taking into account the signs, is

|X|∑
i=0

(
|X|
i

)
(−1)i = (1− 1)|X| = 0.

1In fact, for a given graph F , Babai, Kantor, and Lukssolve [5] solves the harder problem of computing the
automorphism group of F and a set of generators for aut(F). We refer to Section 7 of [7] for further discussion.

6

And the theorem follows.

Let us assume that we can count the number of graph homomorphisms from F to all the
graphs G[W] in time t(n), where |F | ≤ |G| = n and W ⊆ V (G). Then, as a consequence of
Theorem 1, we can compute the value of inj(F,G) in time O(2n · t(n)) when the size of V (F)
and V (G) is n. A natural question arising here is to extend this to the case when the size of
V (F), say nF , is less than n = |V (G)|. The easiest solution will be to enumerate all subsets V ′

of size nF of V (G) and then to compute inj(F,G[V ′]). But this will take time O(
(
n
nF

)
2nF t(n)),

which in the worst case, could be equal to O(3n · t(n)). In the remaining of this section we show
how to extend Theorem 1 to the case when |V (F)| < |G|.
Theorem 2. Let F and G be two graphs with |V (F)| = nF ≤ |V (G)| = n. Then

inj(F,G) =
∑

Y⊆V (G),|Y |≤nF

(−1)nF−|Y |
(
n− |Y |
nF − |Y |

)
hom(F,G[Y]).

Proof. By Theorem 1,

inj(F,G) =
∑

W⊆V (G)

(−1)|V |−|W | hom(F,G[W]). (2)

Now

inj(F,G) =
∑

W⊆V (G),|W |=nF

inj(F,G[W])

by (2)
=

∑
W⊆V (G),|W |=nF

∑
Y⊆W

(−1)|W |−|Y | hom(F,G[Y])


=

∑
W⊆V (G),|W |=nF

∑
Y⊆W

(−1)nF−|Y | hom(F,G[Y])


=

∑
Y⊆V (G),|Y |≤nF

(−1)nF−|Y |
(
n− |Y |
nF − |Y |

)
hom(F,G[Y]).

The last equality follows from the fact that for any subset Y with |Y | ≤ nF , the value of
hom(F,G[Y]) is counted precisely for all those subsets W for which Y ⊆ W and |W | = nF .
On the other hand, for every fixed Y , hom(F,G[Y]) is counted once in the above sum for every
superset W of Y of size nF . The number of such sets W is precisely

(n−|Y |
nF−|Y |

)
. Furthermore, for

all such sets, we have the same sign corresponding to Y , that is, (−1)nF−|Y |. This completes
the proof.

4 Classical Results

In this section we give alternative algorithms for a few classical algorithms through the method
of counting homomorphisms.

4.1 Counting Hamiltonian Cycles – Kohn-Gottlieb-Kohn-Karp Algorithm

Let #Ham(G) denote the number of Hamiltonian cycles in a graph G and let F = Cn be the
cycle of length n, then sub(F,G)=#Ham(G). It is very easy to see that aut(Cn, Cn)= 2n, and
for any graph H, hom(Cn, H) = tr(AnH) =

∑n
i=1 λ

n
i , where AH is the adjacency matrix of H

and λ1, . . . , λn are its eigenvalues (see for example [16]). Using these results and Theorem 1, we
can compute #Ham(G) in time 2nnO(1) and polynomial space.

7

4.2 Chromatic Polynomial – Björklund-Husfeldt-Koivisto Algorithm

A proper k-coloring of a graph G is a function f : V (G) → {1, . . . , k} such that for every
edge uv ∈ E(G), f(u) 6= f(v). A well known polynomial associated with a graph G, is its
Chromatic Polynomial. The rank of the graph G is r(G) = |V (G)| − η(G), where η(G) is
the number of connected components of G. The Chromatic Polynomial of G is defined as
χ(G;x) =

∑
E′⊆E(G)(−1)|E

′|x|V (G)|−r(E′), where r(E′) is equal to the rank of the subgraph of G
with vertex set V (G) and the edge set E′. The polynomial derives its name due to the fact that
for every fixed integer k ≥ 1, χ(G; k) is the number of proper k-colorings of G. Which is also
χ(G; k) = hom(G,Kk), where Kk is a complete graph of size k. (Remark that the chromatic
number of G is the smallest integer k > 0 for which χ(G; k) > 0.) However, to compute the
chromatic polynomial of a graph, we need to change the point of view by doing the following
simple trick.

A k-coloring of a graph G can also be viewed as a partition of the vertex set of the given
graph into k independent sets, that is, a partition (V1, . . . , Vk) of V (G) such that for every
i ∈ {1, . . . , k}, G[Vi] has no edges. For our purpose, we reformulate the problem of coloring
as a problem of partitioning into k cliques in the complement graph. The complement of a
graph G, denoted by G, is the graph with the same vertex set as G, i.e., V (G) = V (G), and
with uv ∈ E(G) if and only if uv /∈ E(G). Then G can be partitioned into k independent sets
if and only if G can be partitioned into k cliques. We model this as a problem of subgraph
isomorphism as follows: we guess the sizes t1, t2, . . . , tk of these cliques, where

∑
i ti = n. Then

G can be partitioned into cliques of sizes t1, t2, . . . , tk respectively if and only if there is a
subgraph isomorphic to F = ∪ki=1Kti in G. Thus as far as we know the correct sizes of cliques,
graph coloring of G is a subgraph isomorphism problem for the complement of G.
To find the right sizes of the cliques, we can try all the possible combinations. Let Pk(n)
be the set of all unordered partitions of an integer n into k parts. For every partition ζ =
(t1, t2, . . . , tk) ∈ Pk(n), let F (ζ) = ∪kiKti . Then

χ(G; k) =
∑

ζ∈Pk(n)

k! · sub(F (ζ), G). (3)

In order to estimate the size of Pk(n), we need a classical result from number theory giving an
upper bound on the number of unordered partitions of n into k parts. Let p(n) be the partition
function which for every n is the number of partitions of n. The asymptotic behavior of p(n)
was given by Hardy and Ramanujan in [29]:

p(n) ∼ eπ
q

2n
3 /4n

√
3, as n→∞. (4)

Furthermore, one can give a polynomial delay enumeration algorithm for partitions of n into k
parts [43]. This brings us to the following algorithm for computing χ(G; k). For every partition
ζ = (t1, t2, . . . , tk) ∈ Pk(n), we want to compute the inner sum in (3). To compute (3), we
have to know the value of sub(F (ζ), G), and to compute this value we use Theorem 1. To
implement Theorem 1, we have to compute the values of aut(F (ζ)), and hom(F (ζ), G \W),
where W ⊆ V (G). The computation of aut(F (ζ)) is easy— the number of automorphisms of
a complete graph on t vertices is t!. If F (ζ) consists of several connected components, then
every automorphism either maps a component (complete graph) into itself, or to a component
of the same size. Let n(x) be the number of components of size x in F (ζ) and let x1, x2, . . . , xp,
p ≤ k, be the sizes of the components in F (ζ). Let us note that xi is not necessarily equal
to ti because it is possible in the partition ζ that for some i 6= j, ti = tj . Then aut(F (ζ)) =∏
x∈{x1,x2,...,xp} n(x)!x!, and this value is computable in polynomial time for each ζ.

8

To compute hom(F (ζ), G\W), we observe that it is sufficient to count homomorphisms from
every component of F (ζ). The following result for a graph F with several connected components
is well known, see e.g. [16].

Proposition 2. If F has connected components F1, . . . , F`, then hom(F,G) =
∏`
i=1 hom(Fi, G).

But every component of F (ζ) is a complete graph, and by Proposition 2, all we need are the
values of hom(Kt, G \W). For every homomorphism f from Kt to G \W), the image of the
complete graph Kt is a clique of size t in G\W . Therefore, hom(Kt, G\W) = T [V (G)\W][t]t!,
where T [V (G) \W][t] is the number of cliques of size t in G \W .

Thus to finish all these computations, we have to find the number of cliques of size t in a
graph. By making use of dynamic programming over vertex subsets W ⊆ V (G), we compute
the numbers T [W][i], which is the number of cliques of size i in G[W]. Dynamic programming
is based on the observation that for i > 0, T [W][i] = T [W \ {v}][i] + T [N(v) ∩W][i − 1] for
some vertex v. By making use of this observation, one can compute the values T [W][i] for all
W ⊆ V (G) and 0 ≤ i ≤ n in time O(2nn2) and by making use of 2n × (n+ 1) space.

Putting all pieces together, we conclude with the following algorithm. We compute all the
values T [W][i], W ⊆ V (G), 0 ≤ i ≤ n, and keep them in a table T of size 2n × (n + 1). As
we have mentioned it already, this table is computable in time 2n · nO(1) and it uses space
2n · (n+ 1). Then we loop through every partition ζ = (t1, t2, . . . , tk) ∈ Pk(n), and compute the
inner sum in (3). Once the table T is computed, the computations of hom(F (ζ), G \W) in (3)
for every W ⊆ V , takes polynomial time. Thus for every partition ζ, it takes time 2n · nO(1) to
compute sub(F (ζ), G). The number of partitions we need to loop is at most 2O(

√
n) and thus

the running time of the algorithm computing chromatic polynomial is 2n+O
√
n. The space used

by the algorithm is 2n · (n+ 1).

4.3 Number of Perfect Matchings in Bipartite Graphs – Ryser’s Formula

Let G be a bipartite graph on an even number of vertices, say n, with V (G) being partitioned
into L and R of the same size. Then Ryser’s Formula [47] says that

PM(G) =
∑
X⊆R

(−1)|X|
∏
u∈L

(∑
v/∈X

1[uv∈E(G)]

)
,

where #PM(G) is the number of perfect matchings in G. The sum
∑

v/∈X 1[uv∈E(G)] counts the
number of neighbors of u not in X. Thus, we can count the number of perfect matchings in
a bipartite graph in time O(2n/2n2). If we take F as n/2 disjoint copies of an edge, then #
PM(G)=sub(F,G). By using Theorem 1, it is easy to obtain an algorithm to compute the value
of # PM(G) in time 2nnO(1). We will use the notion of saturating homomorphism in Section 5.1
to faster compute #PM(G); this in particular means in time O(2n/2n2) for bipartite graphs.

5 New Applications

In this section we give new applications of Theorems 1 and 2 and show their wider applicability.

5.1 Set Saturating Homomorphisms and Ryser’s Formula

In this subsection we give a faster poly-space algorithm for counting perfect matchings in graphs
with large independent sets. To do so, we first generalize the notion of graph homomorphism and
prove a generalization of Theorem 1. Let S be a given subset of V (G), then a homomorphism
f from F to G is called S-saturating if

9

(a) S ⊆ f(V (F)), and

(b) for all v ∈ S, |f−1(v)| = 1.

By S-hom(F,G) we denote the number of S-saturating homomorphisms. Observe that for S = ∅
an S-saturating homomorphism is simply a homomorphism. The following theorem is obtained
similarly as in the proof of Theorem 1.

Theorem 3. Let F and G be two graphs with |V (G)| = |V (F)|, and S ⊆ V (G). Then

inj(F,G) =
∑

W⊆V (G)\S

(−1)|W |S-hom(F,G \W).

We can now prove

Theorem 4. Let G be an n-vertex graph and S ⊆ V (G) be an independent set of G. There is
an algorithm which counts the number of perfect matchings of G in time 2n−|S| · nO(1).

Proof. Let F be a matching of n/2 edges. Then sub(F,G)=#PM(G). By Theorem 3, we have
that

inj(F,G) =
∑

W⊆V (G)\S

(−1)|W | S-hom(F,G \W).

To prove the theorem, we show how to compute the value of S-hom(F,G \ W). Let S =
{v1, . . . , va}, then

S-hom(F,G \W) =
(n

2

a

)
a!

(
a∏
i=1

(
2 · degV (G)\W (vi)

))
·
(
2 · |E(G \ (W ∪ S))|

)n
2
−a
.

To see this, first observe that S is an independent set in G. Hence, every S-saturating homo-
morphism from F to G[V (G) \W] has the property that for every vertex x ∈ S, it maps a
unique edge of F to an edge incident to x. So we first choose a edges from n/2 edges of F , say
{f1, f2, . . . , fa} and then map them to the edges incident to the vertices in S. Having selected
these edges, we can assign them to the vertices in S in a! ways. Fix an edge fi, then it can be
mapped to the edges incident on a vertex, vj ∈ S, in 2 · degV (G)\W (vj) ways. This follows from
the fact that an edge fi can map to any of the degV (G)\W (vj) edges incident to vj in V (G) \W
and each edge can be mapped to other edge in two ways. The remaining n

2 −a edges are mapped
to edges in G \ (W ∪ S). Proposition 2 combined with the fact that an edge can be mapped to
other edge in two ways give the factor of

(
2 · |E(G\ (W ∪S))|

)n
2
−a in the formula. Furthermore,

aut(F) is equal to 2n/2(n/2)!.

It is well known that the chromatic number of a graph is always at most its average degree
(or degeneracy) plus one. Also by Brooks’ theorem, the chromatic number of a graph is at most
the maximum vertex degree, unless the graph is complete or an odd cycle. Thus, by Theorem 4,
we obtain the following result.

Corollary 1. Let G be an n-vertex graph and let δ and ∆ be its average and maximum degrees.
Then #PM(G) is computable in time min{2n−

n
δ+1 , 2n−

n
∆ }·nO(1). In particular, if G is a bipartite

graph, then one can find #PM(G) in time 2n/2 · nO(1).

10

5.2 Subgraph Isomorphism when F has Bounded Treewidth

Here, we give an algorithm for counting subgraphs isomorphic to F in G, when F is given
together with a tree-decomposition of width t. We first mention an algorithm to compute
hom(F,G), when F is a graph of bounded treewidth.

Proposition 3 ([20]). Let F and G be two graphs on nF and n vertices respectively, given
together with a tree-decomposition of width t of F . Then hom(F,G) is computable in time
O(nF · nt+1 min{t, n}) and space O(log nF · nt+1).

Theorem 5. Let F and G be two graphs on nF ≤ n vertices respectively, given together with a
tree-decomposition of width t of F . Then sub(F,G) is computable in time

O(
nF∑
i=0

(
n

i

)
· nF · nt+1 · t)

and space O(log nF · nt+1).

Proof. Observe that aut(F)=inj(F, F). Hence, using Theorem 1 together with Proposition 3
we can compute aut(F) in time O(2nF · nF t+2 · t) and space O(log nF · nF t+1). Now we use
Theorem 2 and Proposition 3 to compute the value of inj(F,G) in time

O(
nF∑
i=0

(
n

i

)
· nF · nt+1 · t)

and space O(log nF ·nt+1). By Proposition 1, we know that sub(F,G)=inj(F,G)/aut(F) which
allows us to conclude the proof of the theorem.

5.3 Bandwidth

Bandwidth is one of the well studied graph layout problems. A layout of a graph G on n
vertices is a map f : V (G) → {1, . . . , n}. In the Bandwidth problem, the objective is to find
a layout function for a given graph G, such that maxuv∈E(G) |f(u)− f(v)| is minimized.

The following lemma formulates the Bandwidth problem as an instance of the Subgraph
Isomorphism problem. By Pn we denote a path on n vertices. For a graph G, the rth power
of the graph is denoted by Gr. This graph is on the same vertex set V (G), but we add an edge
between two distinct vertices u and v if there is a path of length at most r between them in G.
The following result is well known, see e.g. [17].

Proposition 4. Let G be a graph on n vertices. Then G has a layout of bandwidth b if and
only if there is an injective homomorphism from G to P bn.

Using Proposition 4 together with Theorem 5, we obtain the following theorem.

Theorem 6. Given a graph G on n vertices together with a tree decomposition of width t, it
is possible to find the number of optimum bandwidth layouts in time O(2n · nt+2 · t) and space
O(log n · nt+1).

In particular, when G is a tree, then we can compute the number of optimum bandwidth layouts
in time O(2n · n3).

By the result of Alon, Seymour and Thomas [1], every graph on n vertices that does not
contain a graph M as a minor has treewidth at most |V (M)|3/2

√
n.

Theorem 7 (Alon, Seymour, and Thomas [1]). Let h be an integer and let G be a graph with n
vertices and with three-width at least h3/2√n. Then G has the complete graph Kh as a minor.

11

By Theorem 6, we have the following.

Corollary 2. The number of optimum bandwidth layouts of an n-vertex graph which excludes
some fixed graph M as a minor is computable in time 2n+O(

√
n).

Theorem 6 can be used to improve a hybrid algorithm given in [50], which after a polynomial
time test either computes the optimum bandwidth of a graph in time 4n+o(n), or provides
γ(n) log2 n log log n-approximation in polynomial time for any unbounded function γ

Corollary 3. Bandwidth admits an algorithm that given an n-vertex graph G always produces
after a polynomial time test, either a layout achieving the minimum bandwidth in 4n ·nO(1) time,
or an O(log3/2 n)-approximation in polynomial time.

Proof. Feige, Hajiaghayi and Lee [24] gave a polynomial time algorithm which for any graph
of treewidth k finds a tree decomposition of width at most ck

√
log k. We run this algorithm

first and find a tree-decomposition of width ω(G). If ω(G) ≥ n/ log n, then the treewidth of
the graph G is at least n

c(log3/2 n)
and hence the optimum bandwidth of the graph G is at least

n
c(log3/2 n)

. Now we output any layout function f for the input graph G. This gives us a factor

c(log3/2 n) approximation algorithm for the Bandwidth problem. Else, ω(G) < n/ log n and
now we use Theorem 6 to find the number of optimum bandwidth layouts of graph G in time
4n · nO(1).

5.4 Degree Constrained Spanning Tree Problem

Hamiltonian Path is one of the earliest known problems for which an exact algorithm with
time complexity 2nnO(1) was known. This problem can also be seen as a special case of finding
a spanning tree with certain degree constrains on the vertices. More precisely, the Degree
Constrained Spanning Tree (DCST) problem is defined as follows: Given a connected
undirected graph G and a vector of size n, â = (a1, a2, · · · , an), find a spanning tree T of G (if
one exists), such that there is a bijective mapping g : V (G)→ {a1, a2, . . . , an} with the property
that degT (v) = g(v). A variation of DCST called Modified Degree Constrained Spanning
Tree (MDCST) is defined by replacing the condition of degT (v) = g(v) with degT (v) ≤ g(v)
in DCST.

Hamiltonian Path is an instance of DSCT problem with the vector (1, 2, · · · , 2, 1). Other
well known problems which can be formulated as an instance of either DCST or MDCST include
Full Degree Spanning Tree (a spanning tree which maximizes the number of vertices having
the same degree in the graph and the tree) [35] and Minimum Degree Spanning Tree (a
spanning tree for which the maximum degree is minimized) [26, 27] problems. To solve DCST
and MDCST problems we need the following classical result of Otter from 1948 [45].

Proposition 5 (Otter [45]). The number of unlabelled trees on n vertices T (n) ∼ Cαnn−5/2 as
n→∞, where C = 0.53495... and α = 2.95576....

Moreover, by the result of Beyer and Hedetniemi [8], it is possible to enumerate all non-
isomorphic (unlabelled) trees in time O(T (n)).

Theorem 8 (Beyer and Hedetniemi [8]). There is a total ordering on the set of (unlabeled)
rooted trees of size n and an algorithm to generate all the (unlabeled) rooted trees of size n by
starting from the first element in the order and by following the ordering such that in addition
the average time per step is bounded by a constant independent of n. As a consequence, it is
possible to generate all the rooted trees of size n in time O(T (n)).

We can now state the main result of this section.

12

Theorem 9. Let G be a graph on n vertices and â = (a1, . . . , an) be a vector of length n. Then
we can count the number of feasible solutions to DCST and MDCST in time O(5.912n).

Proof. We start with an algorithm to find a feasible solution to DCST (or MDCST) problem
on a graph G on n vertices.

Step 1: Enumerate all unordered trees T on n vertices and for the given tree T proceed as
follows;

Step 2: Check whether T is feasible with respect to the vector â.

Step 3: Count the number of subgraphs of G isomorphic to T .

Step 4: Output the maximum value of sub(T,G) taken over all trees T .

The first step of the algorithm is done using the result of Beyer and Hedetniemi [8] (Proposi-
tion 8), which gives an algorithm to enumerate all non-isomorphic (unlabelled) trees in time
T (n)nO(1). By Proposition 5, we know that the number of unordered trees enumerated in Step 1
is at most 2.9558n. Checking for the feasibility can be done by writing the degree sequence of
T and the vector â in increasing order and checking whether the corresponding vectors are
equal or not. Finally, the last step of the algorithm can be done using Theorem 5 in time
O(2nn3) and space polynomial in n. Hence the running time of the algorithm is bounded by
O(2.9558n · 2nn3) = O(5.912n). With some book keeping we can count the number of feasible
solutions to DCST or MDCST in the same time. This immediately give us the theorem.

We solve the Minimum Degree Spanning Tree problem by finding the smallest 2 ≤ i ≤
n− 1 for which MDCST problem returns yes with â = (i, i, · · · , i) resulting in the following.

Corollary 4. Minimum Degree Spanning Tree on a graph on n vertices can be solved in
time O(5.912n).

5.5 Counting Graphs Excluding a Fixed Minor

In this section we apply our results to count planar subgraphs of maximum size or more gen-
erally maximum sized subgraphs that do not contain some fixed graph M as a minor. More
precisely, we consider Maximum Planar Subgraph and Maximum M-minor Free Sub-
graph problems. Here given a graph G the objective is to find a subset E′ ⊆ E(G) of maximum
size such that the graph GE′ on the vertex set V (G) and the edge set E′ is planar and M -minor
free respectively.

A näıve algorithm for the above problems is to enumerate all edge subsets of the given graph,
for each subset test whether the subgraph induced by the edge set has the desired properties
and output the feasible subgraph with the maximum number of edges. For a graph G on n
vertices and m edges this algorithm will take 2m · nO(1) time. Let us remark that even for the
decision version of these problems, no vertex exponential (i.e. cnnO(1)) time algorithms were
known. The basic ideas used here are similar to the ones used for trees, namely to prove that
all unlabeled graphs on n vertices in the considered class can be enumerated in time O(cn) for
some constant c, and then for each element of the enumerated class, applying Theorem 5 to
count the number of subgraphs of G isomorphic to it.

Let M be a fixed graph. Norine, Seymour, Thomas, and Wollan [44] proved that the
number of labelled n-vertex graphs of size n in a family of graphs excluding M as a minor is at
most n!cn for some constant c (depending on M). We prove a more general result here, namely
that the number of unlabelled M -minor-free n-vertex graphs is at most cn for some constant
c depending only on M . Let us remark that since the number of labelings is at most n!, our
result immediately yields the main theorem from [44].

13

Theorem 10. Let G be a family of unlabelled n-vertex graphs that do not contain some fixed
graph M as a minor. Then there exists a constant cM such that the number of non-isomorphic
graphs in G is at most cnM . Moreover, the elements of G can be enumerated in time O(cnM).

We prove the theorem by using results about geometric representation of minor-free graphs.
Book embedding is a generalization of planar embedding to non planar surfaces in the form of
a book, a collection of pages (half planes) joined together at the spine of the book (the shared
boundary of all the half planes). The spine is identified with the real line and the vertices of the
graph are embedded on the spine on integers 1 to n. The edges are distributed on the pages, so
that edges residing on the same page do not intersect (forms a planar embedding of a subgraph
of G). The minimum number of pages in which a graph can be embedded is its page-number.
Malitz proved in [41] that any graph of genus g has page-number O(

√
g). This result has been

extended to minor free classes of graph by Blankenship and Oporowski [13].

Theorem 11 (Blankenship and Oporowski [13]). Let M be a fixed graph and C be the class of
graphs excluding M as a minor. Then there is a constant h = h(M) such that the page-number
of every graph in C is at most h.

Using these results, we can now present the proof of Theorem 10.

Proof of Theorem 10. We prove the following claim by induction on the number of pages. The
number of unlabelled n-vertex graphs that can be embedded in p pages is at most 32pn. For
p = 0, i.e., when graphs have no edges, the claim follows trivially. Let us assume that the claim
holds for some p ≥ 0. Every graph embeddable into p + 1 pages can be formed from a graph
with page-number p by adding one more page. Thus, the number of graphs with page-number
p + 1 is at most the number of graphs that can be embedded into one page times the number
of graphs of page-number at most p. Hence, it will be enough to obtain an upper bound on
the number of graphs which can be embedded on one page. It is easy to see that each of these
graphs can be obtained by the following procedure:

1. Take a parenthesis string consisting of k ≤ n pairs (,). Note that k here corresponds to
the number of edges of the graph embedded on one page. The total number of parenthesis
strings is the Catalan number of order k which is bounded by 4k ≤ 4n.

2. For each parenthesis string, let I1, J1, I2, J2, . . . , Il, Jl be the intervals formed by consec-
utive half-parenthesis of the same kind. More precisely, I1 is the first interval of all the
half-parenthesis of the form (, J1 is the first interval of all the half-parenthesis of the form
) which come after I1, I2 is the interval of all the half-parenthesis of the form (which
come after J1, and so on. Partition each interval Is and Js into (potentially) smaller
subintervals Its and Jus . The total number of ways the partitioning is done can be bounded
by the product of the number of ways a given interval Is (resp. Js) is partitioned, and
this is bounded by 2

P
s |Is| × 2

P
s |Js| = 4k ≤ 4n.

3. Form all the pairs (Parenthesis String, Partition) consisting of a parenthesis system of Step
1 and a partition of the intervals of Step 2. The total number of those pairs is at most
4n × 4n = 16n. For each pair (S, P) consisting of a parenthesis string and a partitioning,
form a graph G(S, T) as follows: first from S form a graph Γ consisting of k different
edges on the vertex set 1, . . . , 2k respecting the parenthesis string. Namely, for a pair
of parenthesis (,), if (appears on the i-th place and) appears on the j-th place in the
string (evidently i ≤ j), then i is connected to j. Now identify all the vertices which are
within the same interval of the partitioning P . More precisely form the graph Γ/P where
each interval Its is contracted to one vertex (similarly each interval Jus is contracted to one
vertex). Note that the vertices of G(S, T) have a natural total ordering induced by the
ordering of natural numbers 1, . . . , 2k.

14

4. Let G(S, T) be the graph obtained from Step 3 for a pair (S, T). If the number of vertices
of G(S, T), denoted by nS,T , is not larger than n, then choose nS,T numbers from 1, . . . , n
and identify the vertices of G(S, T) in an order preserving way with these numbers. For
each sequence I ⊂ {1, . . . , n}, one obtains in this way a graph G(S, T, I) embedded in one
page. Note that there are ≤ 2n ways to choose a subset I of {1, . . . , n}

It follows from the above description of the graphs which can be embedded in one page that
the total number of these graphs is at most 4n × 4n × 2n = 32n. By induction assumption, the
number of graphs embeddable in p pages is at most 32pn and the claim follows.

By Theorem 11, all graphs from G have page-number bounded by a constant hM depending
only on M . Thus, the total number of unlabeled graphs of the class G on n vertices is bounded
by 32hMn = cnM .

Finally, let us remark that an algorithm enumerating all the graphs of size n from G , and
running in time O(cnM), can be easily constructed following the steps of the proof. We enumerate
all graphs with page-number at most hM and for each graph check if it contains M as a minor.
By the seminal work of Robertson-Seymour [46], this last step can be done in polynomial time,
namely, testing if a graph G has a given graph M as minor can be done in polynomial time.

For simpler classes of graphs, such as planar graphs, one can obtain faster algorithms. For
planar graphs we do not need to use heavy Robertson-Seymour machinery to check if a given
graph is planar. There is a linear time algorithm for checking if the input graph is planar [32].
Also to bound the number of non-isomorphic planar graphs, we can use the following result
from the theory of succinct data structures.

Proposition 6 (Bonichon et al. [15]). Every connected planar graph with n vertices and m
edges can be encoded in linear time with at most 4.91n+ o(n) bits or 2.82m+ o(m) bits.

Combining our Theorem 10 and Proposition 6, with what we proved in Theorem 5 and the
Alon, Seymour, and Thomas’ result2, Theorem 7, we obtain the main result of this section.

Theorem 12. Given a graph G on n vertices the counting version of the Maximum M-minor
Free Subgraph problem can be solved in time O(cn) = 2O(n) for some constant c = cM .
In particular, for the counting version of Maximum Planar Subgraph we can obtain an
algorithm running in time 24.91n+o(n). All these algorithms use nO(

√
n) space.

5.6 H-Packing and some of its Variants

Let H and G be two graph classes. By H-subgraph of G we mean any subgraph of G that belongs
to H. Given a graph G ∈ G, the Covering (or Hitting) problem asks for finding a subset W
of V (G) of minimum size which covers all the H-subgraphs of G. Thus for any H-subgraph H
of G, W ∩ V (H) 6= ∅.

On the other hand the Packing problem asks for finding a maximum number of vertex
disjoint copies of H-subgraphs in G. In other words, the packing number of G with respect to
the class H is defined as

packH(G) = max {k | ∃ a partitionV1, · · · , Vk of V (G) such that
∀i ∈ {1, · · · , k}, ∃H∈HH ⊆ G[Vi]}.

2Note that this theorem in particular says that the treewidth of an n-vertex graph excluding a fixed graph as
a minor is O(

√
n)

15

Let M be a fixed graph. In this section we show that if H is a graph class excluding M as a
minor (that is no H ∈ H contains M as a minor), then there exists a constant c depending only
on M such that it is possible to compute the value of packH(G) in time cnnO(1) and space
nO(
√
n) for any graph G on n vertices.

Theorem 13. Let G be a graph on n vertices, M be a fixed graph, and H be a subclass of
M -minor-free graphs such that testing if a graph H ∈ H can be performed in time |V (H)|O(1).
Then the value of packH(G) can be computed in time cnnO(1) = 2O(n) and space nO(

√
n), where

c is a constant depending only on M .

Proof. Given a graph class H and the input graph G, to compute the value of packH(G), we
proceed as follows:

(i) For every pair (l, p), 0 ≤ l ≤ p ≤ n, proceed as follows.

(ii) Enumerate the unordered partitions of p into l parts.

(iii) For a fixed partition ζ = (p1, p2, . . . , pl), enumerate all the elements (H1, . . . ,Hl) of the
product Hp1 ×Hp2 × · · ·Hpl , where Hpi is the set of all elements of H of size pi;

(iv) Let F be the disjoint union of H1, . . . ,Hl. Compute sub(F,G).

(v) Return the maximum l for which there exists a p such that in Step (iv) the value of
sub(F,G) is non zero.

The correctness of the algorithm is easy to see. To see the time complexity, observe that
the time taken in Step (i) is bounded by n2 and Step (ii) takes 2O(

√
n) using the asymptotic

formula 4. Step (iii) of the algorithm depends of the size of HP . Hence if the number of graphs
on x vertices in H is bounded by dx, for d a constant, then |HP | ≤ dp. Since H is a graph class
excluding a fixed graph M as a minor, by Theorem 10 there exists a constant cM such that
|Hx| ≤ cxM for all x ∈ N. We enumerate all M -minor free graphs by making use of Theorem 10,
and for each graph we check in polynomial time if it belongs to H. This estimates the time
taken in this enumeration step of the algorithm. The Step (iv) of the algorithm can be done in
time 2n+O(

√
n) using Theorem 5. Choosing c = 2cM completes the theorem.

In what follows we give a few corollaries of Theorem 13 when H is some specific graph
class. Let Hc = {Cq | simple cycle of length q, q ∈ N, q ≥ 3}. It is easy to see that for a simple
undirected graph G, the value of packHc(G) is equal to the maximum number of vertex disjoint
cycles in G. For every fixed partition ζ = (p1, . . . , pl) of p into l integers with

∑l
i=1 pi = p and

pi ≥ 3 we have |HcP | = 1. In this case Step (iv) of the algorithm takes O(2nn5) time by
Theorem 5. Similarly if we replace Hc with Ho, which contains all odd cycles of length at least
3, we get the problem of computing the maximum number of vertex disjoint odd cycles in G.
If we want to find the maximum number of vertex disjoint triangles or the maximum number
of vertex disjoint cycles of fixed length l, then we do not need the partition based enumeration.
In this case we just guess the number of copies of the l-length cycle in the input graph. The
problem of finding the maximum number of vertex disjoint cycles of length l is called Maximum
l-Cycle Packing. The other problems corresponding to finding maximum number of vertex
disjoint cycles or finding the maximum number of odd cycles are similarly defined. This brings
us to the following corollary.

Corollary 5. Given a graph G on n vertices, Maximum Vertex Disjoint Cycles and
Maximum Odd Sized Vertex Disjoint Cycles problems can be solved in time 2n+O(

√
n),

whereas Maximum l-Cycle Packing problem can be solved in time O(n6 · 2n). All these
algorithms take polynomial space.

16

6 Poly-space Color Coding

In this section we show how the ideas of counting homomorphisms and inclusion-exclusion
combined with Color Coding technique of Alon, Yuster, and Zwick provide polynomial space
parameterized algorithms.

6.1 Deterministic Algorithm

Let c : V (G)→ {1, 2, . . . , k} be a coloring (not necessarily proper) of the vertex set of a graph G
in k colors. Thus Vi = c−1(i) is not necessarily an independent set. For a graph F on k vertices,
we say that an injective homomorphism f from F to G is colorful if each vertex of the image
of F is colored by a distinct color. We denote the number of colorful injective homomorphisms
from a graph F to a colored graph G by col-inj(F,G). Let us remark that the number of colorful
copies of F in G is equal to col-inj(F,G)/aut(F, F). Let G∗ be the graph obtained from G by
deleting the mono-chromatic edges, that is, by turning each color class Vi into an independent
set. The following simple relation between the number of colorful copies of F in G and in G∗

follows directly from the definition of colorful homomorphisms.

Lemma 1. Let c : V (G)→ {1, 2, . . . , k} be a coloring of G. Then col-inj(F,G) = col-inj(F,G∗).

The following theorem is the main reason why the dynamic programming algorithm in the
Color Coding technique of Alon, Yuster, and Zwick can be replaced by a polynomial space
algorithm.

Theorem 14. Let c : V (G)→ {1, 2, . . . , k} be a coloring of G and Vi = c−1(i). Then

col-inj(F,G) = col-inj(F,G∗) =
∑

I⊆{1,2,...,k}

(−1)|I|hom(F,G∗ \ ∪i∈IVi)

=
∑

I⊆{1,2,...,k}

(−1)k−|I|hom(F,G∗[∪i∈IVi]).

Proof. To prove the theorem, we first show that if there is a colorful injective homomorphism
f from F to G, then its contribution to the sum is exactly one. Notice that since |V (F)| = k,
all colorful injective homomorphisms contribute only when I = ∅. From this we conclude that
colorful injective homomorphisms are counted only once in the right hand side.

Next we show that if a map h is not a colorful injective homomorphism, then its total
contribution to the sum is zero, which will conclude the proof of the theorem. Let χ(h(F))
be the set of colors on the vertices of h(F). Observe that since h is not a colorful injective
homomorphism, it misses vertices from some color classes. Hence X = {1, . . . , k} \ χ(h(F)) is
non-empty. We now observe that h is counted only when we are counting homomorphisms from
V (F) to G∗ \ ∪i∈I′Vi such that I ′ ⊆ X. The total contribution of h in the sum, taking into
account the signs, is

|X|∑
i=0

(
|X|
i

)
(−1)i = (1− 1)|X| = 0.

Thus, we have shown that if h is not a colorful injective homomorphism then its contribution
to the sum is zero. The second equality could be proven similarly, and we omit its proof.

By a classical result of Arnborg, Corneil and Proskurowski [3], a tree-decomposition of a
k-vertex graph F of width t, if any, can be computed in O(kt+2) time. When this running time
is dominated by other steps of the algorithm considered, we will just consider this decomposition
as given. Therefore, a combination of Proposition 3 and Theorem 14 yields the following result.

17

Corollary 6. Let F be a k-vertex graph of treewidth t. Then for any coloring c : V (G) →
{1, 2, . . . , k} of an n-vertex graph G, the value of col-inj(F,G) is computable in time O(2k · k ·
t · nt+1) and space O(log k · nt+1).

Theorem 15. Let F be a k-vertex graph of treewidth t and let G be an n-vertex graph. A
subgraph of G isomorphic to F (if one exists) can be found in either O((2e)k · k · t · nt+1)
expected time and O(log k ·nt+1) space or deterministically in time O((2e)k+o(k) ·k · t ·nt+1) and
space O(log k · nt+1). Here, e is the base of natural logarithm.

Proof. The proof of this theorem follows along the lines of Alon et al. [2]. We color the
vertices of V (G) uniformly at random from the set {1, . . . , k}. Then the probability that a
copy of F in V (G), if there is one, has become colorful is at least k!/kk > e−k. Given this
random coloring we can compute the value of col-inj(F,G) in time O(2kknt+1 min{k, t}) using
Corollary 6. If col-inj(F,G) > 0, we know that there exists a subgraph of G isomorphic to F .
Hence the expected running time to find a subgraph of G isomorphic to F (if one exists) is
O((2e)k · k · t · nt+1).

To obtain the deterministic algorithm we need to replace the first step of the algorithm where
we color the vertices of V (G) uniformly at random from the set {1, . . . , k} to a deterministic one.
This is done by making use of (n, k, k)-perfect hash family. A (n, k, k)-perfect hash family, H, is
a set of functions from {1, . . . , n} to {1, . . . , k} such that for every subset S ⊆ {1, . . . , n} of size k
there exists a function f ∈ H such that f is injective on S. That is, for all i, j ∈ S, f(i) 6= f(j).
There exists a construction of (n, k, k)-perfect hash family of size O(ek · kO(log k) · log n) and one
can produce this family in time linear in the output size [42]. Using (n, k, k)-perfect hash family
of size O(ek · kO(log k) · log n) rather than a random coloring, we get the desired deterministic
algorithm. To see this it is enough to observe that if there is a subset S ⊆ V (G) such that G[S]
contains F as a subgraph, then there exists a coloring f ∈ H such that the vertices of S are
distinctly colored. So in our enumeration of colorings from H we will encounter the desired f .
Hence for the given f , when we compute the value of col-inj(F,G) using Corollary 6, we know
that col-inj(F,G) > 0. This concludes the proof.

6.2 Improved Randomized Version of Color-Coding

The first step of algorithms based on color-coding is to color the vertices of V (G) uniformly at
random from the set {1, . . . , k}. Then the probability that a copy of F in V (G), if there is one,
has become colorful is at least k!/kk > e−k. It is known that we can increase the probability
of a copy of F being colorful in G by using more colors than k. Hüffner et al. [33] have shown
that the probability that a copy of F in V (G), if there is one, has become colorful is at least
O(1.752−k) if we randomly color the vertices of V (G) from the set {1, . . . , 1.3k}.

Theorem 16. Let c : V (G)→ {1, 2, . . . , l} be a coloring of G, k ≤ l and Vi = c−1(i). Then

col-inj(F,G) = col-inj(F,G∗) =
∑

I⊆{1,2,...,l},|I|≤k

(−1)k−|I|
(
l − |I|
k − |I|

)
hom(F,G∗[∪i∈IVi]).

Proof. We use the following formulation of Theorem 14 for our results: Let Let c : V (G) →
{1, 2, . . . , k} be a coloring of G and Vi = c−1(i), then

col-inj(F,G) = col-inj(F,G∗) =
∑

I⊆{1,2,...,k}

(−1)k−|I|hom(F,G∗[∪i∈IVi]). (5)

18

To prove our theorem, observe that:

col-inj(F,G) = col-inj(F,G∗)

=
∑

I′⊆{1,...,l},|I′|=k

col-inj(F,G∗[∪i∈I′Vi])

by (5)
=

∑
I′⊆{1,...,l},|I′|=k

∑
I⊆I′

(−1)k−|I|hom(F,G∗[∪i∈IVi])


=

∑
I⊆{1,...,l},|I|≤k

(−1)k−|I|
(
l − |I|
k − |I|

)
hom(F,G∗[∪i∈IVi]).

The last inequality follows from the fact that for any subset I, |I| ≤ k, the value of hom(F,G∗[∪i∈IVi])
is counted precisely for all those subsets I ′ for which I ⊆ I ′ and |I ′| = k. After fixing I we have
{1, . . . , l} \ I elements left and hence every subset of size k − |I| from {1, . . . , l} \ I gives the
desired I. The number of such I is precisely

(l−|I|
k−|I|

)
. Furthermore, for all such sets we have the

same sign corresponding to I, that is, (−1)k−|I|. This completes the proof.

Using Theorem 16 we can obtain the following result.

Corollary 7. Let F be a k-vertex graph of treewidth t. Then for any coloring c : V (G) →
{1, 2, . . . , l} of an n-vertex graph G, the value of col-inj(F,G) is computable in time

O

((
k∑
i=0

(
l

i

))
· k · t · nt+1

)

and space O(log k · nt+1).

Theorem 17. Let F be a k-vertex graph of treewidth t and let G be an n-vertex graph. A
subgraph of G isomorphic to F (if one exists) can be found in O(4.32k ·k · t ·nt+1) expected time
using O(log k · nt+1) space.

Proof. We color the vertices of V (G) uniformly at random from the set {1, . . . , 1.3k}. Then the
probability that a copy of F in V (G), if there is one, has been has become colorful is at least
O(1.752−k) [33]. Given this random coloring we can compute the value of col-inj(F,G) in time
O(21.3kknt+1 min{k, t}) using Corollary 7. If col-inj(F,G) > 0, then we know that there exists
a subgraph of G isomorphic to F . Hence the expected running time to find a subgraph of G
isomorphic to F (if one exists) is

O(21.3k · 1.752k · k · t · nt+1) = O(4.32k · k · t · nt+1).

This concludes the proof of the theorem.

7 Conclusion and Discussions

In this paper we introduced an approach for counting subgraphs in a graph via counting graph
homomorphisms in the realm of exact and parameterized algorithms. This approach yields vari-
ous new algorithms for many basic problems such as counting the number of perfect matchings,
optimum bandwidth layouts, degree constrained spanning trees, maximum planar subgraphs
beside others. On the other hand it also unified several well-known results in exact algorithms
such as counting coloring and Hamiltonian cycles in general graphs and perfect matchings in

19

bipartite graphs. Let us remark that most of our results can be easily extended to weighted
directed graphs. We believe that our method is generic and will find more applications.

The most important question which remains unanswered is: Can sub(F,G) be computed in
2O(n) time? In particular, we do not know the answer to this question even for the very special
case, when the maximum degree of F is 3.

Recently, Wahlström [51] proved that if the clique-width of a graph F is at most c, then
hom(F,G) can be computed in time ((2c+ 1)nF + 2cn) · nO(1), where nF and n is the number
of vertices in F and G, correspondingly. By the results of this paper, it implies that sub(F,G)
can be computed in time 2O(n), when the clique-width of F is constant. It is interesting to note
that all the natural classes of graphs F we know that have sub(F,G) computable in time 2O(n)

for F ∈ F , are either graphs of constant clique-width or of sublinear treewidth.

Acknowledgement Many thanks to László Lovász for answering our questions on graph
homomorphisms.

References

[1] N. Alon, P. Seymour, and R. Thomas, A separator theorem for nonplanar graphs, J.
Amer. Math. Soc., 3 (1990), pp. 801–808.

[2] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. ACM, 42 (1995), pp. 844–856.

[3] S. Arnborg, D. G. Corneil, and A. Proskurowski , Complexity of finding embed-
dings in a k-tree, SIAM J. Algebraic Discrete Methods, 8 (1987), 277–284.

[4] L. Babai, Moderately exponential bound for graph isomorphism, in FCT, vol. 117 of
LNCS, 1981, pp. 34–50.

[5] L. Babai, W. M. Kantor, and E. M. Luks, Computational complexity and the clas-
sification of finite simple groups, in FOCS, 1983, pp. 162–171.

[6] E. T. Bax, Algorithms to count paths and cycles, Inform. Process. Lett., 52 (1994),
pp. 249–252.

[7] R. Beals, R. Chang, W. I. Gasarch, and J. Torán, On finding the number of graph
automorphisms, Chicago J. Theor. Comput. Sci. (1999).

[8] T. Beyer and S. M. Hedetniemi, Constant time generation of rooted trees, SIAM J.
Comp., 9 (1980), pp. 706–712.

[9] O. Bernardi, M. Noy, and D. Welsh, On the growth rate of minor-closed classes of
graphs, http://arxiv.org/abs/0710.2995.

[10] A. Björklund and T. Husfeldt, Exact algorithms for exact satisfiability and number
of perfect matchings, Algorithmica, 52(2) (2008), pp. 226-249.

[11] , Inclusion-exclusion algorithms for counting set partitions, in FOCS, 2006, pp. 575–
582.

[12] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto, Fourier meets möbius:
fast subset convolution, in STOC, 2007, pp. 67–74.

[13] R. Blankenship and B. Oporowski, Book embeddings of graphs and minor-closed
classes, in Proceedings of the 32nd Southeastern International Conference on Combina-
torics, Graph Theory and Computing.

20

[14] H. L. Bodlaender, M. R. Fellows, and M. T. Hallett, Beyond np-completeness
for problems of bounded width (extended abstract): hardness for the W hierarchy, in STOC,
1994, pp. 449–458.

[15] N. Bonichon, C. Gavoille, N. Hanusse, D. Poulalhon, and G. Schaeffer,
Planar graphs, via well-orderly maps and trees, Graphs and Combinatorics, 22 (2006),
pp. 185–202.

[16] C. Borgs, J. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi, Counting
graph homomorphisms, in Topics in discrete mathematics, vol. 26 of Algorithms Combin.,
Springer, Berlin, 2006, pp. 315–371.

[17] P. Z. Chinn, J. Chvatalova, A .K. Dewdney, and N. E. Gibbs, The bandwidth
problem for graphs and matrices—a survey, J. Graph Theory 6(1982), pp. 223–254.

[18] M. Cygan and M. Pilipczuk, Exact and approximate bandwidth, in ICALP, vol. 5555
of LNCS, 2009, pp. 304–315.

[19] V. Dalmau and P. Jonsson, The complexity of counting homomorphisms seen from the
other side, Theoret. Comput. Sci., 329 (2004), pp. 315–323.

[20] J. D́ıaz, M. J. Serna, and D. M. Thilikos, Counting h-colorings of partial k-trees,
Theor. Comput. Sci., 281 (2002), pp. 291–309.

[21] J. Dunagan and S. Vempala, On Euclidean Embeddings and Bandwidth Minimization,
Proceedings of RANDOM-APPROX 2001, pp. 229–240.

[22] M. Dyer and C. Greenhill, The complexity of counting graph homomorphisms, Ran-
dom Structures Algorithms, 17 (2000), pp. 260–289.

[23] U. Feige, Coping with the NP-hardness of the graph bandwidth problem, in SWAT,
vol. 1851 of LNCS, 2000, pp. 10–19.

[24] U. Feige, M. T. Hajiaghayi, and J. R. Lee, Improved approximation algorithms for
minimum-weight vertex separators, in STOC, 2005, pp. 563–572.

[25] U. Feige and K. Talwar, Approximating the bandwidth of caterpillars, in APPROX-
RANDOM, vol. 3624 of LNCS, 2005, pp. 62–73.

[26] M. Fürer and B. Raghavachari, Approximating the minimum-degree steiner tree to
within one of optimal, J. Algorithms, 17 (1994), pp. 409–423.

[27] M. X. Goemans, Minimum bounded degree spanning trees, in FOCS, 2006, pp. 273–282.

[28] M. Grohe, The complexity of homomorphism and constraint satisfaction problems seen
from the other side, J. ACM, 54 (2007), pp. Art. 1, 24 pp. (electronic).

[29] G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc.
London Math. Soc., 17 (1918), pp. 75–115.

[30] P. Hell and J. Nešetřil, On the complexity of H-coloring, J. Combin. Theory Ser. B,
48 (1990), pp. 92–110.

[31] , Graphs and homomorphisms, vol. 28 of Oxford Lecture Series in Mathematics and
its Applications, Oxford University Press, Oxford, 2004.

21

[32] J. E. Hopcroft and R. E. Tarjan, Efficient planarity testing, J. ACM, 21 (1974)
pp. 549-568.

[33] F. Hüffner, S. Wernicke, and T. Zichner, Algorithm engineering for color-coding
with applications to signaling pathway detection, Algorithmica, 52(2) (2008), pp. 114–132.

[34] R. M. Karp, Dynamic programming meets the principle of inclusion and exclusion, Oper.
Res. Lett., 1 (1982), pp. 49–51.

[35] S. Khuller, R. Bhatia, and R. Pless, On local search and placement of meters in
networks, SIAM J. Comp., 32 (2003), pp. 470–487.

[36] S. Kohn, A. Gottlieb, and M. Kohn, A generating function approach to the traveling
salesman problem, in Proceedings of the annual ACM conference, 1977, pp. 294–300.

[37] M. Koivisto, An O(2n) algorithm for graph coloring and other partitioning problems via
inclusion-exclusion, in FOCS, 2006, pp. 583–590.

[38] , Partitioning into sets of bounded cardinality, in IWPEC 2009, vol. 5917 of LNCS,
2009, pp. 258–263.

[39] J. R. Lee, Volume Distortion for subsets of Euclidean Spaces, Discrete Comput. Geom.
41(4) (2009), pp. 590–615.

[40] L. Lovász, Operations with structures, Acta Math. Hung., 18 (1967), pp. 321–328.

[41] S. M. Malitz, Genus g graphs have pagenumber O(
√
g), J. Algorithms, 17 (1994), pp. 85–

109.

[42] M. Naor, L. J. Schulman, and A. Srinivasan, Splitters and near-optimal derandom-
ization, in FOCS, 1995, pp. 182–191.

[43] A. Nijenhuis and H. S. Wilf, Combinatorial Algorithms, Academic Press, Inc., 1978.

[44] S. Norine, P. D. Seymour, R. Thomas, and P. Wollan, Proper minor-closed fam-
ilies are small, J. Comb. Theory, Ser. B, 96 (2006), pp. 754–757.

[45] R. Otter, The number of trees, Ann. Math., 49 (1948), pp. 583–599.

[46] N. Robertson and P. D. Seymour, Graph minors I-XX, appearing in J. Combin.
Theory Ser. B since 1984.

[47] H. J. Ryser, Combinatorial mathematics, The Carus Mathematical Monographs, No. 14,
Published by The Mathematical Association of America, 1963.

[48] J. B. Saxe, Dynamic-programming algorithms for recognizing small-bandwidth graphs in
polynomial time, SIAM J. Algebraic Discrete Methods, 1 (1980), pp. 363–369.

[49] L. G. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci., 8
(1979), pp. 189–201.

[50] V. Vassilevska, R. Williams, and S. L. M. Woo, Confronting hardness using a
hybrid approach, in SODA, 2006, pp. 1–10.

[51] M. Wahlström, New Plain-Exponential Time Classes for Graph Homomorphism, in
CSR, 2009, to appear.

22

