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Factorisations in a generated group

Group G, generated by A

 length function `A on G.

Definition (A-factorisations)

(g1, . . . ,gp) is an A-factorisation of g ∈ G if

g1 . . . gp = g;
`A(g1) + · · ·+ `A(gp) = `A(g).

Example: (G,A) = (W ,S) finite Coxeter system

Strict maximal factorisations of w0 ←→ galleries connecting a
chamber to its opposite. [Deligne]

Definition (Divisibility order 4A)
g 4A h if and only if g is a (left) “A-factor” of h.

[1,h]4A = {divisors of h for 4A} ' {2-factorisations of h}.
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Prototype: noncrossing partitions of an n-gon

G := Sn, with generating set T := {all transpositions}

c := n-cycle (1 2 . . . n)

{T -divisors of c} ←→ {noncrossing partitions of an n-gon}
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Complex reflection groups

V : complex vector space (finite dimension).

Definition
A (finite) complex reflection group is a finite subgroup of GL(V )
generated by complex reflections.
A complex reflection is an element s ∈ GL(V ) of finite order, s.t.
Ker(s − IdV ) is a hyperplane:

s ↔
B

matrix Diag(ζ,1, . . . ,1) , with ζ root of unity.

includes finite (complexified) real reflection groups (aka
finite Coxeter groups);
Shephard-Todd’s classification (1954): an infinite series
with 3 parameters G(de,e, r), and 34 exceptional groups.
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Noncrossing partitions of type W

Now suppose that W ⊆ GL(V ) is a complex reflection group,
irreducible and well-generated (i.e. can be generated by
n = dim V reflections).

generating set R := {all reflections of W}.
( length `R, R-factorisations, order 4R)
c : a Coxeter element in W .

Definition (Noncrossing partitions of type W )

NCPW (c) := {w ∈W | w 4R c}

NCPW (c) ' {2-factorisations of c};
the structure does not depend on the choice of the Coxeter
element (conjugacy).
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Fuss-Catalan numbers

Kreweras’s formula
W := Sn;
c : an n-cycle.

The number of T -factorisations of c in p + 1 blocks is the
Fuss-Catalan number

Cat(p)(n) =
n∏

i=2

i + pn
i

.

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case!
Remark: Cat(p)(W ) counts also the number of maximal faces
in the “p-divisible cluster complex of type W ” (generalization of
the simplicial associahedron) [Fomin-Reading]. Related to
cluster algebras of finite type if W is a Weyl group.
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The quotient-space V/W

W ⊆ GL(V ) a complex reflection group. W acts on C[V ].

Chevalley-Shephard-Todd’s theorem: there exist invariant
polynomials f1, . . . , fn, homogeneous and algebraically
independent, s.t. C[V ]W = C[f1, . . . , fn].

 isomorphism : V/W ∼−→ Cn

v̄ 7→ (f1(v), . . . , fn(v)).

Definition
The degrees d1 ≤ · · · ≤ dn = h of f1, . . . , fn do not depend on
the choice of f1, . . . , fn. They are called the invariant degrees of
W .
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Discriminant of W

A := {Ker(r − 1) | r ∈ R}
(arrangement of hyperplanes of W )

discriminant hypersurface (in V/W ' Cn):

H :=

( ⋃
H∈A

H

)
/ W

discriminant ∆W : equation of the hypersurface H in
C[f1, . . . , fn]. (∆W =

∏
H∈A ϕ

eH
H ∈ C[V ]W )
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Example W = A3: discriminant (“swallowtail”)
⋃

H∈A

H ⊆ V

/W

H = {∆W = 0} ⊆W\V ' C3

∆W (f1, f2, f3) = Disc(T 4 + f1T 2 − f2T + f3 ; T )
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Lyashko-Looijenga map and geometric factorisations

LL

facto

{x1, . . . , xn} ∈ En

(w1, . . . ,wp) ∈ FACT(c)
ϕ

Y

fn

y y ∈ Yy ′

y ′′
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Lyashko-Looijenga map of type W

V/W = Y × C.

LL : Y → En := {multisets of n points in C}
y 7→ {roots, with multiplicities, of ∆W (y , fn) in fn}

∆W = f n
n + a2f n−2

n + a3f n−3
n + · · ·+ an−1fn + an.

Definition (LL as an algebraic (homogeneous) morphism)

LL : Cn−1 → Cn−1

(f1, . . . , fn−1) 7→ (a2, . . . ,an)

facto : Y → FACT(c) := {strict R-factorisations of c}
Geometrical compatibilities:

length of the factors (↔ multiplicities in the multiset LL(y));
conjugacy classes of the factors (↔ parabolic strata in H).

Details
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Fibers of LL and strict factorisations of c

Let ω be a multiset in En.

Compatibility ⇒ ∀y ∈ LL−1(ω), the distribution of lengths of
factors of facto(y) is the same (composition of n).

Theorem (Bessis’07)

The map facto induces a bijection between the fiber LL−1(ω)
and the set of strict factorisations of same “composition” as ω.

Equivalently, the product map:

Y
LL× facto−−−−−−→ En × FACT(c)

is injective, and its image is the set of “compatible” pairs.
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Bifurcation locus (K) of LL
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An unramified covering

Bifurcation locus:
K := LL−1(En − E reg

n )
= {y ∈ Y | ∆W (y , fn) has multiple roots w.r.t. fn}
= {y ∈ Y | DLL(y) = 0}

where
DLL := Disc(∆W (y , fn) ; fn).

Proposition (Bessis)

LL : Y −K� E reg
n is a topological covering, of degree

n! hn/ |W |;
| FACTn(c)| = n! hn/ |W |.

Can we compute | FACTn−1(c)| ?
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Irreducible components of K

Want to study the restriction of LL : K → En − E reg
n .

Proposition
There are (canonical) bijections between:

the set of irreducible components of K (or irreducible
factors of DLL);
the set of conjugacy classes of elements of NCPW of length
2;
the set of conjugacy classes of parabolic subgroups of W
of rank 2.

Explanations

Denote “this” set by L̄2. Thus: DLL =
∏

Λ∈L̄2

DrΛ
Λ

(irreducible factors in C[f1, . . . , fn−1]).
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Submaximal factorisations of type Λ

FACTΛ
n−1(c) := set of factorisations of c in n − 1 factors, with:
n − 2 reflections; and
1 element of length 2 and conjugacy class Λ.

Remark: FACTΛ
n−1(c) = facto({“generic” points in {DΛ = 0}}).

The restriction LLΛ : KΛ → En − E reg
n corresponds to the

extension C[a2, . . . ,an]/(D) ⊆ C[f1, . . . , fn−1]/(DΛ) .

Theorem (R.)

For any Λ in L̄2,

LLΛ is a finite morphism of degree (n−2)! hn−1

|W | deg DΛ;

the number of factorisations of c of type Λ is

| FACTΛ
n−1(c)| =

(n − 1)! hn−1

|W |
deg DΛ .
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Submaximal factorisations

Problem: find a general computation of
∑

Λ∈L̄2
deg DΛ.

Recall that DLL =
∏

Λ∈L̄2
DrΛ

Λ .

Proposition (Saito; R.)

Set JLL := Jac((a2, . . . ,an)/(f1, . . . , fn−1)). Then:

JLL
.

=
∏

Λ∈L̄2

DrΛ−1
Λ

Virtual reflection groups?

So,
∑

deg DΛ = deg DLL − deg JLL = . . .
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Submaximal factorisations

Corollary
Let W be an irreducible, well-generated complex reflection
group, of rank n. The number of strict factorisations of a
Coxeter element c in n − 1 factors is:

| FACTn−1(c)| =
(n − 1)! hn−1

|W |

(
(n − 1)(n − 2)

2
h +

n−1∑
i=1

di

)
.

We recover what is predicted by Chapoton’s formula;
but the proof is more satisfactory and enlightening: we
travelled from the numerology of FACTn(c) (non-ramified
part of LL) to that of FACTn−1(c), without adding any
case-by-case analysis.
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Conclusion, questions

We recover geometrically some combinatorial results
known in the real case [Krattenthaler].

Can we go further (compute the | FACTk (c)|) ? Can we
interpret Chapoton’s formula as a ramification formula for
LL ?

Merci !
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4 Appendix
Stratifications
Comparison reflection groups / LL extensions



Stratifications

Stratification of V with the “flats” (intersection lattice):
L :=

{⋂
H∈AH | B ⊆ A

}
.

Bijections [Steinberg]:
stratification L

= L/W

↔ {parabolic subgroups of W}

↔ NCPW /conj.
codim(Λ) = rank(WΛ) = `R(wΛ)

Remark: H is the union of strata of L̄ of codim. 1.

Conjugacy classes of factors of facto(y)↔ strata containing the
intersection points.
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Irreducible components of K, details

L̄2 := {strata of L̄ of codim. 2}.

Steinberg’s theorem⇒ L̄2 is in bijection with:
{conjugacy classes of parabolic subgroups of W of rank 2}
{conjugacy classes of elements of NCPW of length 2}

Proposition

The ϕ(Λ), for Λ ∈ L̄2, are the irreducible components of K
(where ϕ is the projection V/W � Y).
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Reflection group vs. Lyashko-Looijenga extension

Reflection group W Extension LL
V → V/W Y → Cn−1

C[f1, . . . , fn] = C[V ]W ⊆ C[V ] C[a2, . . . ,an] ⊆ C[f1, . . . , fn−1]
degree |W | degree n! hn/ |W |

V reg � V reg/W Y −K� E reg
n

Generic fiber 'W ' RedR(c)

ramified on
⋃

H∈AH � H K =
⋃

Λ∈L̄2
ϕ(Λ)� En − E reg

n

∆W =
∏

H∈A α
eH
H DLL =

∏
Λ∈L̄2

DrΛ
Λ

JW =
∏
αeH−1

H JLL =
∏

DrΛ−1
Λ

eH = |WH | rΛ = pseudo-order of
elements of NCPW of type Λ

Return
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