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ABSTRACT. In this paper, we prove a variant of the Burger-Brooks transfer principle which,
combined with recent eigenvalue bounds for surfaces, allows to obtain upper bounds on the
eigenvalues of graphs as a function of their genus. More precisely, we show the existence of
a universal constants C' such that the k-th eigenvalue A\;" of the normalized Laplacian of a
graph G of (geometric) genus g on n vertices satisfies

)\ZT(G) < Cdmax(fl] + k)’

where dmax denotes the maximum valence of vertices of the graph. Our result is tight up to
a change in the value of the constant C, and improves recent results of Kelner, Lee, Price
and Teng on bounded genus graphs.

To show that the transfer theorem might be of independent interest, we relate eigenvalues
of the Laplacian on a metric graph to the eigenvalues of its simple graph models, and discuss
an application to the mesh partitioning problem, extending results of Miller-Teng-Thurston-
Vavasis and Spielman-Teng to arbitrary meshes.

1. INTRODUCTION

The spectrum of the Laplacian of a finite graph reflects information about the structural
properties of the graph and has been successfully used in a large variety of applications to
other domains. In particular, the eigenvalues of a bounded degree graph provide information
on the existence of good clusterings of that graph, see [1] for clustering in two classes and
[20, 22| for k-way clusterings, whose optimal quality is shown to relate to the k-th eigenvalue.
In particular, upper bounds on the eigenvalues of a class of graphs directly translate into effi-
cient clustering algorithms with quality guarantees. This motivated a series of work, starting
with Spielman and Teng [27], who gave an O(1/n) bound for the Fiedler value of a bounded
degree planar graph on n vertices, using a suitably centered circle packing representation of
the graph. Kelner extended this result to an O((g + 1)/n) bound for (geometric) genus g
graphs [16]. The argument uses Riemann-Roch theorem to find a circle packing representa-
tion of the graph. Recently, Kelner, Lee, Price and Teng proved an O((g + 1) log(g + 1)%k/n)
upper bound for the k-th eigenvalue [17], using a multicommodity flow problem to suitably
uniformize the graph metric.

The study of the spectrum of a finite graph is in many ways related to the spectral theory
of Riemannian manifolds, and results in geometric analysis have been a source of inspiration
to state and prove corresponding results concerning finite graphs. In particular, eigenvalue
bounds for surfaces have a somewhat parallel history. Hersch [13] first proved an O(1/vol(M))
bound for the Neumann value of the sphere S? equipped with a Riemannian metric. Yang and
Yau [28] then showed that for genus g surfaces an O((g+1)/vol(M)) bound holds, and Li and
Yau improved the latter result by replacing the genus with the finer conformal invariant they
defined [21]. It is interesting to notice that these proofs are quite similar at a high level to
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the ones later used in the graph setting. Conformal uniformization was used in place of circle
packing representations, but the very same topological argument for centering the packing in
the discrete case was used in the manifold case as well. For higher eigenvalues, Korevaar [19]
established an O((g+1)k/vol(M)) for genus g surfaces, and Hassannezhad [15] improved this
to O((g + k)/vol(M)), by combining the two methods of constructing disjoint capacitors of
Grigor’yan, Netrusov and Yau [14], and Colbois and Maerten [8].

While traditionally bounds on graph eigenvalues are used to prove bounds for Riemannian
manifolds [3, 4, 5, 6, 9, 10], it is intriguing to see that the spectral theory of Riemannian
manifolds has not been much used so far to provide information on the spectral properties of
general finite graphs.

Our aim in this paper is to show how eigenvalue bounds for surfaces combined with ba-
sic spectral theory of (singular) surfaces, and a suitable transfer principle, allows to obtain
eigenvalue estimates for graphs in terms of their geometric genus. In this way, we are able
to extend the above mentioned result of [15, 19, 28] for surfaces to the graph setting using
a suitable variant of the Burger-Brooks transfer method, c.f. Theorem 1.2. Our results are
tight and improve the recent results of Kelner, Lee, Price and Teng [17] on bounded genus
graphs. In addition to providing a uniform arguably more conceptual proof of the results
of [17, 16, 27], we hope that our method makes the above mentioned existing similarities
between the methods used in the spectral theory of surfaces and graphs more transparent.

The transfer principle proved in this paper may be of independent interest. In fact, we
shall show it can be used to provide uniform upper and lower bounds on the eigenvalues of
metric graphs in terms of the eigenvalues of their simple graph models. Furthermore, it allows
to generalize to completely arbitrary meshes the mesh partitioning results of Miller, Teng,
Thurston, and Vavasis [24] and Spielman and Teng [27].

1.1. Statement of the main theorem on eigenvalues of bounded genus graphs. Let
G = (V, E) be a finite simple graph, that we assume connected all through the paper. For
two vertices u,v € V, we write u ~ v if the two vertices u and v are connected by an edge
in G. The valence of a vertex v of GG is denoted by dvG, or simply d, if there is no risk of
confusion and the graph G is understood from the context. We denote by dpax the maximum
degree of vertices of the graph, and by n the number of vertices. The geometric genus of G
is by definition the minimum integer g such that G can be embedded with no crossing on the
compact orientable surface of genus g.

Denote by C(G) the vector space of all real valued functions f defined on the set of vertices
of G. The (discrete) Laplacian A and the normalized Laplacian £ of G are defined as follows:
the Laplacian A : C(G) — C(G) is the linear operator which sends a function f € C(G) to

A(f) € C(G) defined by
Vo eV(G), A(f)w)= D flv)—f(u).

Let S be the linear operator on C'(G) whose matrix in the standard basis of C'(G) is diagonal
with entries the valences of the vertices of G, i.e., for any f € C(G)

VoeV(G), S(f)(v) =duf(v).
The normalized Laplacian is the operator S—1/2AS~1/2,

We denote by
)\o(G) =0< )\1(G) < )\Q(G) <o < )\n—l(G)
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the set of eigenvalues of A, which we call the standard spectrum of G, and by
A(G)=0< A (G) <--- < AN(G)

the set of all eigenvalues of the normalized Laplacian £, which we call the normalized spec-
trum. The standard and normalized spectrum of G are easily seen to satisfy the inequalities
dimin AT (G) < A(G) < dmax AL (G) for any k.

In this paper we prove the following theorem.

Theorem 1.1. There exists a universal constant C' such that the eigenvalues of the normalized
Laplacian of any graph G on n vertices satisfy:
dma:c (g + k)

VkEN,  AN(G) <O T

where dymax and g are the mazimum valence and the geometric genus of G, respectively.

The linear dependance in the maximum degree is clearly optimal, as can be seen by con-
sidering star graphs, which have lower bounded Fiedler value. The above result also implies a
similar bound for the eigenvalues of the standard Laplacian, at the expense of an extra diq.
factor. We note that Kelner, Lee, Price and Teng [17] give a similar bound for the standard
spectrum with a linear rather than quadratic dependence in d,,,,. However, their bound has
a gklog(g+1)? dependence instead of our (g + k) dependence. In addition to simplifying and
improving the result of [17] for bounded genus graphs, we note that the dependence in g and
k of our estimate is tight, at least when g is sufficiently high, see Remark 2.6.

Informally, the improvement over [17] means that the asymptotic behavior of graphs’ eigen-
values do not depend on the (geometric) genus of the graph. This fact, which may be seen
as a one-sided discrete form of Weyl’s law for surfaces, is consistent with the intuition that
at a small scale, bounded genus graphs behave like planar graphs. Finally, we note that the
result in [17] also applies to graphs in any fixed proper minor-closed family (where the genus
g is replaced with a parameter h depending on the family), while the stronger bounds of
Theorem 1.1 cannot be extended to minor-closed classes, as we show by explicit examples in
Remark 2.7.

1.2. Two-fold covers and their associated discrete Laplacians. Let M be a measured
topological space, and denote by p the measure on M. A 2-fold cover of M is a finite collection
U = (Uy)yev, for a finite index set V', of open subsets U, of non-zero measure such that almost
every point in M is covered by exactly two subsets. To any 2-fold cover of a measured space
we associate a discrete Laplacian as follows:

We first form a graph G = (V, E) on the set of vertices V' and with edges {u,v} € E for
two vertices w, v such that pu(U, NU,) # 0. We define a weight function w : E — R which to
any edge e = {u,v} of G, associates the weight w(e) = u(U, NU,). The weighted valence d¥
of a vertex v of G is defined by

=Y p(UuNU).

The discrete Laplacian associated to the 2-fold cover U denoted by Ly is the normalized
graph Laplacian associated to the weighted graph (G,w). This is defined from the weighted
Laplacian by normalizing using the weighted valence (as in the previous section). Formally,
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define the weighted Laplacian Ay : C(G) — C(G) by
VeV, Au(f) =Y (fv) = f@))w({u,v}),

u:u~v
for any f € C(G). Let Sy be the diagonal operator with entries the weighted valence d¥ of
vertices v € V, i.e., for any f € C(G),

VeV, Sulf)) = d (o).
_1 _1
Then we let Ly :=5,,° AyS;, . Denote by Ap(Ly) the k-th smallest eigenvalue of Ly.

When (M, ) carries a natural notion of Laplacian, it is possible to relate the eigenvalues
of the Laplacian on M to the eigenvalues of Ly for any 2-fold cover U. More precisely, let the
measured space (M, p) belong to any of the following three classes:

(¢'1) asmooth manifold with a smooth Riemannian metric g, and p the measure associated
to the metric g;

(¢2) a compact smooth surface with a conformal class of smooth Riemannian metrics g,
and p a Radon measure absolutely continuous with respect to p4, c.f. Section 2.1;

(¢3) a metric graph with g the Lebesgue measure.

In any of the above cases, we can define a Laplacian on (M, i) c.f. Section 2.1 and Section 3,
and we denote by A (M, ), or simply \x(M) if there is no risk of confusion, the eigenvalues
for the corresponding Laplacian.

Our transfer principle is stated as follows.

Theorem 1.2. Let (M, u) be a measured space as in (€'1), (€¢2), or (¢'3) above. Assume all
the elements in a 2-fold cover U of M have Neumann value at least . Then for all positive

integers k we have:

el Lyy) < 220

The main difference with the classical versions of the transfer principle [5, 3, 23] is that
we discretize the continuous Laplacian as a weighted normalized graph Laplacian instead of
a combinatorial one, which allows for a closer connection between the two. Our variant here
uses a different notion of graph approximation that involves particular weights. In addition,
the above mentioned results take as input a partition of M, while our theorem is expressed
in terms of two-fold covers, which adds more flexibility.

In order to prove Theorem 1.1, we apply the above theorem in the case where (M, p) is
a measured surface equipped with a conformal class of smooth Riemannian metrics g. This
version seems to be required to get our Theorem 1.1 on eigenvalues of bounded (geometric)
genus graphs.

1.3. Organization of the paper. The necessarily background on Laplacian eigenvalues in
measured surfaces is recalled in Section 2. The proof of Theorem 1.2 for measured surfaces
(Case (¢2) among the above three cases) is given in Section 2. The proof in the two other
cases is similar and is thus omitted. Section 2 contains also the proof of Theorem 1.1. In
Section 3, we apply Theorem 1.2 in the case of metric graphs with Lebesgue measure (¢3)),
to obtain a uniform quantitative complement to a theorem of X. Faber [11] on the spectral
convergence of finite graphs to metric graphs. Moreover, we give in Section 4 an algorithmic
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application of the above theorem to mesh partitioning in numerical analysis, generalizing the
results of Miller-Teng-Thurston-Vavasis [24] and Spielman-Teng [27] to anisotropic meshes.

2. EIGENVALUES OF BOUNDED GENUS GRAPHS

In this section we give the proofs of Theorem 1.2 and Theorem 1.1. We start by recall-
ing the variational approach to study eigenvalue problems for surfaces with measures [18],
which provides a setting to study eigenvalue problems for singular surfaces. This makes the
statement of Theorem 1.2 precise in the case of a measured metric surface.

2.1. Eigenvalues on measured surfaces. Let M be a smooth compact surface, possibly
with boundary, which we suppose equipped with a smooth Riemannian metric g. Denote by g4
the induced volume form on M. Let u be a Radon measure on M which we suppose absolutely
continuous with respect to the measure pg. For a C°°-smooth function f € L*(M, 1), the
Rayleigh quotient Ry, (f, ) is defined by

._ fM Vg f’2dﬂg
RMg(fmu) T fM deM

The eigenvalues of the measured metric surface (M, ;) are defined by the variational
formula:

(1) )\k(MgaM) = AlIlf sup RMg(f’ M)?
L fEAT

where A1 C L?(M,p) varies over subspaces of dimension k + 1 which consist only of
smooth functions on M, and A}, = Agy1 \ {0}. Note that in the case u = pg, we recover
the usual variational characterization of the eigenvalues of the Laplacian Ay associated to the
Riemannian surface Mj.

To see the point of introducing this formalism, assume that the two metrics g and b on
M are conformally equivalent. From the conformal invariance of the Dirichlet integral, we
see that Rar (f,p) = Rag (f, ). In particular, letting p = py, we see that the spectra of
the metric h within the conformal class of Mj coincides with the spectra of measured surface
(Mg, 1) for an appropriate Radon measure p. Now, if b is a metric with conical singularities,
it is a classical fact that M is conformally equivalent to a constant curvature metric g, the
conformal factor being square integrable with respect to the corresponding area form py. Thus
the framework of measured metric surfaces allows in particular to define spectra of surfaces
with conical singularities as the spectra of the measured metric surface (Mg, uy) [18].

Let U be an open subset of M, and denote by U the topological closure of U in M. The Neu-
mann value A(U) of U is defined as the infimum of the Rayleigh ratio [, [Vgf[*dug/ [;; f2du

over all smooth functions f on U which extend continuously to U and satisfy fU fdu =0,

Vof|[2d
AUY = g JulVelPdig of g
fi Jy fdu=0 [y fPdp
2.2. Proof of Theorem 1.2. We suppose M, p1, g, and i, as above, and consider a 2-fold
cover U = (Uy)yey of M. Denote by n the minimum of A\(U,) for v € V. Let G be the
associated weighted graph with vertex set V' and weight matrix Wy, = [w({w,v})]y,», where
w{u,v}) = w(U, NUy,) for u # v. Let Ly be the matrix of the associated normalized graph
Laplacian. We have £y = I — S, 1/ QWMSZ; Y 2, where the matrix Sy, is diagonal with entries
given by the weighted valences of the vertices dy =", ., ., w({u,v}).
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Proof of Theorem 1.2. Let v € V and f any smooth function on M. By restricting f to U,
and substracting the mean over U, we get:

e dng = 2w [ (7= s [ a
o[ 7= gy U, 7

Summing the last inequalities over v € V yields:

2 1 2
@) o [ 9Py 2 20018 =5 ([

where the L? norm [|.||2 is with respect to the measure u. Denote by 1y, the characteristic
function of the open set U,, and let ¢, = u(U,)~"/?1y,. Define ® : L*(M) — C(G), by

(f)(w) = /M fou,

Y

v

on any vertex v of G. We see that the quadratic form in f in the right hand side of Equation (2)
is given by 2[|f][3 — ||®f][3-

Let € > 0, and denote by Aj_; a (k+ 1)-dimensional space of smooth functions on M such
that for any f € Ag+1 \ {0}, we have

S Vo f11Pdug
Jop FPdp

Note that by the variational characterization of the eigenvalues (see e.g. (1) and (6)), such a
space exists. For any f € Aj_,, by inequality (2), we have:

2(1 + €) A (M)

< (14 e)Ap(M).

2

=2 / 1V 12 > 2|1 £112 — || @ 1|2
nJm

That is:

1712.

Let ®* denote the adjoint of the operator ® : L?(M) — C(G). From the variational char-
acterization of the eigenvalues, this implies that the compact self-adjoint operator ®*® on
L?(M) has at least k + 1 eigenvalues greater than or equal to 2(1 — (1+€)A\x(M)/n). We can
assume that this latter quantity is positive, otherwise there is nothing to prove since all the
eigenvalues of the normalized Laplacian are at most 2. Since the non zero eigenvalues of &*®
are the same as the non zero eigenvalues of ®®*, we thus deduce that

3) (2] — %) < W

1 £]13 22(1_w)

To conclude the proof, it suffices to notice that

Uy
[(I)(I)*]u,v = /M DuPy = MN( N
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Because U is a 2-fold cover, the v-th entry of the diagonal matrix Dy, is equal to u(U,). We
thus easily check that 21 — ®®* = £;;. Therefore, inequality (3) gives

M(Lyy) < 2LFOMM)
B n

Since this holds for any € > 0, the theorem follows. O

2.3. Proof of Theorem 1.1. We first give some background about graphs embedded in a
surface, and refer to [25] for more details. We assume that all surfaces are compact, orientable
and without boundary. An embedding of a graph G in a surface M is a drawing of G on M so
that all vertices of G are distinct on M, and every edge of GG form a simple arc on M connecting
its two endpoint vertices. Interior of edges and vertices are assumed to be pairwise disjoint.
A face of and embedding, or simply a face of G if the embedding is clear from the context, is
a connected component of the complementary of G in M.

An embedding is called cellular if every face is homeomorphic to an open disk in R2.

The genus ¢g(G) is the minimum integer g such that G has an embedding in a surface M
of genus g. The following result will allow us to suppose that a graph G with a given genus
9(G) is embedded in a cellular way.

Proposition 2.1 ([25, Proposition 3.4.1)). Every embedding of a connected graph G in a
surface of genus g(G) is cellular.

Suppose from now on that the connected graph G is embedded in a cellular way in a surface
M of genus g, so that every face F' is homeomorphic to an open disk Dy in R2. The boundary
of the face F in M is the image of the boundary 0D ~ S! under a continuous map, which
is locally a homeomorphism away from the preimage of the vertices. We denote by F the set
of all faces of G. For any face F' € F, we define a boundary walk of F' to be any walk in
the graph G consisting of vertices and edges as they are encountered when walking along the
whole boundary of F', following the circle 0Dp, and starting at some vertex. Note that some
edges may appear more than once in a boundary walk. The degree of a face F' € F, denoted
deg(F'), is the number of edges on any boundary walk of F.

We define a new multigraph & = (¥, &) embedded in M, and containing G as an induced
subgraph, by coning over boundary walks of faces as follows. The vertex set ¥ of 4 consists
of the vertices in G and a new vertex vp for each face F' of F, ie., ¥ =V U {UF}FG}..
For each face F' of F, let vy, ..., vgeg(r) be the vertices of G which appear in this order in a
boundary walk of F'. Note that a vertex might appear more than once. The edge set & of
¢ consists of the edges in E, and new edges {vp,v;}, for i = 1,...,deg(F). The embedding
of 4 in M is obtained in the following natural way: each face F' € F is homeomorphic to a
disk Dy in R?, and under this homeomorphism, the vertices v, ... ; Udeg(F) I the boundary
walk of F', appear in this cyclic order on the boundary of Dp. Choose the center of Dp as
the image of vp and the rays from vg to v; as the image of the edges {vr,v;}. We refer to all
the new edges {vp,v;} added in the process as cone edges of 4.

Call an embedding of a graph in M a weak triangulation if the degree of any face of the
embedding is three. We use this terminology since it can happen that two different faces of
the embedding share more than one edge, in which case we do not have a triangulation.

The embedded (multi)graph ¢ constructed above has the following properties.
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Proposition 2.2. The embedding of 4 in M is a weak triangulation, and each face of 4 is
incident to exactly one edge of G. Moreover, for any vertex v of G, we have dff = 2d%, where
dfjﬁ and dg denote the valence of v in 4 and G, respectively.

Proof. By definition of the embedding, each face of & consists of two cone edges and an edge
of GG, which proves the first assertion. To prove the second statement, let Fi,..., Fp € F be
all the faces of G which are incident to the vertex v € V. For each ¢ = 1,...,k, the number
of edges {vp,v} in & is half the number of edges of G in a boundary walk of F;. Each
edge e € F incident to v appears precisely twice in the union of the edges of the boundary
walks of Fi,..., Fj. This shows that the total number of edges of & of the form {vg,, v}, for
1=1,...,k, is equal to df, which proves the claim. O

Definition 2.3 (Open star). For each vertex v of G, we define the open star of v in M with
respect to the embedding of ¢, or simply the open star of v, denoted by .¥,, as the interior
of the union of all the faces of ¢4 which contain v in their boundaries.

Let now (M, g, 1) be any surface as in Section 2.1, so the measure p is absolutely continuous
with respect to the volume form pg of the smooth Riemannian metric g.

Proposition 2.4. The open stars of vertices of G form a 2-fold cover of M.

Proof. By Proposition 2.2, the boundary walk of each face of ¢ is a triangle which has exactly
two vertices in G. It follows that every point of M \ ¢ appears in exactly two open stars,
which proves the claim by absolute continuity of u with respect to jig. ([l

We now introduce a metric b on M with conical singularities (and will later assume p = fiy).
For reasons that will soon become clearer, we set the length of each edge of E C & to be
equal to one, and the length of each cone edge in & to be cos(7/(2dmaz)) "t /2. We equip M
with the natural metric h such the triangles have the Euclidean metric induced by their edge
lengths. Note that for any triangle T' of ¢, the angle of T at any of its vertices that belongs
to the graph G is equal to m/(2d;nez). The metric h has only conical singularities, and we
denote by A\, (M) = A\p(My), the eigenvalues of the surface M as defined in Section 2.1. Thus,
k(M) is the k-th eigenvalue of the measured metric surface (Mg, it = py), where g is a metric
of constant curvature in the conformal class of §.

Using Theorem 1.2 we can relate the eigenvalues of M to those of G. Denote by U the
2-fold cover of M given by the open stars .7, of vertices of V', c.f. Proposition 2.4. The
intersection of two distinct open stars .%, and .%,, for two vertices u and v of GG, has non
zero measure if and only if u and v are neighbors in G. Moreover, all non-empty intersections
have the same measure, equal to the area of two triangles in M. Therefore, the normalized
Laplacian £y equals the normalized Laplacian of G. Hence, in order to apply the transfer
result Theorem 1.2, we only need to lower bound the Neumann value of the open stars .%, of
the vertices of G.

We do so by again applying the transfer result to a specific 2-fold cover of each open star .%,,
for v € V. Thanks to the choice of edge lengths, the vertices of G in (M, h) have non negative
curvature. It follows that by cutting .7, along an arbitrary cone edge, we can unfold .7, to
the plane without overlap. Denote by .7, the unfolded star of v as isometrically embedded in
R?. The cutting operation can only decrease the Neumann value so it is sufficient to bound
from below the Neumann value of the unfolded open subset .7, of R2.

We call a kite in ., the union of two triangles in ., which share an edge of G. So for any
edge e = {v,u} € E, there is a kite K., and the union of the kites K, for e incident to v is
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equal to the planar set .. For any edge e € F incident to v, the kite K, has two diagonals
composed of the edge e and the diagonal opposite to e, that we denote by diagt?. Cut .7
along all the opposite diagonals diagt® for e € E incident to v. This cuts ., into an open
region P, with polygonal boundary containing the vertex v, together with one triangle T, for
each kite K. for e € F incident to v. Define

Uy = {Ke}e:{v,u}eE U {Te}e:{v,u}EE U {Pv}
The cover U, of .7 is a 2-fold cover.
Proposition 2.5. Any X € U, is a convex set of diameter at most two.

Proof. The triangle T, for e = {u,v} € E, is obviously convex of diameter one, and so is the
kite K.. As for the region P,, to prove the convexity of P, it will be enough to show that the
angle of P at v is at most . As we previously observed, by the choice of the edge lengths, all
the triangles of ¢4 has angle 7/2d 4, at any of their vertices which belong to G. The number
of triangles of .7/ is at most 2dS, since d§ < dpaz, it follows that the angle at v of P is at

most 7, and the convexity follows. The claim on the diameter follows from the fact that all
the edges of G have length equal to one. O

Since any element of U, is a planar convex sets of diameter at most two, there exists a
universal constant C; > 0 such that for any X € U,, we have A\(X) > C for A(X) the
Neumann value of X [26]. For the 2-fold cover of ., the non-zero element p(X NY') for
X # Y € U, have the same value, equal to the area of a triangle in M. Therefore, the
normalized Laplacian £y, equals the normalized Laplacian of the graph whose edges are the
pairs X # Y € U, whose intersection has positive measure. This graph Sé is obtained from
the star graph with d edges by inserting a new vertex in the middle of each edge. (Recall
that a star graph with d edges has a central vertex connected to d other vertices.) The
Neumann value of S} is lower bounded by an absolute constant C2 > 0 independent of d.
Hence, applying the transfer theorem 1.2 to the 2-fold cover U,,, it follows that there exists a
universal constant C3 = C7.C2/2 > 0 such that the Neumann value of ., is bounded from
below by Cs, i.e., A(-7))) > C3. This gives A\(#,) > Cs.

We get from these observations, and Theorem 1.2 applied to the 2-fold cover of U, that
(1) A = (L) < 2250

Cs

A result of Hassannezhad [15] states now that there is a universal constant A such that for

each k:

(5) Ak(M)p(M) < A(g + k).

Note that this result is not explicitly stated in the framework of measured metric surfaces
in [15], however the proof given in [15] works also in this setting and gives the above statement.
Putting Equations (4) and (5) together, and observing that pu(M) > Cyn/dmae, for some
constant Cy4, we conclude that for C = 2A4/(C3C4), we have

dmaz(g+ k)

nr < max
w(G) < ¢ IR,

which is the statement of Theorem 1.1. O
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Remark 2.6. It is shown in [7] that for large g, there are area one and genus g Riemannian
surfaces S with

() > %”(g )+ 8r(k—1)—e

for any € > 0. Now, the classical Brooks-Burger method implies the existence of a bounded
degree genus g graph G with n vertices such that Ap(G) > CAg(S)/n. Hence, at least for
large enough n and g, there are graphs whose eigenvalues match the behaviour of the estimate
in Theorem 1.1.

Remark 2.7. The following example shows that the strong estimates as in Theorem 1.1
cannot hold for more general classes of graphs closed under taking minor.

Recall that the Cartesian product G10G2 of two graphs G; = (Vi, E1) and Ga = (Va, E2)
has vertex set V4 x V5 and there is an edge between (vi,v9) and (u1,usz) in V4 x Vo if either
up = v and {ug,va} € FEa, or ug = vy and {u1,v1} € Ej. The Laplacian eigenvalues of
G10G3 are of the form A\;(G1) + A\j(Ga) fori=1,...,|Viland j =1,...,|V5|.

Let d be a fixed large enough integer, and for any ¢ € N, consider the Cartesian product
CoyG of a cycle Cyy of length 2] with a d-regular graph G on t vertices, for an integer ¢ € N.

For any fixed ¢ € N, we get in this way a family of graphs by varying ¢ and G. All these
graph are of treewidth bounded by some f(t) for a (linear) function f of t. Bounded treewidth
graphs form a minor-closed family, so all these graphs belong to a fixed proper minor-closed
family ;. For G a random d-regular graph on t vertices, and for the [*' eigenvalue of
Cy0G € F, for | € N, we have \(Co0G) = Q(#ZDGW) with high probability as t tends to
infinity. This shows that there do not exist in general constants h = h(F;) and C = C(F;)
associated to JF; ensuring that the inequality \¢(G) < Cd2,,. (g + k)/n hold for any graph
G € F; on n vertices, and for any k € N (unlike what happens for the class of bounded
genus graphs). In particular, the strong estimates as in Theorem 1.1 cannot hold for general
minor-closed classes of graphs.

3. EIGENVALUES OF THE LAPLACIAN ON METRIC GRAPHS

We briefly review the basic definitions concerning the spectral theory of metric graphs, and
refer e.g. to [2, 29] for more details.

Let G = (V, E) be a finite connected graph and let £ : E — R be a (length) function
on the edges of G. The length of e is denoted by f.. We define the metric realization of
(G,¥) as follows: for each edge e = uv of G take a closed interval I, C R of length /., and a
surjection m : 0I. — {u,v} (which identifies the two extremities of I, with the vertices of G
in e). Define the topological space (with the quotient topology)

.= (V|_||_|Ie)/{a::7re(x) Vee E &z €0l }.

The space I' has a natural metric, the shortest path metric induced by piecewise isometric
paths between points, see e.g. [2]. We call a metric graph any metric space I' isometric to a
metric realization of a pair (G, ¢), as above. The pair (G, ) is called a model of I'; when G is
a simple graph, the model is called simple. Note that there are plenty of models for a metric
graph I'; e.g. any finite subset of points of I" can be part of a simple model of T'.

For any point p € I', we denote by TI}I‘ the set of unit tangent vectors to I' at p. For an

interval I = [a,b], in R, we define )] = {1}, with 1 the unit vector in R. For a metric graph
I' and a point p € T, let (G, £) be a simple model of T with p € V(G), and let ey, ..., eq4 be the
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edges of G incident to v. Define T, I}F as the set of all unit tangent vectors at p of the intervals
I;, as above. Let 4 € TplF be a unit tangent vector, and let I = I. be the corresponding
interval (corresponding to the edge e of a simple graph model (G, ¥)). For ¢ > 0 sufficiently
small, we denote by p + eu the unique point in I at distance € from p on I. A function
f: I = R is piecewise smooth if there exists a simple graph model G = (V, E) of T" such
that the restriction of f to the intervals I, for e € E, are of class C2. The space of piecewise
smooth function on I" is denoted by S(I"). Let f : ' — R be a piecewise smooth function on
a metric graph I'. Let p € T and @ € T, T a unit tangent vector to at . The (outgoing) slope
of f along @ denoted by dz(f) is defined by

For a point p € I', we define o, as the sum of the slopes of f along unit tangents:

Op ‘= Z dﬁf<p)7
@STAT
Note that for all but at most a finite number of points p € I', we have 0, = 0. A metric
graph I' has a natural Lebesgue measure denoted by dz. The Laplacian of I' is the (measure
valued) operator A on I' which to a function f € S(I') associates the measure

A(f) = —f"dz = 0,6,
pel’
Define the Zhang space Zh(T') as the space of all functions f € S(T') such that f” €
LY(T',dx). The inner product (,) and the Dirichlet pairing (,)pi on Zh(T') are defined by

Vg eTh(T),  (f,g) = /F fg d, and

(f, )i = /F FA(g) = /F gA(f) = /F 7'd dz = (f'.9).

A function f in Zh(I') is an eigenfunction of the Laplacian on I' with eigenvalue A if for
any function g € Zh(T"), we have (f, g)pir = A(f,g). The eigenvalues of A are all nonnegative
and, assuming I is connected, they form a discrete subset 0 = A\g(I") < A1 (T") < A2(T) < -+ <
M (T) < ... of R. In addition, A;x(T") has the following (usual) variational characterization:

(6) M(D) = inf sup 2 F)oir

Ap41CZh(T)  feApy (f’ f)
dim(Agy1)=k+1

Definition 3.1 (Dilation of a metric graph). Let I" be a metric graph with a simple graph
model (G,¥), and f € Rsg. The metric graph SI" is defined as the metric realization of the

pair (G, BY).
The following proposition is straightforward, see e.g. [2].

Proposition 3.2. Let I' be a metric graph and 8 > 0 a real. For any integer k > 0, we have
A (BT) = BA(D).

By a metric star . we mean the metric realization of a pair (Sg, £) with Sy = K 4 a star
graph of arbitrary valence d, and ¢ a length function on E(Sy;). For such a metric star, define
lmax () = max cp(g,) l(e).
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Lemma 3.3. For any metric star ., we have:
2

> ™
STPIEZ)

max

M(S)

Proof. Assume that . is the metric realization of a pair (Sg, ¢) with d € N. We adapt the
argument in [12, Example 3] to the case where the branches of . have non-necessary equal
lengths. Let us parametrize each each edge e of S; with the interval [0, £.] starting from the
leaf vertex towards the central vertex of Sy. In this parametrization, an eigenfunction ¢ of
the Laplacian, with corresponding eigenvalue A, must be of the form a. COS(\/XSUB), where .
is the length parameter of the edge e in ., for e € E(S;). This follows in particular from
the fact that the slope of an eigenfunction must be zero at leaves. Now let a be the value of
the eigenfunction ¢ at the center of .. If a = 0, we get that VAl € 7/2 + N, for any edge
e, which implies the claim. If ¢ is non zero, then we use the fact that at the center of .7,
the sum of the (out-going) slopes of ¢ along the branches must be zero [2, Proposition 15.1],

which gives
Z aesin(VAL) = 0.
6€E(Sd)

Since a. cos(v/Al.) = a for any edge e of Sy, this implies

Z tan(vV/Al,) = 0,

EGE(Sd)

and so, again, at least one of the arguments in the tangents must be at least 7/2, and the
lemma follows. U

For a simple graph G and a vertex v € V(G), we denote by ¥ (v) the star subgraph of
G with central vertex v and with the edge set all the incident edges to v. Let (G,¥¢) be
a simple graph model of a metric graph I'. For any v € V(G), we define the metric star
with center v (with respect to G) of I denoted by . (v), or simply .7, if there is no risk
of confusion, as the subset of I' isometric to the metric realization of ¥ (v) with length
function given by ¢. Denote by fnax ¢ the maximum length of edges in G, and note that
Emax,G = maXvGV(G){Emax(yv)}‘

Given a simple graph model (G,¢) of a metric graph I", the family of all the metric stars
Zp, for v € V(G), forms a 2-fold cover S of I'. Denote by A} (G, ¢) the k-th eigenvalue of Ls.

Lemma 3.3 together with Theorem 1.2 yields the following bound:

Theorem 3.4. Let T' be a metric graph with a simple graph model (G, ). For any k € N, we
have

We now show that under certain natural conditions, it is possible to achieve eigenvalue
upper bounds closely matching the lower bounds of the above corollary. For a simple graph
model (G, /) of I' denote by £in ¢ the minimum length of edges e in E(G).

Definition 3.5. A simple graph model of a metric graph I is called length-balanced if for
any edge e € E(G), we have £, < 20y G-

We have the following theorem.
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Theorem 3.6. There are absolute constants c1,co > 0 such that for any length-balanced
simple graph model (G,£) of T' on n vertices, and for any non-negative integer k < n — 1, we
have
2 o nr 2
7€min G )\k’(r) < )‘k (G? é) < clgmin G )\k(l—‘)
dmax ’ ’
Before giving the proof, we state an interesting corollary of the above theorem. We first

need the following definition.

Definition 3.7. Let I' be a metric graph. Define £y,;, as the supremum of /¢ over all
length-balanced simple graph models (G, ¢) of T

It is easy to see that there is a length-balanced simple graph model G of I'" such that
lmin = lmin,g. For such a simple graph model (G, /), define the model (G, ¥¢) as the k-th
subdivision of G where each edge e is subdivided into k edges of equal lengths ¢./k. Note
that Gy is length-balanced, has at least k + 1 vertices, and has minimum edge length equal
t0 min/k. Thus as a consequence of Theorem 3.6, we get

Corollary 3.8. With the notations as above, there are absolute constants c¢; and co such that
for any metric graph ', we have

22 (D) < 2N (G, ) < er 020 Mi(D).

min min

dl’l'l ax

Our results, especially corollary 3.8 above, should be viewed as a quantitative complement
to a theorem of X. Faber [11] on the spectral convergence of finite graphs to metric graphs,
in the sense that they provide uniform upper and lower bounds on the eigenvalues of I in
terms of eigenvalues of simple graph models of I'.

Proof of Theorem 3.6. First note that since A (5I') = %)\k(l“) and since A\}' (G, L) = A\ (G, 1),
by the very definition, it will be enough to prove the theorem for £y, = 1.

The right hand side inequality follows from Theorem 3.4, and the well-balanced property
of the simple graph model G of I'. We now prove the other inequality, namely the existence
of ¢ such that for any & <n — 1, ca Ap(I') < dimax A} (G, €) (still under the assumption that
lmin = 1 and the length-balanced property of the model (G, ¢)). Since the lengths of all edges

are between 1 and 2, we get \}'(G, () > ﬁ)\k(G). Indeed, letting g = D}Smf, we have the
following expression for the Rayleigh quotient
(9,L59)  2e—{uwyer Ue)(f () — f(v))? o1 Dequayen(F(W) — fv))?
(9,9) 2o di, f(v)? "~ 2dmax >, f(v)?

(where d =3, . £({u,v})), which using the variational characterization of the eigenvalues
proves the claim. So it will be enough to show the existence of a constant ¢, such that

hAR(D) < M(G).

Consider Wy, the vector space of dimension k+1 generated by the first £+1 eigenfunctions
90, - - -, gx € C(G) associated to A\;(G), for i = 0,...,k. Note that in particular

(g(u) — g(v))?
M(G) > A A
: M;V(G) >, 9(v)?

u~v
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for any g € W41 \ {0}. We construct an injective linear map ¥ : C(G) — Zh(I") such that
for any g € C(G) \ {0}, we have

(T(9), ¥(9))p g(v))?
(T(g),%¥(g)) <8 2 Z g() '

u,veV(G)

u~v
Applying the variational characterization of A\g(T'), given in Equation (6), to the test space
U (Wy), for k < n — 1, will then give the result.
Consider an edge e = {u,v} of G, and denote by u. and v, the two points at distance ﬁ
and ﬁ from v and v on e, respectively, where d,, and d, denote the valence of the vertices

u and v in G, respectively. Note that the length of each segment [u,,ve] in T" is at least %
For any vertex v of G, denote by B, the union of all segments [v, v.] on the edges e adjacent

to v in G (i.e., B, is the ball of radius ﬁ around v in I'). For any function g € C(G), defined

on the set of vertices of G, let ¥(g) be the function on I" which takes value equal to g(v)

on each ball B,, and which is affine linear of slope (g(v) — g(u))/€([te, ve]) on each segment

[te, Ve, for any edge e € E(G). Obviously, ¥ is an injective linear map from C(G) to Zh(T).
Let now g € C(G) \ {0} and denote f = ¥U(g). We have

(f, F)ow = / e =Y Mwu)—g(v»?g S (g(w) - g(0)2.
e={u,v}€E(QG) {u,v}eE(G)

Denote by B the union U,cy (g)By. Since each ball B, has total length equal to 1/4, we

have
/dea; >/ deg;— =Y g

’L)GV(G)
It thus follows from the two above estimates that for any g € C(G) \ {0}, we have

(\Il(g) D1r ))2
<w<g>,w P> zg<> ’

u,weV(G)

u~v

and the theorem follows. O

4. ANISOTROPIC MESH PARTITIONING

In this final section we discuss a practical application of our transfer theorem to the mesh
partitioning problem in scientific computing. Parallelizing finite elements computations re-
quires to split the base mesh in such a way that communication between different pieces is
minimized. This is naturally formalized as a (possibly multi-way) sparsest cut problem, which
we may want to solve using spectral clustering. Guarantees for such methods in this setting
were proved by Miller-Teng-Thurston-Vavasis and Spielman-Teng [24, 27]. More precisely,
these papers show that spectral partitioning provides good cuts for meshes in d-dimensional
Euclidean space provided that all d-simplices in the mesh are well-shaped, i.e. not too far
from being equilateral.

It is not hard to design a 2-fold cover of a general mesh such that our transfer result
provides guarantees for spectral clustering applied to anisotropic meshes. Specifically, let T’
be a triangulation of a domain D C R%. Performing a barycentric subdivision of all d-simplices
gives a triangulation 7”. For a d-simplex o of T, let now U, be the interior of the union of
o with the d + 1 d-simplices of T’ that share a facet with . The collection of U, forms a
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2-fold cover U of the domain, and the corresponding Laplacian £, is defined using weights
Wo,,0, that are proportional to the sum of the volumes of o1 and oo. Hence, assuming that
neighboring d-simplices in T have volumes within a ratio of k > 1, we see that the eigenvalues
of £y and those of the normalized Laplacian of the dual graph of T are also within a ratio of
K.

Proposition 4.1. The Neumann value of U, is at least C~'x~1e™2 for some universal con-
stant C > 0, where € is the mazimum diameter of simplices in T'.

Proof. Let 7;,7=1...d+ 1, be the d-simplices in T" that share a facet with o, and o; be the
d-simplex in 7" that is included in o and shares a facet with 7;. The interiors of o, 7;, and
of 7; U g; form a 2-fold cover of U,. The entries of the corresponding Laplacian are within a
factor k of the those of the normalized Laplacian of the intersection graph of the elements of
the cover, which is a once subdivided star graph. Such a star graph has Fiedler value lower
bounded by a constant. Now each element in the cover is a convex set with diameter at most
2¢, 50 by [26] their Neumann value is lower bounded by a constant times e 2. The claim then
follows from theorem 1.2. g

Therefore, Theorem 1.2 applied to the cover U yields that the Fiedler value of the dual
graph of T is at most 2Ck2\;(D)e%. By Cheeger’s inequality, a suitable spectral partitioning
algorithm gives a balanced cut of size at most kC’/A1(D)/e, for some constant C’. We note
that if d-simplices in T are nearly equilateral, then e ~ (vol(D)/n)Y? where n is the number
of simplices in 7. Hence in this case we recover the n'/¢ behaviour proved in [24, 27] for the
size of the cut, since the assumption that simplices are well-shaped implies an upper bound
on k. However, the methods used in those works do not seem to apply to the case of general
anisotropic meshes.
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