Discriminant of a reflection group and factorisations of a Coxeter element

Vivien Ripoll

Laboratoire de Combinatoire et d'Informatique de Montréal (LaCIM)
Université du Québec à Montréal (UQAM)
Colloque Surfaces et Représentations Sherbrooke
9 octobre 2010

Outline

(9) Fuss-Catalan numbers of type W
(2) Factorisations as fibers of a Lyashko-Looijenga covering
(3) Maximal and submaximal factorisations of a Coxeter element

Outline

(9) Fuss-Catalan numbers of type W
(2) Factorisations as fibers of a Lyashko-Looijenga covering
(3) Maximal and submaximal factorisations of a Coxeter element

Factorisations in a generated group

Group G, generated by A

Factorisations in a generated group

Group G, generated by $A \rightsquigarrow$ length function ℓ_{A} on G.

Factorisations in a generated group

Group G, generated by $A \rightsquigarrow$ length function ℓ_{A} on G.
Definition (A-factorisations)
$\left(g_{1}, \ldots, g_{p}\right)$ is an A-factorisation of $g \in G$ if

- $g_{1} \ldots g_{p}=g$;

Factorisations in a generated group

Group G, generated by $A \rightsquigarrow$ length function ℓ_{A} on G.
Definition (A-factorisations)
(g_{1}, \ldots, g_{p}) is an A-factorisation of $g \in G$ if

- $g_{1} \ldots g_{p}=g$;
- $\ell_{A}\left(g_{1}\right)+\cdots+\ell_{A}\left(g_{p}\right)=\ell_{A}(g)$.

Factorisations in a generated group

Group G, generated by $A \rightsquigarrow$ length function ℓ_{A} on G.
Definition (A-factorisations)
(g_{1}, \ldots, g_{p}) is an A-factorisation of $g \in G$ if

- $g_{1} \ldots g_{p}=g$;
- $\ell_{A}\left(g_{1}\right)+\cdots+\ell_{A}\left(g_{p}\right)=\ell_{A}(g)$.

Example: $(G, A)=(W, S)$ finite Coxeter system
Strict maximal factorisations of $w_{0} \longleftrightarrow$ galleries connecting a chamber to its opposite. [Deligne]

Factorisations in a generated group

Group G, generated by $A \rightsquigarrow$ length function ℓ_{A} on G.
Definition (A-factorisations)
(g_{1}, \ldots, g_{p}) is an A-factorisation of $g \in G$ if

- $g_{1} \ldots g_{p}=g$;
- $\ell_{A}\left(g_{1}\right)+\cdots+\ell_{A}\left(g_{p}\right)=\ell_{A}(g)$.

Example: $(G, A)=(W, S)$ finite Coxeter system
Strict maximal factorisations of $w_{0} \longleftrightarrow$ galleries connecting a chamber to its opposite. [Deligne]

Definition (Divisibility order \preccurlyeq_{A})
$g \preccurlyeq_{A} h$ if and only if g is a (left) " A-factor" of h.

Factorisations in a generated group

Group G, generated by $A \rightsquigarrow$ length function ℓ_{A} on G.
Definition (A-factorisations)
(g_{1}, \ldots, g_{p}) is an A-factorisation of $g \in G$ if

- $g_{1} \ldots g_{p}=g$;
- $\ell_{A}\left(g_{1}\right)+\cdots+\ell_{A}\left(g_{p}\right)=\ell_{A}(g)$.

Example: $(G, A)=(W, S)$ finite Coxeter system
Strict maximal factorisations of $w_{0} \longleftrightarrow$ galleries connecting a chamber to its opposite. [Deligne]

Definition (Divisibility order \preccurlyeq A)

$g \preccurlyeq_{A} h$ if and only if g is a (left) " A-factor" of h.
$[1, h]_{\preccurlyeq A}=\{$ divisors of h for $\preccurlyeq A\} \simeq\{2$-factorisations of $h\}$.

Prototype: noncrossing partitions of an n-gon

- $G:=\mathfrak{S}_{n}$, with generating set $T:=\{$ all transpositions $\}$

Prototype: noncrossing partitions of an n-gon

- $G:=\mathfrak{S}_{n}$, with generating set $T:=\{$ all transpositions $\}$
- $c:=n$-cycle (12 \ldots)

Prototype: noncrossing partitions of an n-gon

- $G:=\mathfrak{S}_{n}$, with generating set $T:=\{$ all transpositions $\}$
- $c:=n$-cycle (12 \ldots)
- $\{T$-divisors of $c\} \longleftrightarrow$ \{noncrossing partitions of an n-gon $\}$

Prototype: noncrossing partitions of an n-gon

- $G:=\mathfrak{S}_{n}$, with generating set $T:=\{$ all transpositions $\}$
- $c:=n$-cycle (12 $\ldots n$)
- $\{T$-divisors of $c\} \longleftrightarrow$ \{noncrossing partitions of an n-gon $\}$

Prototype: noncrossing partitions of an n-gon

- $G:=\mathfrak{S}_{n}$, with generating set $T:=\{$ all transpositions $\}$
- $c:=n$-cycle (12 $\ldots n$)
- $\{T$-divisors of $c\} \longleftrightarrow$ \{noncrossing partitions of an n-gon $\}$

crossing

Prototype: noncrossing partitions of an n-gon

- $G:=\mathfrak{S}_{n}$, with generating set $T:=\{$ all transpositions $\}$
- $c:=n$-cycle (12 $\ldots n$)
- $\{T$-divisors of $c\} \longleftrightarrow$ \{noncrossing partitions of an n-gon $\}$

Complex reflection groups

V : complex vector space (finite dimension).

Definition

A (finite) complex reflection group is a finite subgroup of $\mathrm{GL}(\mathrm{V})$ generated by complex reflections.
A complex reflection is an element $s \in \mathrm{GL}(V)$ of finite order, s.t. $\operatorname{Ker}(s-\operatorname{Id} v)$ is a hyperplane:

$$
s \underset{\mathcal{B}}{ } \text { matrix } \operatorname{Diag}(\zeta, 1, \ldots, 1), \text { with } \zeta \text { root of unity. }
$$

Complex reflection groups

V : complex vector space (finite dimension).

Definition

A (finite) complex reflection group is a finite subgroup of $\mathrm{GL}(\mathrm{V})$ generated by complex reflections.
A complex reflection is an element $s \in \mathrm{GL}(V)$ of finite order, s.t. $\operatorname{Ker}(s-\operatorname{ld} v)$ is a hyperplane:

$$
s \underset{\mathcal{B}}{ } \text { matrix } \operatorname{Diag}(\zeta, 1, \ldots, 1), \text { with } \zeta \text { root of unity. }
$$

- includes finite (complexified) real reflection groups (aka finite Coxeter groups);

Complex reflection groups

V : complex vector space (finite dimension).

Definition

A (finite) complex reflection group is a finite subgroup of $\mathrm{GL}(V)$ generated by complex reflections.
A complex reflection is an element $s \in \mathrm{GL}(V)$ of finite order, s.t. $\operatorname{Ker}(s-\operatorname{Id} v)$ is a hyperplane:

$$
s \underset{\mathcal{B}}{ } \text { matrix } \operatorname{Diag}(\zeta, 1, \ldots, 1), \text { with } \zeta \text { root of unity. }
$$

- includes finite (complexified) real reflection groups (aka finite Coxeter groups);
- Shephard-Todd's classification (1954): an infinite series with 3 parameters $G(d e, e, r)$, and 34 exceptional groups.

Noncrossing partitions of type W

Now suppose that $W \subseteq \mathrm{GL}(V)$ is a complex reflection group, irreducible and well-generated (i.e. can be generated by $n=\operatorname{dim} V$ reflections).

Noncrossing partitions of type W

Now suppose that $W \subseteq G L(V)$ is a complex reflection group, irreducible and well-generated (i.e. can be generated by $n=\operatorname{dim} V$ reflections).

- generating set $R:=\{$ all reflections of $W\}$. (\rightsquigarrow length ℓ_{R}, R-factorisations, order \preccurlyeq_{R})

Noncrossing partitions of type W

Now suppose that $W \subseteq G L(V)$ is a complex reflection group, irreducible and well-generated (i.e. can be generated by $n=\operatorname{dim} V$ reflections).

- generating set $R:=\{$ all reflections of $W\}$. (\rightsquigarrow length ℓ_{R}, R-factorisations, order \preccurlyeq_{R})
- c : a Coxeter element in W.

Noncrossing partitions of type W

Now suppose that $W \subseteq \mathrm{GL}(V)$ is a complex reflection group, irreducible and well-generated (i.e. can be generated by $n=\operatorname{dim} V$ reflections).

- generating set $R:=\{$ all reflections of $W\}$. (\rightsquigarrow length ℓ_{R}, R-factorisations, order \preccurlyeq_{R})
- c : a Coxeter element in W.

Definition (Noncrossing partitions of type W)

$$
\operatorname{NCP}_{W}(c):=\left\{w \in W \mid w \preccurlyeq_{R} c\right\}
$$

Noncrossing partitions of type W

Now suppose that $W \subseteq \mathrm{GL}(V)$ is a complex reflection group, irreducible and well-generated (i.e. can be generated by $n=\operatorname{dim} V$ reflections).

- generating set $R:=\{$ all reflections of $W\}$. (\rightsquigarrow length ℓ_{R}, R-factorisations, order \preccurlyeq_{R})
- c : a Coxeter element in W.

Definition (Noncrossing partitions of type W)

$$
\operatorname{NCP}_{W}(c):=\left\{w \in W \mid w \preccurlyeq_{R} c\right\}
$$

- $\operatorname{NCP}_{W}(c) \simeq\{2$-factorisations of $c\}$;

Noncrossing partitions of type W

Now suppose that $W \subseteq \mathrm{GL}(V)$ is a complex reflection group, irreducible and well-generated (i.e. can be generated by $n=\operatorname{dim} V$ reflections).

- generating set $R:=\{$ all reflections of $W\}$. (\rightsquigarrow length ℓ_{R}, R-factorisations, order \preccurlyeq_{R})
- c : a Coxeter element in W.

Definition (Noncrossing partitions of type W)

$$
\operatorname{NCP}_{W}(c):=\left\{w \in W \mid w \preccurlyeq_{R} c\right\}
$$

- $\operatorname{NCP}_{w}(c) \simeq\{2$-factorisations of $c\}$;
- the structure does not depend on the choice of the Coxeter element (conjugacy).

Fuss-Catalan numbers

Kreweras's formula

- $W:=\mathfrak{S}_{n}$;
- c: an n-cycle.

The number of T-factorisations of c in $p+1$ blocks is the Fuss-Catalan number

$$
\operatorname{Cat}^{(p)}(n)=\prod_{i=2}^{n} \frac{i+p n}{i}
$$

Fuss-Catalan numbers of type W

Chapoton's formula

- $W:=\mathfrak{S}_{n}$;
- c: an n-cycle.

The number of T-factorisations of c in $p+1$ blocks is the Fuss-Catalan number

$$
\operatorname{Cat}^{(p)}(n)=\prod_{i=2}^{n} \frac{i+p n}{i}
$$

Fuss-Catalan numbers of type W

Chapoton's formula

- $W:=$ an irreducible, well-generated c.r.gp., of rank n;
- c: an n-cycle.

The number of T-factorisations of c in $p+1$ blocks is the Fuss-Catalan number

$$
\operatorname{Cat}^{(p)}(n)=\prod_{i=2}^{n} \frac{i+p n}{i}
$$

Fuss-Catalan numbers of type W

Chapoton's formula

- $W:=$ an irreducible, well-generated c.r.gp., of rank n;
- c : a Coxeter element.

The number of T-factorisations of c in $p+1$ blocks is the Fuss-Catalan number

$$
\operatorname{Cat}^{(p)}(n)=\prod_{i=2}^{n} \frac{i+p n}{i}
$$

Fuss-Catalan numbers of type W

Chapoton's formula

- $W:=$ an irreducible, well-generated c.r.gp., of rank n;
- c : a Coxeter element.

The number of R-factorisations of c in $p+1$ blocks is the Fuss-Catalan number

$$
\operatorname{Cat}^{(p)}(n)=\prod_{i=2}^{n} \frac{i+p n}{i}
$$

Fuss-Catalan numbers of type W

Chapoton's formula

- $W:=$ an irreducible, well-generated c.r.gp., of rank n;
- c: a Coxeter element.

The number of R-factorisations of c in $p+1$ blocks is the Fuss-Catalan number of type W

$$
\operatorname{Cat}^{(p)}(n)=\prod_{i=2}^{n} \frac{i+p n}{i}
$$

Fuss-Catalan numbers of type W

Chapoton's formula

- $W:=$ an irreducible, well-generated c.r.gp., of rank n;
- c: a Coxeter element.

The number of R-factorisations of c in $p+1$ blocks is the Fuss-Catalan number of type W

$$
\operatorname{Cat}^{(p)}(W)=\prod_{i=1}^{n} \frac{d_{i}+p h}{d_{i}}
$$

Fuss-Catalan numbers of type W

Chapoton's formula

- $W:=$ an irreducible, well-generated c.r.gp., of rank n;
- c: a Coxeter element.

The number of R-factorisations of c in $p+1$ blocks is the Fuss-Catalan number of type W

$$
\operatorname{Cat}^{(p)}(W)=\prod_{i=1}^{n} \frac{d_{i}+p h}{d_{i}}
$$

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case!

Fuss-Catalan numbers of type W

Chapoton's formula

- $W:=$ an irreducible, well-generated c.r.gp., of rank n;
- c : a Coxeter element.

The number of R-factorisations of c in $p+1$ blocks is the Fuss-Catalan number of type W

$$
\operatorname{Cat}^{(p)}(W)=\prod_{i=1}^{n} \frac{d_{i}+p h}{d_{i}}
$$

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case! Remark: Cat ${ }^{(p)}(W)$ counts also the number of maximal faces in the " p-divisible cluster complex of type W" (generalization of the simplicial associahedron) [Fomin-Reading].

Fuss-Catalan numbers of type W

Chapoton's formula

- $W:=$ an irreducible, well-generated c.r.gp., of rank n;
- c : a Coxeter element.

The number of R-factorisations of c in $p+1$ blocks is the Fuss-Catalan number of type W

$$
\operatorname{Cat}^{(p)}(W)=\prod_{i=1}^{n} \frac{d_{i}+p h}{d_{i}}
$$

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case! Remark: Cat ${ }^{(p)}(W)$ counts also the number of maximal faces in the " p-divisible cluster complex of type W" (generalization of the simplicial associahedron) [Fomin-Reading]. Related to cluster algebras of finite type if W is a Weyl group.

Outline

(1) Fuss-Catalan numbers of type W
(2) Factorisations as fibers of a Lyashko-Looijenga covering
(3) Maximal and submaximal factorisations of a Coxeter element

The quotient-space V / W

$W \subseteq \mathrm{GL}(V)$ a complex reflection group. W acts on $\mathbb{C}[V]$.

The quotient-space V / W

$W \subseteq \mathrm{GL}(V)$ a complex reflection group. W acts on $\mathbb{C}[V]$.
Chevalley-Shephard-Todd's theorem: there exist invariant polynomials f_{1}, \ldots, f_{n}, homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]$.

The quotient-space V / W

$W \subseteq \mathrm{GL}(V)$ a complex reflection group. W acts on $\mathbb{C}[V]$.
Chevalley-Shephard-Todd's theorem: there exist invariant polynomials f_{1}, \ldots, f_{n}, homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]$.
\rightsquigarrow isomorphism: V/W $\xrightarrow{\sim} \mathbb{C}^{n}$

$$
\bar{v} \mapsto\left(f_{1}(v), \ldots, f_{n}(v)\right) .
$$

The quotient-space V / W

$W \subseteq \mathrm{GL}(V)$ a complex reflection group. W acts on $\mathbb{C}[V]$.
Chevalley-Shephard-Todd's theorem: there exist invariant polynomials f_{1}, \ldots, f_{n}, homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]$.
\rightsquigarrow isomorphism: V/W $\xrightarrow{\sim} \mathbb{C}^{n}$

$$
\bar{v} \mapsto\left(f_{1}(v), \ldots, f_{n}(v)\right) .
$$

Definition

The degrees $d_{1} \leq \cdots \leq d_{n}=h$ of f_{1}, \ldots, f_{n} do not depend on the choice of f_{1}, \ldots, f_{n}. They are called the invariant degrees of W.

Discriminant of W

- $\mathcal{A}:=\{\operatorname{Ker}(r-1) \mid r \in \mathcal{R}\}$ (arrangement of hyperplanes of W)

Discriminant of W

- $\mathcal{A}:=\{\operatorname{Ker}(r-1) \mid r \in \mathcal{R}\}$ (arrangement of hyperplanes of W)
- discriminant hypersurface (in $V / W \simeq \mathbb{C}^{n}$):

$$
\mathcal{H}:=\left(\bigcup_{H \in \mathcal{A}} H\right) / W
$$

Discriminant of W

- $\mathcal{A}:=\{\operatorname{Ker}(r-1) \mid r \in \mathcal{R}\}$ (arrangement of hyperplanes of W)
- discriminant hypersurface (in $V / W \simeq \mathbb{C}^{n}$):

$$
\mathcal{H}:=\left(\bigcup_{H \in \mathcal{A}} H\right) / W
$$

- discriminant Δ_{W} : equation of the hypersurface \mathcal{H} in $\mathbb{C}\left[f_{1}, \ldots, f_{n}\right] . \quad\left(\Delta_{W}=\prod_{H \in \mathcal{A}} \varphi_{H}^{e_{H}} \in \mathbb{C}[V]^{W}\right)$

Example $W=A_{3}$: discriminant ("swallowtail")

$$
\bigcup_{H \in \mathcal{A}} H \subseteq V
$$

Example $W=A_{3}$: discriminant ("swallowtail")

$\bigcup H \subseteq V$
$H \in \mathcal{A}$
/W

Example $W=A_{3}$: discriminant ("swallowtail")

hypersurface \mathcal{H} (discriminant) $\subseteq W \backslash V \simeq \mathbb{C}^{3}$

Example $W=A_{3}$: discriminant ("swallowtail")

$$
\Delta_{W}\left(f_{1}, f_{2}, f_{3}\right)=\operatorname{Disc}\left(T^{4}+f_{1} T^{2}-f_{2} T+f_{3} ; T\right)
$$

Lyashko-Looijenga map and geometric factorisations

$$
\mathcal{H} \subseteq W \backslash V \simeq \mathbb{C}^{3}
$$

Lyashko-Looijenga map and geometric factorisations

Lyashko-Looijenga map of type W

$$
V / W=Y \times \mathbb{C}
$$

Lyashko-Looijenga map of type W

$$
V / W=Y \times \mathbb{C}
$$

LL: $Y \rightarrow E_{n}:=\{$ multisets of n points in $\mathbb{C}\}$
$y \mapsto$ \{roots, with multiplicities, of $\Delta_{W}\left(y, f_{n}\right)$ in $\left.f_{n}\right\}$

Lyashko-Looijenga map of type W

$V / W=Y \times \mathbb{C}$.
LL: $Y \rightarrow E_{n}:=\{$ multisets of n points in $\mathbb{C}\}$
$y \mapsto$ \{roots, with multiplicities, of $\Delta_{W}\left(y, f_{n}\right)$ in $\left.f_{n}\right\}$
$\Delta_{W}=f_{n}^{n}+a_{2} f_{n}^{n-2}+a_{3} f_{n}^{n-3}+\cdots+a_{n-1} f_{n}+a_{n}$.
Definition (LL as an algebraic (homogeneous) morphism)

$$
\begin{array}{cccc}
\mathrm{LL}: & \mathbb{C}^{n-1} & \rightarrow & \mathbb{C}^{n-1} \\
& \left(f_{1}, \ldots, f_{n-1}\right) & \mapsto & \left.\mapsto a_{2}, \ldots, a_{n}\right)
\end{array}
$$

Lyashko-Looijenga map of type W

$V / W=Y \times \mathbb{C}$.
LL: $Y \rightarrow E_{n}:=\{$ multisets of n points in $\mathbb{C}\}$
$y \mapsto$ \{roots, with multiplicities, of $\Delta_{W}\left(y, f_{n}\right)$ in $\left.f_{n}\right\}$
$\Delta_{W}=f_{n}^{n}+a_{2} f_{n}^{n-2}+a_{3} f_{n}^{f-3}+\cdots+a_{n-1} f_{n}+a_{n}$.
Definition (LL as an algebraic (homogeneous) morphism)

$$
\begin{aligned}
& \text { LL: } \quad \mathbb{C}^{n-1} \quad \rightarrow \quad \mathbb{C}^{n-1} \\
& \left(f_{1}, \ldots, f_{n-1}\right) \mapsto\left(a_{2}, \ldots, a_{n}\right)
\end{aligned}
$$

facto : $Y \rightarrow \operatorname{FACT}(c):=\{\boldsymbol{s t r i c t} R$-factorisations of $c\}$

Lyashko-Looijenga map of type W

$V / W=Y \times \mathbb{C}$.
LL: $\quad Y \rightarrow E_{n}:=\{$ multisets of n points in $\mathbb{C}\}$
$y \mapsto$ \{roots, with multiplicities, of $\Delta_{W}\left(y, f_{n}\right)$ in $\left.f_{n}\right\}$
$\Delta_{W}=f_{n}^{n}+a_{2} f_{n}^{n-2}+a_{3} f_{n}^{n-3}+\cdots+a_{n-1} f_{n}+a_{n}$.
Definition (LL as an algebraic (homogeneous) morphism)

$$
\begin{array}{lccc}
\mathrm{LL}: & \mathbb{C}^{n-1} & \rightarrow & \mathbb{C}^{n-1} \\
& \left(f_{1}, \ldots, f_{n-1}\right) & \mapsto & \left.\mapsto a_{2}, \ldots, a_{n}\right)
\end{array}
$$

facto : $Y \rightarrow \operatorname{FACT}(c):=\{$ strict R-factorisations of $c\}$ Geometrical compatibilities:

- length of the factors (\leftrightarrow multiplicities in the multiset $\operatorname{LL}(y)$);
- conjugacy classes of the factors (\leftrightarrow parabolic strata in \mathcal{H}).

Fibers of LL and strict factorisations of c

Let ω be a multiset in E_{n}.
Compatibility $\Rightarrow \forall y \in \operatorname{LL}^{-1}(\omega)$, the distribution of lengths of factors of facto (y) is the same (composition of n).

Fibers of LL and strict factorisations of c

Let ω be a multiset in E_{n}.
Compatibility $\Rightarrow \forall y \in L^{-1}(\omega)$, the distribution of lengths of factors of facto (y) is the same (composition of n).

Theorem (Bessis'07)

The map facto induces a bijection between the fiber $\mathrm{LL}^{-1}(\omega)$ and the set of strict factorisations of same "composition" as ω.

Fibers of LL and strict factorisations of c

Let ω be a multiset in E_{n}.
Compatibility $\Rightarrow \forall y \in \mathrm{LL}^{-1}(\omega)$, the distribution of lengths of factors of facto(y) is the same (composition of n).

Theorem (Bessis'07)

The map facto induces a bijection between the fiber $\mathrm{LL}^{-1}(\omega)$ and the set of strict factorisations of same "composition" as ω.
Equivalently, the product map:

$$
Y \xrightarrow{\mathrm{LL} \times \text { facto }} E_{n} \times \operatorname{FACT}(c)
$$

is injective, and its image is the set of "compatible" pairs.

Outline

(1) Fuss-Catalan numbers of type W
(2) Factorisations as fibers of a Lyashko-Looijenga covering
(3) Maximal and submaximal factorisations of a Coxeter element

Bifurcation locus (\mathcal{K}) of LL

Bifurcation locus (\mathcal{K}) of LL

An unramified covering

Bifurcation locus:

$$
\begin{aligned}
\mathcal{K} & :=\mathrm{LL}^{-1}\left(E_{n}-E_{n}^{\mathrm{reg}}\right) \\
& =\left\{y \in Y \mid \Delta_{W}\left(y, f_{n}\right) \text { has multiple roots w.r.t. } f_{n}\right\} \\
& =\left\{y \in Y \mid D_{\mathrm{LL}}(y)=0\right\}
\end{aligned}
$$

An unramified covering

Bifurcation locus:

$$
\begin{aligned}
\mathcal{K} & :=\mathrm{LL}^{-1}\left(E_{n}-E_{n}^{\mathrm{reg}}\right) \\
& =\left\{y \in Y \mid \Delta_{W}\left(y, f_{n}\right) \text { has multiple roots w.r.t. } f_{n}\right\} \\
& =\left\{y \in Y \mid D_{\mathrm{LL}}(y)=0\right\}
\end{aligned}
$$

where
$D_{\mathrm{LL}}:=\operatorname{Disc}\left(\Delta_{W}\left(y, f_{n}\right) ; f_{n}\right)$.

An unramified covering

Bifurcation locus:

$$
\begin{aligned}
\mathcal{K} & :=\mathrm{LL}^{-1}\left(E_{n}-E_{n}^{\mathrm{reg}}\right) \\
& =\left\{y \in Y \mid \Delta_{W}\left(y, f_{n}\right) \text { has multiple roots w.r.t. } f_{n}\right\} \\
& =\left\{y \in Y \mid D_{\mathrm{LL}}(y)=0\right\}
\end{aligned}
$$

where
$D_{\mathrm{LL}}:=\operatorname{Disc}\left(\Delta_{W}\left(y, f_{n}\right) ; f_{n}\right)$.

Proposition (Bessis)

- LL: $Y-\mathcal{K} \rightarrow E_{n}^{\text {reg }}$ is a topological covering, of degree $n!h^{n} /|W|$;

An unramified covering

Bifurcation locus:

$$
\begin{aligned}
\mathcal{K} & :=\mathrm{LL}^{-1}\left(E_{n}-E_{n}^{\mathrm{reg}}\right) \\
& =\left\{y \in Y \mid \Delta_{W}\left(y, f_{n}\right) \text { has multiple roots w.r.t. } f_{n}\right\} \\
& =\left\{y \in Y \mid D_{\mathrm{LL}}(y)=0\right\}
\end{aligned}
$$

where
$D_{\mathrm{LL}}:=\operatorname{Disc}\left(\Delta_{W}\left(y, f_{n}\right) ; f_{n}\right)$.

Proposition (Bessis)

- LL : $Y-\mathcal{K} \rightarrow E_{n}^{\mathrm{reg}}$ is a topological covering, of degree $n!h^{n} /|W|$;
- $\left|\operatorname{FACT}_{n}(c)\right|=n!h^{n} /|W|$.

An unramified covering

Bifurcation locus:

$$
\begin{aligned}
\mathcal{K} & :=\mathrm{LL}^{-1}\left(E_{n}-E_{n}^{\mathrm{reg}}\right) \\
& =\left\{y \in Y \mid \Delta_{W}\left(y, f_{n}\right) \text { has multiple roots w.r.t. } f_{n}\right\} \\
& =\left\{y \in Y \mid D_{\mathrm{LL}}(y)=0\right\}
\end{aligned}
$$

where
$D_{\mathrm{LL}}:=\operatorname{Disc}\left(\Delta_{W}\left(y, f_{n}\right) ; f_{n}\right)$.

Proposition (Bessis)

- LL: $Y-\mathcal{K} \rightarrow E_{n}^{\mathrm{reg}}$ is a topological covering, of degree $n!h^{n} /|W|$;
- $\left|\operatorname{FACT}_{n}(c)\right|=n!h^{n} /|W|$.

Can we compute $\left|\mathrm{FACT}_{n-1}(c)\right|$?

Irreducible components of \mathcal{K}

Want to study the restriction of $\mathrm{LL}: \mathcal{K} \rightarrow E_{n}-E_{n}^{\mathrm{reg}}$.

Irreducible components of \mathcal{K}

Want to study the restriction of $\mathrm{LL}: \mathcal{K} \rightarrow E_{n}-E_{n}^{\mathrm{reg}}$.

Proposition

There are (canonical) bijections between:

- the set of irreducible components of \mathcal{K} (or irreducible factors of D_{LL});

Irreducible components of \mathcal{K}

Want to study the restriction of $\mathrm{LL}: \mathcal{K} \rightarrow E_{n}-E_{n}^{\mathrm{reg}}$.

Proposition

There are (canonical) bijections between:

- the set of irreducible components of \mathcal{K} (or irreducible factors of $\left.D_{\mathrm{LL}}\right)$;
- the set of conjugacy classes of elements of NCP ${ }_{W}$ of length 2;

Irreducible components of \mathcal{K}

Want to study the restriction of $\mathrm{LL}: \mathcal{K} \rightarrow E_{n}-E_{n}^{\text {reg }}$.

Proposition

There are (canonical) bijections between:

- the set of irreducible components of \mathcal{K} (or irreducible factors of $\left.D_{\mathrm{LL}}\right)$;
- the set of conjugacy classes of elements of NCP ${ }_{w}$ of length 2;
- the set of conjugacy classes of parabolic subgroups of W of rank 2 .

[^0]
Irreducible components of \mathcal{K}

Want to study the restriction of $L L: \mathcal{K} \rightarrow E_{n}-E_{n}^{\text {reg }}$.

Proposition

There are (canonical) bijections between:

- the set of irreducible components of \mathcal{K} (or irreducible factors of $\left.D_{\mathrm{LL}}\right)$;
- the set of conjugacy classes of elements of NCP ${ }_{W}$ of length 2;
- the set of conjugacy classes of parabolic subgroups of W of rank 2.

- Explanations

Denote "this" set by $\overline{\mathcal{L}}_{2}$.

Irreducible components of \mathcal{K}

Want to study the restriction of $L L: \mathcal{K} \rightarrow E_{n}-E_{n}^{\mathrm{reg}}$.

Proposition

There are (canonical) bijections between:

- the set of irreducible components of \mathcal{K} (or irreducible factors of $\left.D_{\mathrm{LL}}\right)$;
- the set of conjugacy classes of elements of NCP ${ }_{W}$ of length 2;
- the set of conjugacy classes of parabolic subgroups of W of rank 2.
- Explanations

Denote "this" set by $\overline{\mathcal{L}}_{2}$. Thus: $D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$
(irreducible factors in $\mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right]$).

Irreducible components of \mathcal{K}

Irreducible components of \mathcal{K}

Irreducible components of \mathcal{K}

Submaximal factorisations of type \wedge

$\operatorname{FACT}_{n-1}^{\wedge}(c):=$ set of factorisations of c in $n-1$ factors, with:

- $n-2$ reflections; and
- 1 element of length 2 and conjugacy class \wedge.

Submaximal factorisations of type \wedge

$\operatorname{FACT}_{n-1}^{\wedge}(c):=$ set of factorisations of c in $n-1$ factors, with:

- $n-2$ reflections; and
- 1 element of length 2 and conjugacy class \wedge.

Remark: $\operatorname{FACT}_{n-1}^{\wedge}(c)=$ facto($\left\{\right.$ "generic" points in $\left.\left\{D_{\wedge}=0\right\}\right\}$).

Submaximal factorisations of type \wedge

$\operatorname{FACT}_{n-1}^{\wedge}(c):=$ set of factorisations of c in $n-1$ factors, with:

- $n-2$ reflections; and
- 1 element of length 2 and conjugacy class \wedge.

Remark: $\operatorname{FACT}_{n-1}^{\wedge}(c)=$ facto(\{"generic" points in $\left.\left\{D_{\Lambda}=0\right\}\right\}$).
The restriction $L L_{\Lambda}: \mathcal{K}_{\Lambda} \rightarrow E_{n}-E_{n}^{\text {reg }}$

Submaximal factorisations of type Λ

$\operatorname{FACT}_{n-1}^{\wedge}(c):=$ set of factorisations of c in $n-1$ factors, with:

- $n-2$ reflections; and
- 1 element of length 2 and conjugacy class \wedge.

Remark: $\operatorname{FACT}_{n-1}^{\wedge}(c)=$ facto($\left\{\right.$ "generic" points in $\left.\left\{D_{\wedge}=0\right\}\right\}$).
The restriction $L L_{\Lambda}: \mathcal{K}_{\Lambda} \rightarrow E_{n}-E_{n}^{\text {reg }}$ corresponds to the extension $\mathbb{C}\left[a_{2}, \ldots, a_{n}\right] /(D) \subseteq \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right] /\left(D_{\Lambda}\right)$.

Submaximal factorisations of type \wedge

$\operatorname{FACT}_{n-1}^{\wedge}(c):=$ set of factorisations of c in $n-1$ factors, with:

- $n-2$ reflections; and
- 1 element of length 2 and conjugacy class \wedge.

Remark: $\operatorname{FACT}_{n-1}^{\wedge}(c)=$ facto($\left\{\right.$ "generic" points in $\left.\left\{D_{\wedge}=0\right\}\right\}$).
The restriction $L L_{\Lambda}: \mathcal{K}_{\Lambda} \rightarrow E_{n}-E_{n}^{\text {reg }}$ corresponds to the extension $\mathbb{C}\left[a_{2}, \ldots, a_{n}\right] /(D) \subseteq \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right] /\left(D_{\Lambda}\right)$.

Theorem (R.)

For any \wedge in $\overline{\mathcal{L}}_{2}$,

- L_{\wedge} is a finite morphism of degree $\frac{(n-2)!h^{n-1}}{|W|} \operatorname{deg} D_{\Lambda}$;

Submaximal factorisations of type \wedge

$\operatorname{FACT}_{n-1}^{\wedge}(c):=$ set of factorisations of c in $n-1$ factors, with:

- $n-2$ reflections; and
- 1 element of length 2 and conjugacy class \wedge.

Remark: $\operatorname{FACT}_{n-1}^{\wedge}(c)=$ facto($\left\{\right.$ "generic" points in $\left.\left\{D_{\wedge}=0\right\}\right\}$).
The restriction $L L_{\Lambda}: \mathcal{K}_{\Lambda} \rightarrow E_{n}-E_{n}^{\text {reg }}$ corresponds to the extension $\mathbb{C}\left[a_{2}, \ldots, a_{n}\right] /(D) \subseteq \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right] /\left(D_{\Lambda}\right)$.

Theorem (R.)

For any \wedge in $\overline{\mathcal{L}}_{2}$,

- L_{\wedge} is a finite morphism of degree $\frac{(n-2)!h^{n-1}}{|W|} \operatorname{deg} D_{\Lambda}$;
- the number of factorisations of c of type Λ is

$$
\left|\operatorname{FACT}_{n-1}^{\wedge}(c)\right|=\frac{(n-1)!h^{n-1}}{|W|} \operatorname{deg} D_{\wedge}
$$

Submaximal factorisations

Problem: find a general computation of $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}} \operatorname{deg} D_{\Lambda}$.

Submaximal factorisations

Problem: find a general computation of $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}} \operatorname{deg} D_{\Lambda}$.
Recall that $D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.

Submaximal factorisations

Problem: find a general computation of $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}} \operatorname{deg} D_{\Lambda}$.
Recall that $D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.
Proposition (Saito; R.)
Set $J_{\mathrm{LL}}:=\operatorname{Jac}\left(\left(a_{2}, \ldots, a_{n}\right) /\left(f_{1}, \ldots, f_{n-1}\right)\right)$. Then:

$$
J_{\mathrm{LL}} \doteq \prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}-1}
$$

Virtual reflection groups?

Submaximal factorisations

Problem: find a general computation of $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}} \operatorname{deg} D_{\Lambda}$.
Recall that $D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.
Proposition (Saito; R.)
Set $J_{\mathrm{LL}}:=\operatorname{Jac}\left(\left(a_{2}, \ldots, a_{n}\right) /\left(f_{1}, \ldots, f_{n-1}\right)\right)$. Then:

$$
J_{\mathrm{LL}} \doteq \prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}-1}
$$

- Virtual reflection groups?

So, $\sum \operatorname{deg} D_{\wedge}=\operatorname{deg} D_{\mathrm{LL}}-\operatorname{deg} J_{\mathrm{LL}}=\ldots$

Submaximal factorisations

Corollary
Let W be an irreducible, well-generated complex reflection group, of rank n. The number of strict factorisations of a Coxeter element c in $n-1$ factors is:

Submaximal factorisations

Corollary

Let W be an irreducible, well-generated complex reflection group, of rank n. The number of strict factorisations of a Coxeter element c in $n-1$ factors is:

$$
\left|\operatorname{FACT}_{n-1}(c)\right|=\frac{(n-1)!h^{n-1}}{|W|}\left(\frac{(n-1)(n-2)}{2} h+\sum_{i=1}^{n-1} d_{i}\right)
$$

Submaximal factorisations

Corollary

Let W be an irreducible, well-generated complex reflection group, of rank n. The number of strict factorisations of a Coxeter element c in $n-1$ factors is:

$$
\mid \text { FACT }_{n-1}(c) \left\lvert\,=\frac{(n-1)!h^{n-1}}{|W|}\left(\frac{(n-1)(n-2)}{2} h+\sum_{i=1}^{n-1} d_{i}\right)\right.
$$

- We recover what is predicted by Chapoton's formula;

Submaximal factorisations

Corollary

Let W be an irreducible, well-generated complex reflection group, of rank n. The number of strict factorisations of a Coxeter element c in $n-1$ factors is:

$$
\left|\operatorname{FACT}_{n-1}(c)\right|=\frac{(n-1)!h^{n-1}}{|W|}\left(\frac{(n-1)(n-2)}{2} h+\sum_{i=1}^{n-1} d_{i}\right)
$$

- We recover what is predicted by Chapoton's formula;
- but the proof is more satisfactory and enlightening: we travelled from the numerology of $\mathrm{FACT}_{n}(c)$ (non-ramified part of LL) to that of $\mathrm{FACT}_{n-1}(c)$, without adding any case-by-case analysis.

Conclusion, questions

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].

Conclusion, questions

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the $\left.\left|\mathrm{FACT}_{k}(c)\right|\right)$? Can we interpret Chapoton's formula as a ramification formula for LL ?

Conclusion, questions

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the $\left.\left|\mathrm{FACT}_{k}(c)\right|\right)$? Can we interpret Chapoton's formula as a ramification formula for LL ?

Conclusion, questions

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the $\left.\left|\mathrm{FACT}_{k}(c)\right|\right)$? Can we interpret Chapoton's formula as a ramification formula for LL?

Merci !

Conclusion, questions

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the $\left.\left|\mathrm{FACT}_{k}(c)\right|\right)$? Can we interpret Chapoton's formula as a ramification formula for LL?

Merci !

Conclusion, questions

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the $\left.\left|\mathrm{FACT}_{k}(c)\right|\right)$? Can we interpret Chapoton's formula as a ramification formula for LL?

Merci !

Conclusion, questions

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the $\left.\left|\mathrm{FACT}_{k}(c)\right|\right)$? Can we interpret Chapoton's formula as a ramification formula for LL?

Merci !

Conclusion, questions

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the $\left.\left|\mathrm{FACT}_{k}(c)\right|\right)$? Can we interpret Chapoton's formula as a ramification formula for LL?

Merci !

Conclusion, questions

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the $\left.\left|\mathrm{FACT}_{k}(c)\right|\right)$? Can we interpret Chapoton's formula as a ramification formula for LL?

Merci !

Conclusion, questions

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the $\left.\left|\mathrm{FACT}_{k}(c)\right|\right)$? Can we interpret Chapoton's formula as a ramification formula for LL?

Merci !

Outline

4) Appendix

- Stratifications
- Comparison reflection groups / LL extensions

Stratifications

Stratification of V with the "flats" (intersection lattice): $\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{A}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\}$.

Stratifications

Stratification of V with the "flats" (intersection lattice):
$\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{A}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\}$.
Bijections [Steinberg]: stratification \mathcal{L}
$\leftrightarrow \quad\{$ parabolic subgroups of $W\}$

Stratifications

Stratification of V with the "flats" (intersection lattice):
$\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{A}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\}$.
Bijections [Steinberg]:
stratification $\overline{\mathcal{L}}=\mathcal{L} / W \quad \leftrightarrow \quad$ p.sg. $(W) /$ conj.

Stratifications

Stratification of V with the "flats" (intersection lattice):
$\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{A}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\}$.
Bijections [Steinberg]:
stratification $\overline{\mathcal{L}}=\mathcal{L} / W \quad \leftrightarrow \quad$ p.sg. $(W) /$ conj. $\quad \leftrightarrow \quad$ NCP $W /$ conj.

Stratifications

Stratification of V with the "flats" (intersection lattice):
$\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{A}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\}$.
Bijections [Steinberg]:
$\begin{array}{cccccc}\text { stratification } \overline{\mathcal{L}}=\mathcal{L} / W & \leftrightarrow & \text { p.sg. }(W) / \text { conj. } & \leftrightarrow & \mathrm{NCP}_{W} / \text { conj. } \\ \operatorname{codim}(\Lambda) & = & \operatorname{rank}\left(W_{\Lambda}\right) & = & \ell_{R}\left(w_{\Lambda}\right)\end{array}$

Stratifications

Stratification of V with the "flats" (intersection lattice):
$\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{A}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\}$.
Bijections [Steinberg]:
$\begin{array}{cccccc}\text { stratification } \overline{\mathcal{L}}=\mathcal{L} / W & \leftrightarrow & \text { p.sg. }(W) / \text { conj. } & \leftrightarrow & \text { NCP }_{W} / \text { conj. } \\ \operatorname{codim}(\Lambda) & = & \operatorname{rank}\left(W_{\Lambda}\right) & = & \ell_{R}\left(W_{\Lambda}\right)\end{array}$
Remark: \mathcal{H} is the union of strata of $\overline{\mathcal{L}}$ of codim. 1.

Stratifications

Stratification of V with the "flats" (intersection lattice):
$\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{A}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\}$.
Bijections [Steinberg]:
$\begin{array}{clllll}\text { stratification } \overline{\mathcal{L}}=\mathcal{L} / W & \leftrightarrow & \text { p.sg. }(W) / \text { conj. } & \leftrightarrow & \operatorname{NCP}_{w} / \text { conj } . \\ \operatorname{codim}(\Lambda) & = & \operatorname{rank}\left(W_{\Lambda}\right) & = & \ell_{R}\left(w_{\Lambda}\right)\end{array}$
Remark: \mathcal{H} is the union of strata of $\overline{\mathcal{L}}$ of codim. 1.
Conjugacy classes of factors of facto $(y) \leftrightarrow$ strata containing the intersection points.

Example of $W=A_{3}$: stratification of the discriminant

$$
\Delta_{W}\left(f_{1}, f_{2}, f_{3}\right)=\operatorname{Disc}\left(T^{4}+f_{1} T^{2}-f_{2} T+f_{3} ; T\right)
$$

Example of $W=A_{3}$: stratification of the discriminant

$$
\Delta_{W}\left(f_{1}, f_{2}, f_{3}\right)=\operatorname{Disc}\left(T^{4}+f_{1} T^{2}-f_{2} T+f_{3} ; T\right)
$$

Example of $W=A_{3}$: stratification of the discriminant

$$
\Delta_{W}\left(f_{1}, f_{2}, f_{3}\right)=\operatorname{Disc}\left(T^{4}+f_{1} T^{2}-f_{2} T+f_{3} ; T\right)
$$

Example of $W=A_{3}$: stratification of the discriminant

$\Delta_{W}\left(f_{1}, f_{2}, f_{3}\right)=\operatorname{Disc}\left(T^{4}+f_{1} T^{2}-f_{2} T+f_{3} ; T\right)$

Example of $W=A_{3}$: stratification of the discriminant

$\Delta_{W}\left(f_{1}, f_{2}, f_{3}\right)=\operatorname{Disc}\left(T^{4}+f_{1} T^{2}-f_{2} T+f_{3} ; T\right)$

Irreducible components of \mathcal{K}, details

$\overline{\mathcal{L}}_{2}:=\{$ strata of $\overline{\mathcal{L}}$ of codim. 2$\}$.

Irreducible components of \mathcal{K}, details

$\overline{\mathcal{L}}_{2}:=\{$ strata of $\overline{\mathcal{L}}$ of codim. 2$\}$.
Steinberg's theorem $\Rightarrow \overline{\mathcal{L}}_{2}$ is in bijection with:

- \{conjugacy classes of parabolic subgroups of W of rank 2\}
- \{conjugacy classes of elements of NCP ${ }_{W}$ of length 2\}

Irreducible components of \mathcal{K}, details

$\overline{\mathcal{L}}_{2}:=\{$ strata of $\overline{\mathcal{L}}$ of codim. 2 $\}$.
Steinberg's theorem $\Rightarrow \overline{\mathcal{L}}_{2}$ is in bijection with:

- \{conjugacy classes of parabolic subgroups of W of rank 2\}
- \{conjugacy classes of elements of NCP ${ }_{W}$ of length 2\}

Proposition

The $\varphi(\Lambda)$, for $\Lambda \in \overline{\mathcal{L}}_{2}$, are the irreducible components of \mathcal{K} (where φ is the projection $V / W \rightarrow Y$).

Reflection group vs. Lyashko-Looijenga extension

Reflection group W
$V \rightarrow V / W$
$\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]=\mathbb{C}[V]^{W} \subseteq \mathbb{C}[V]$
degree $|W|$
ramified on $\bigcup_{H \in \mathcal{A}} H \rightarrow \mathcal{H}$

$$
\begin{gathered}
\Delta_{W}=\prod_{H \in \mathcal{A}} \alpha_{H}^{e_{H}} \\
J_{W}=\prod \alpha_{H}^{e_{H}-1} \\
e_{H}=\left|W_{H}\right|
\end{gathered}
$$

Extension LL
$Y \rightarrow \mathbb{C}^{n-1}$
$\mathbb{C}\left[a_{2}, \ldots, a_{n}\right] \subseteq \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right]$
degree $n!h^{n} /|W|$

$$
\begin{gathered}
Y-\mathcal{K} \rightarrow E_{n}^{\text {reg }} \\
\simeq \operatorname{Red}_{R}(c)
\end{gathered}
$$

$$
\mathcal{K}=\bigcup_{\Lambda \in \overline{\mathcal{L}}_{2}} \varphi(\Lambda) \rightarrow E_{n}-E_{n}^{\text {reg }}
$$

$$
D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r}{ }_{\Lambda}^{\prime}
$$

$$
J_{L L}=\prod_{\Lambda}^{r_{1}-1}
$$

$r_{\Lambda}=$ pseudo-order of elements of NCP w of type \wedge

[^0]: Explanations

