Feuille 6 Suites et Séries de fonctions

Exercice 1 — Etudier la convergence simple et uniforme des suites de fonctions définies par :

1)
$$f_n(x) = \frac{x}{1+nx} \sup[0,1];$$
 2) $f_n(x) = \frac{1}{1+nx} \sup[0,1];$ 3) $f_n(x) = \frac{\ln(1+nx)}{1+nx} \sup[0,\pi];$ 4) $f_n(x) = e^{-nx} \sup[0,\pi];$ 5) $f_n(x) = nx^2 e^{-nx} \sup[0,\pi];$ 6) $f_n(x) = (1-x)x^n \sup[0,1]$

4)
$$f_n(x) = e^{-nx} \operatorname{sur} [0, \pi];$$
 5) $f_n(x) = nx^2 e^{-nx} \operatorname{sur} [0, \pi];$ 6) $f_n(x) = (1 - x)x^n \operatorname{sur} [0, 1]$

Exercice 2 — Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions croissantes sur un segment [a,b] et convergeant simplement sur [a, b] vers une fonction f continue sur [a, b]. Montrer qu'alors la convergence de la suite de fonctions est uniforme sur [a, b].

Exercice 3 — Soit $F: \mathbb{R}^2 \to \mathbb{R}$ une fonction telle que :

- Pour tout $y \in \mathbb{R}$ fixé , l'application $F_y : \mathbb{R} \to \mathbb{R}, x \mapsto F(x,y)$ est continue.
- Il existe $k \in]0,1[$ tel que $\forall x \in \mathbb{R}, |F(x,y) F(x,y')| \le k |y y'|.$

Soit $(f_n)_{n\in\mathbb{N}}$ la suite de fonctions définies sur \mathbb{R} par $f_0(x)=F(x,0)$ et $f_n(x)=F(x,f_{n-1}(x))$ pour $n \geq 1$.

- 1. Montrer que les fonctions f_n sont continues pour tout n entier.
- 2. Montrer que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement en tout point de \mathbb{R} .
- 3. Montrer que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur tout segment $[a,b]\subset$
- 4. Déduire de ce qui précède que la fonction limite f est continue sur \mathbb{R} ;

Exercice 4 — Pour tout $x \in \mathbb{R}_+$ et tout $n \in \mathbb{N}^*$ on pose $f_n(x) = \frac{xe^{-n^2x}}{1+n^2x}$.

- 1. On fixe $x \in \mathbb{R}_+$. Montrer que la série de terme général $f_n(x)$ est convergente. On dit que la série de fonctions $(\sum f_n)$ est simplement convergente sur \mathbb{R}_+ .
- 2. On fixe $n \in \mathbb{N}^*$. On pose $u_n = \sup \{ |f_n(x)|, x \in \mathbb{R}_+ \} \text{ et } x_0 = (-1 + \sqrt{5})/2$.
 - (a) Montrer que f_n atteint la valeur u_n en l'unique point x_0/n^2 .
 - (b) En déduire une expression simple de u_n en fonction de x_0 et n.
- 3. Montrer que la série de terme général u_n converge. On dit que la série de fonction $(\sum f_n)$ est normalement convergente sur \mathbb{R}_+ .
- 4. On fixe $n \in \mathbb{N}^*$. Démontrer la majoration suivante, en remarquant que $1 + n^2x \ge n^2x$:

$$\forall n \in \mathbb{N}^* \ \forall x \in \mathbb{R}_+ \ |f_n(x)| \le \frac{1}{n^2}.$$
 (1)

5. Quelle est la nature de la série de terme général $1/n^2$? La majoration (1) suffit donc à montrer que la série de fonctions $(\sum f_n)$ est normalement convergente : c'est une démonstration plus simple que celle de la question 2.

6. On pose, pour tout $x \in \mathbb{R}_+$: $f(x) = \sum_{n=1}^{\infty} f_n(x)$. Montrer que la fonction f ainsi définie est continue sur \mathbb{R}_+ .

Exercice 5 — Pour tout $x \in \mathbb{R}_+$ et tout $n \in \mathbb{N}$ on pose $f_n(x) = nxe^{-nx}$.

- 1. Montrer que la série de fonctions $(\sum f_n)$ est simplement convergente sur \mathbb{R}_+ .
- 2. On fixe $n \in \mathbb{N}$ et on pose $u_n = \sup\{|f_n(x)|, x \in \mathbb{R}_+\}$. Calculer u_n .
- 3. Montrer que la série de fonctions $(\sum f_n)$ n'est pas normalement convergente sur \mathbb{R}_+ .
- 4. Soit ε un réel strictement positif. Montrer que la série de fonctions $(\sum f_n)$ est normalement convergente sur $[\varepsilon, +\infty[$.

Exercice 6 — Pour tout $n \ge 1$ et pour tout $x \in \mathbb{R}_+$, on pose $f_n(x) = \frac{1}{n(1+nx)}$.

- 1. Montrer que la série de fonctions $(\sum f_n)$ est simplement convergente sur \mathbb{R}_+^* . Est-elle convergente en 0? Pour x > 0, on pose $f(x) = \sum_{n=1}^{\infty} f_n(x)$.
- 2. On fixe un réel strictement positif ε . Soit $h: \mathbb{R}_+^* \to \mathbb{R}$ la fonction inverse : h(x) = 1/x.
 - Montrer que la fonction h est bornée sur $[\varepsilon, +\infty[$.
 - Montrer que la série de fonctions $(\sum f_n)$ est normalement convergente sur $[\varepsilon, +\infty[$.
 - Montrer que la fonction f est continue sur $[\varepsilon, +\infty[$.
- 3. Peut-on déduire de la question précédente les assertions suivantes? Justifier votre réponse.
 - La fonction h est bornée sur $]0, +\infty[$.
 - la série de fonction $(\sum f_n)$ est normalement convergente sur $]0, +\infty[$.
 - La fonction f est continue sur $]0, +\infty[$.

On dit que les propriétés "être bornée" ou "être normalement convergente" sont des propriétés **globales**, tandis que la propriété "être continue" est **locale**. La propriété "être dérivable" est également locale.

Exercice 7 — Pour tout $n \ge 1$ et pour tout $x \in \mathbb{R}$, on pose $f_n(x) = \frac{1}{n} \arctan(\frac{x}{n})$.

- 1. Montrer que la série de fonctions $(\sum f_n)$ est simplement convergente sur \mathbb{R} . Est-elle normalement convergente sur \mathbb{R} ? On appelle f la fonction somme de la série $(\sum f_n)$.
- 2. Soit a un réel strictement positif. Montrer que la série de fonction $(\sum f_n)$ est normalement convergente sur l'intervalle [-a, a].
- 3. En déduire que f est continue sur \mathbb{R} .
- 4. Montrer que f est de classe C^1 sur \mathbb{R} et que $\lim_{x\to +\infty} f'(x)=0$.

Exercice 8 — Pour tout entier $n \geq 1$ et tout $x \in \mathbb{R}$, posons

$$f_n(x) = x^2 e^{-nx}$$
 et $F_n(x) = \int_0^x f_n(t) dt$.

1. Etude de la série de fonctions $(\sum f_n)$.

- (a) Montrer que la série de fonctions $(\sum f_n)$ converge normalement sur \mathbb{R}_+ . On pose $f(t) = \sum_{n=1}^{\infty} f_n(t)$ pour tout $t \in \mathbb{R}_+$.
- (b) Montrer que f est continue sur \mathbb{R}_+ .
- (c) Calculer f(t) pour tout $t \in \mathbb{R}_+$.
- 2. Etude de la série de fonctions $(\sum F_n)$.
 - (a) Soit $x \in \mathbb{R}_+^*$. A l'aide de deux intégrations par parties, calculer $F_n(x)$.
 - (b) Montrer que la série de fonctions $(\sum F_n)$ est normalement convergente sur \mathbb{R}_+ . On pose $F(x) = \sum_{n=1}^{\infty} F_n(x)$ pour tout $x \in \mathbb{R}_+$.
 - (c) Exprimer $\lim_{x \to +\infty} F(x)$ sous forme d'une somme de série.
- 3. Montrer que $F(x) = \int_0^x f(t) dt$, pour tout $x \in \mathbb{R}_+$.
- 4. En déduire l'identité suivante :

$$\int_0^\infty \frac{t^2}{e^t - 1} \, \mathrm{d}t = 2 \sum_{n=1}^\infty \frac{1}{n^3}.$$

Exercice 9 — On reprend les fonctions $f_n(x)$ de l'exercice 6, définies sur \mathbb{R}_+ . On note f la fonction somme de la série $(\sum f_n)$, définie sur \mathbb{R}_+^* . Rappelons que la série de fonctions $(\sum f_n)$ n'est pas normalement convergente sur \mathbb{R}_+^* . On souhaite néanmoins calculer la limite de f en 0. On pose

$$S_n(x) = \sum_{k=1}^n \frac{1}{k(1+kx)}$$
 et $H_n = \sum_{k=1}^n \frac{1}{k}$ pour $n \in \mathbb{N}^*, x \in \mathbb{R}_+$.

- 1. Montrer que f est positive et décroissante.
- 2. Montrer que pour tous $n \in \mathbb{N}^*$, $x \in \mathbb{R}_+^*$ on a $S_n(x) \leq f(x)$.
- 3. Montrer qu'on a $S_n(\frac{1}{n}) \geq \frac{1}{2} H_n$, pour tout $n \in \mathbb{N}^*$.
- 4. Quelle est la limite de la suite (H_n) ? En déduire que $\lim_{n\to\infty} f(\frac{1}{n}) = +\infty$.
- 5. Montrer que $\lim_{x\to 0} f(x) = +\infty$, en utilisant les questions 1 et 4.

Exercice 10 — Pour tout $n \ge 1$ et pour tout $x \in \mathbb{R}$, posons $f_n(x) = \frac{(-1)^{n+1}}{n+x^2}$.

- 1. Montrer que pour tout $x \in \mathbb{R}$ la série de terme général $f_n(x)$ est convergente. Soit alors $f: \mathbb{R} \longrightarrow \mathbb{R}$ la fonction définie par $f(x) = \sum_{n=1}^{+\infty} f_n(x)$.
- 2. Montrer que f est une fonction paire et strictement positive sur \mathbb{R} .
- 3. Soit a > 0. Montrer que la série de fonctions de terme général f'_n est normalement convergente sur [-a, a]. En déduire que f est dérivable sur \mathbb{R} , et que f est strictement décroissante sur $[0, +\infty[$.
- 4. Pour tout $n \ge 1$ et pour tout $x \in \mathbb{R}$ posons $R_n(x) = \sum_{k=n+1}^{+\infty} f_k(x)$. Montrer que $|R_n(x)| \le \frac{1}{n+1}$.
- 5. Montrer que $\lim_{x \to +\infty} f(x) = 0$.