Discriminant of a reflection group and factorisations of a Coxeter element

Vivien RIPOLL

Laboratoire de Combinatoire et d'Informatique de Montréal (LaCIM) Université du Québec à Montréal (UQAM)

> Colloque Surfaces et Représentations Sherbrooke 9 octobre 2010

> > ◆□▶ ◆□▶ ▲□▶ ▲□▶ ●□□ のQ@

Pactorisations as fibers of a Lyashko-Looijenga covering

Maximal and submaximal factorisations of a Coxeter element

Pactorisations as fibers of a Lyashko-Looijenga covering

3 Maximal and submaximal factorisations of a Coxeter element

うとの 単則 スポットポット 白マ

Group G, generated by A

Group *G*, generated by $A \rightarrow \text{length function } \ell_A$ on *G*.

Group *G*, generated by $A \rightarrow \text{length function } \ell_A$ on *G*.

Definition (A-factorisations) (g_1, \ldots, g_p) is an A-factorisation of $g \in G$ if• $g_1 \ldots g_p = g$;

◆□▶ ◆□▶ ▲□▶ ▲□▶ ●□□ のQ@

Group G, generated by $A \rightarrow \text{length function } \ell_A$ on G.

Definition (A-factorisations) (g_1, \ldots, g_ρ) is an A-factorisation of $g \in G$ if• $g_1 \ldots g_\rho = g;$ • $\ell_A(g_1) + \cdots + \ell_A(g_\rho) = \ell_A(g).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ●□□ のQ@

Group G, generated by $A \rightarrow \text{length function } \ell_A$ on G.

Definition (*A*-factorisations) (g_1, \ldots, g_p) is an *A*-factorisation of $g \in G$ if • $g_1 \ldots g_p = g;$ • $\ell_A(g_1) + \cdots + \ell_A(g_p) = \ell_A(g).$

Example: (G, A) = (W, S) finite Coxeter system

Strict maximal factorisations of $w_0 \leftrightarrow galleries$ connecting a chamber to its opposite. [Deligne]

Group G, generated by $A \rightarrow \text{length function } \ell_A$ on G.

Definition (*A*-factorisations) (g_1, \ldots, g_p) is an *A*-factorisation of $g \in G$ if • $g_1 \ldots g_p = g$; • $\ell_A(g_1) + \cdots + \ell_A(g_p) = \ell_A(g)$.

Example: (G, A) = (W, S) finite Coxeter system

Strict maximal factorisations of $w_0 \leftrightarrow galleries$ connecting a chamber to its opposite. [Deligne]

Definition (Divisibility order \preccurlyeq_A)

 $g \preccurlyeq_A h$ if and only if g is a (left) "A-factor" of h.

Group G, generated by $A \rightarrow \text{length function } \ell_A$ on G.

Definition (*A*-factorisations) (g_1, \ldots, g_p) is an *A*-factorisation of $g \in G$ if • $g_1 \ldots g_p = g$; • $\ell_A(g_1) + \cdots + \ell_A(g_p) = \ell_A(g)$.

Example: (G, A) = (W, S) finite Coxeter system

Strict maximal factorisations of $w_0 \leftrightarrow galleries$ connecting a chamber to its opposite. [Deligne]

Definition (Divisibility order \preccurlyeq_A)

 $g \preccurlyeq_A h$ if and only if g is a (left) "A-factor" of h.

 $[1, h]_{\preccurlyeq_A} = \{ \text{divisors of } h \text{ for } \preccurlyeq_A \} \simeq \{ 2 \text{-factorisations of } h \}.$

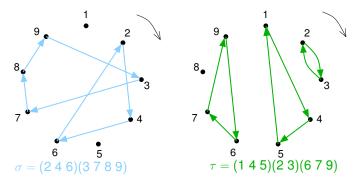
• $G := \mathfrak{S}_n$, with generating set $T := \{ all transpositions \}$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

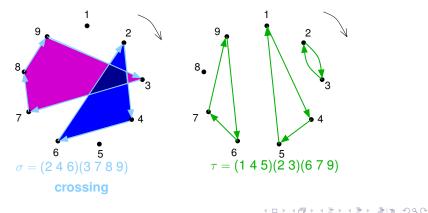
G := S_n, with generating set T := {all transpositions}
c := n-cycle (1 2 ... n)

- $G := \mathfrak{S}_n$, with generating set $T := \{ all transpositions \}$
- c := n-cycle (1 2 ... n)
- {*T*-divisors of *c*} \longleftrightarrow {noncrossing partitions of an *n*-gon}

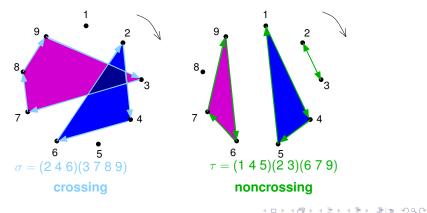
- $G := \mathfrak{S}_n$, with generating set $T := \{$ all transpositions $\}$
- c := n-cycle (1 2 ... n)
- {*T*-divisors of *c*} \longleftrightarrow {noncrossing partitions of an *n*-gon}



- $G := \mathfrak{S}_n$, with generating set $T := \{ all transpositions \}$
- c := n-cycle (1 2 ... n)
- {*T*-divisors of *c*} \longleftrightarrow {noncrossing partitions of an *n*-gon}



- $G := \mathfrak{S}_n$, with generating set $T := \{ all transpositions \}$
- c := n-cycle (1 2 ... n)
- {*T*-divisors of *c*} \longleftrightarrow {noncrossing partitions of an *n*-gon}



Complex reflection groups

V : complex vector space (finite dimension).

Definition A (finite) complex reflection group is a finite subgroup of GL(V) generated by complex reflections. A complex reflection is an element $s \in GL(V)$ of finite order, s.t. $Ker(s - Id_V)$ is a hyperplane:

 $s \underset{\mathcal{B}}{\leftrightarrow}$ matrix Diag $(\zeta, 1, \dots, 1)$, with ζ root of unity.

Complex reflection groups

V : complex vector space (finite dimension).

```
DefinitionA (finite) complex reflection group is a finite subgroup of GL(V)generated by complex reflections.A complex reflection is an element s \in GL(V) of finite order, s.t.Ker(s - Id_V) is a hyperplane:s \Leftrightarrow_{\mathcal{B}} matrix Diag(\zeta, 1, ..., 1), with \zeta root of unity.
```

 includes finite (complexified) real reflection groups (aka finite Coxeter groups);

Complex reflection groups

V : complex vector space (finite dimension).

DefinitionA (finite) complex reflection group is a finite subgroup of GL(V)generated by complex reflections.A complex reflection is an element $s \in GL(V)$ of finite order, s.t.Ker $(s - Id_V)$ is a hyperplane: $s \underset{\mathcal{B}}{\leftrightarrow}$ matrix $Diag(\zeta, 1, ..., 1)$, with ζ root of unity.

- includes finite (complexified) real reflection groups (aka *finite Coxeter groups*);
- Shephard-Todd's classification (1954): an infinite series with 3 parameters *G*(*de*, *e*, *r*), and 34 exceptional groups.

Now suppose that $W \subseteq GL(V)$ is a complex reflection group, irreducible and well-generated (*i.e.* can be generated by $n = \dim V$ reflections).

Now suppose that $W \subseteq GL(V)$ is a complex reflection group, irreducible and well-generated (*i.e.* can be generated by $n = \dim V$ reflections).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ●□□ のQ@

generating set *R* := {all reflections of *W*}.
 (~ length ℓ_R, *R*-factorisations, order ≼_R)

Now suppose that $W \subseteq GL(V)$ is a complex reflection group, irreducible and well-generated (*i.e.* can be generated by $n = \dim V$ reflections).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ●□□ のQ@

- generating set *R* := {all reflections of *W*}.
 (~ length ℓ_R, *R*-factorisations, order ≼_R)
- c : a Coxeter element in W.

Now suppose that $W \subseteq GL(V)$ is a complex reflection group, irreducible and well-generated (*i.e.* can be generated by $n = \dim V$ reflections).

- generating set *R* := {all reflections of *W*}.
 (~ length ℓ_R, *R*-factorisations, order ≼_R)
- c : a Coxeter element in W.

Definition (Noncrossing partitions of type *W*)

 $\mathsf{NCP}_W(c) := \{ w \in W \mid w \preccurlyeq_R c \}$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

Now suppose that $W \subseteq GL(V)$ is a complex reflection group, irreducible and well-generated (*i.e.* can be generated by $n = \dim V$ reflections).

- generating set *R* := {all reflections of *W*}.
 (~ length ℓ_R, *R*-factorisations, order ≼_R)
- c : a Coxeter element in W.

Definition (Noncrossing partitions of type *W*)

 $\mathsf{NCP}_W(c) := \{ w \in W \mid w \preccurlyeq_R c \}$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

• NCP_W(
$$c$$
) \simeq {2-factorisations of c };

Now suppose that $W \subseteq GL(V)$ is a complex reflection group, irreducible and well-generated (*i.e.* can be generated by $n = \dim V$ reflections).

- generating set *R* := {all reflections of *W*}.
 (~ length ℓ_R, *R*-factorisations, order ≼_R)
- c : a Coxeter element in W.

Definition (Noncrossing partitions of type *W*)

 $\mathsf{NCP}_W(\mathbf{C}) := \{ \mathbf{W} \in \mathbf{W} \mid \mathbf{W} \preccurlyeq_R \mathbf{C} \}$

- NCP_W(c) ~ {2-factorisations of c};
- the structure does not depend on the choice of the Coxeter element (conjugacy).

Fuss-Catalan numbers

Kreweras's formula

- $W := \mathfrak{S}_n;$
- c : an n-cycle.

The number of *T*-factorisations of c in p + 1 blocks is the **Fuss-Catalan number**

$$\operatorname{Cat}^{(p)}(n) = \prod_{i=2}^{n} \frac{i + pn}{i}$$

▲□▶▲□▶▲□▶▲□▶ 三回 のQ@

Chapoton's formula

- $W := \mathfrak{S}_n;$
- c : an n-cycle.

The number of *T*-factorisations of c in p + 1 blocks is the **Fuss-Catalan number**

$$\operatorname{Cat}^{(p)}(n) = \prod_{i=2}^{n} \frac{i + pn}{i}$$

▲□▶▲□▶▲□▶▲□▶ 三回 のQ@

Chapoton's formula

- *W* := an irreducible, well-generated c.r.gp., of rank *n*;
- c : an n-cycle.

The number of *T*-factorisations of c in p + 1 blocks is the **Fuss-Catalan number**

$$\operatorname{Cat}^{(p)}(n) = \prod_{i=2}^{n} \frac{i + pn}{i}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ●□□ のQ@

Chapoton's formula

- *W* := an irreducible, well-generated c.r.gp., of rank *n*;
- *c* : a Coxeter element.

The number of *T*-factorisations of c in p + 1 blocks is the **Fuss-Catalan number**

$$\operatorname{Cat}^{(p)}(n) = \prod_{i=2}^{n} \frac{i + pn}{i}$$

Chapoton's formula

- *W* := an irreducible, well-generated c.r.gp., of rank *n*;
- *c* : a Coxeter element.

The number of *R*-factorisations of c in p + 1 blocks is the **Fuss-Catalan number**

$$\operatorname{Cat}^{(p)}(n) = \prod_{i=2}^{n} \frac{i + pn}{i}$$

Chapoton's formula

- *W* := an irreducible, well-generated c.r.gp., of rank *n*;
- *c* : a Coxeter element.

The number of *R*-factorisations of c in p + 1 blocks is the Fuss-Catalan number of type *W*

$$\operatorname{Cat}^{(p)}(n) = \prod_{i=2}^{n} \frac{i+pn}{i}$$

Chapoton's formula

- *W* := an irreducible, well-generated c.r.gp., of rank *n*;
- *c* : a Coxeter element.

The number of *R*-factorisations of c in p + 1 blocks is the Fuss-Catalan number of type *W*

$$\operatorname{Cat}^{(p)}(W) = \prod_{i=1}^n \frac{d_i + ph}{d_i}$$
.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ●□□ のQ@

Chapoton's formula

- *W* := an irreducible, well-generated c.r.gp., of rank *n*;
- *c* : a Coxeter element.

The number of *R*-factorisations of *c* in p + 1 blocks is the Fuss-Catalan number of type *W*

$$\operatorname{Cat}^{(p)}(W) = \prod_{i=1}^n \frac{d_i + ph}{d_i}$$
.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のへで

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case!

Chapoton's formula

- *W* := an irreducible, well-generated c.r.gp., of rank *n*;
- *c* : a Coxeter element.

The number of *R*-factorisations of *c* in p + 1 blocks is the Fuss-Catalan number of type *W*

$$\operatorname{Cat}^{(p)}(W) = \prod_{i=1}^{n} \frac{d_i + ph}{d_i}.$$

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case! **Remark:** $Cat^{(p)}(W)$ counts also the number of maximal faces in the "*p*-divisible cluster complex of type *W*" (generalization of the simplicial associahedron) [Fomin-Reading].

Chapoton's formula

- *W* := an irreducible, well-generated c.r.gp., of rank *n*;
- *c* : a Coxeter element.

The number of *R*-factorisations of *c* in p + 1 blocks is the Fuss-Catalan number of type *W*

$$\operatorname{Cat}^{(p)}(W) = \prod_{i=1}^{n} \frac{d_i + ph}{d_i}.$$

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case! **Remark:** $Cat^{(p)}(W)$ counts also the number of maximal faces in the "*p*-divisible cluster complex of type *W*" (generalization of the simplicial associahedron) [Fomin-Reading]. Related to cluster algebras of finite type *if W is a Weyl group*.

Pactorisations as fibers of a Lyashko-Looijenga covering

3 Maximal and submaximal factorisations of a Coxeter element

The quotient-space V/W

$W \subseteq GL(V)$ a complex reflection group. *W* acts on $\mathbb{C}[V]$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $W \subseteq GL(V)$ a complex reflection group. *W* acts on $\mathbb{C}[V]$. **Chevalley-Shephard-Todd's theorem:** there exist invariant polynomials f_1, \ldots, f_n , homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^W = \mathbb{C}[f_1, \ldots, f_n]$.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 $W \subseteq GL(V)$ a complex reflection group. *W* acts on $\mathbb{C}[V]$.

Chevalley-Shephard-Todd's theorem: there exist invariant polynomials f_1, \ldots, f_n , homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^W = \mathbb{C}[f_1, \ldots, f_n]$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○◆

 $\stackrel{\rightsquigarrow}{\to} \text{isomorphism}: \begin{array}{cc} V/W & \stackrel{\sim}{\to} & \mathbb{C}^n \\ \bar{v} & \mapsto & (f_1(v), \dots, f_n(v)). \end{array}$

 $W \subseteq GL(V)$ a complex reflection group. *W* acts on $\mathbb{C}[V]$.

Chevalley-Shephard-Todd's theorem: there exist invariant polynomials f_1, \ldots, f_n , homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^W = \mathbb{C}[f_1, \ldots, f_n]$.

$$\stackrel{\rightsquigarrow}{\to} \text{isomorphism}: V/W \stackrel{\sim}{\to} \mathbb{C}^n \\ \bar{v} \mapsto (f_1(v), \dots, f_n(v)).$$

Definition

The degrees $d_1 \leq \cdots \leq d_n = h$ of f_1, \ldots, f_n do not depend on the choice of f_1, \ldots, f_n . They are called the invariant degrees of W.

Discriminant of W

•
$$\mathcal{A} := \{ \text{Ker}(r-1) \mid r \in \mathcal{R} \}$$

(arrangement of hyperplanes of W)

◆□▶ ◆□▶ ◆目▼ ◆目▼ ●へ⊙

Discriminant of W

• discriminant hypersurface (in $V/W \simeq \mathbb{C}^n$):

$$\mathcal{H} := \left(\bigcup_{H \in \mathcal{A}} H\right) / W$$

Discriminant of W

• discriminant hypersurface (in $V/W \simeq \mathbb{C}^n$):

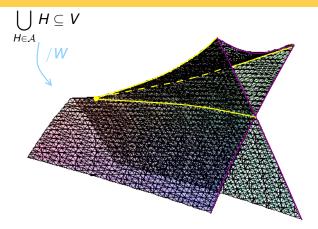
$$\mathcal{H} := \left(\bigcup_{H \in \mathcal{A}} H\right) / W$$

• discriminant Δ_W : equation of the hypersurface \mathcal{H} in $\mathbb{C}[f_1, \ldots, f_n]$. $(\Delta_W = \prod_{H \in \mathcal{A}} \varphi_H^{e_H} \in \mathbb{C}[V]^W)$

$$\bigcup_{H\in\mathcal{A}}H\subseteq V$$

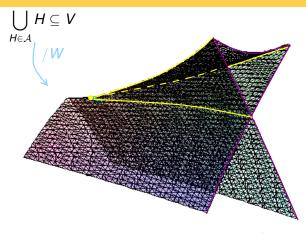
$$\bigcup_{H\in\mathcal{A}}H\subseteq V$$

◆□▶ ◆□▶ ◆目▼ ◆目▼ ●へ⊙



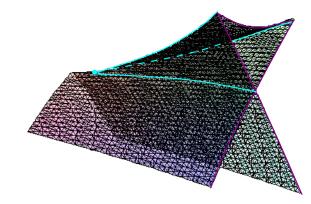
hypersurface \mathcal{H} (discriminant) $\subseteq W \setminus V \simeq \mathbb{C}^3$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・



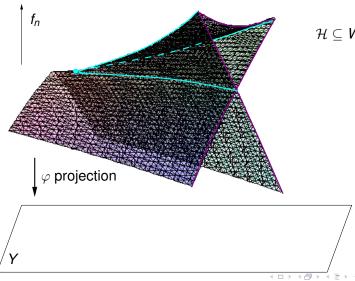
 $\mathcal{H} = \{\Delta_W = 0\} \subseteq W \setminus V \simeq \mathbb{C}^3$

 $\Delta_{W}(f_{1}, f_{2}, f_{3}) = \mathsf{Disc}(T^{4} + f_{1}T^{2} - f_{2}T + f_{3}; T)$

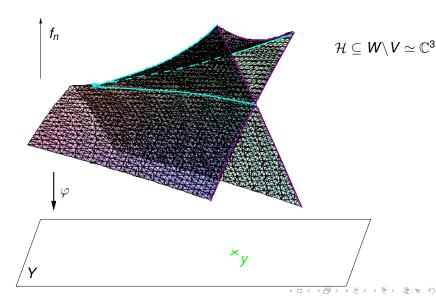


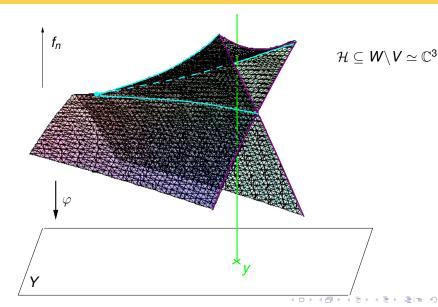
$\mathcal{H} \subseteq \mathit{W} \backslash \mathit{V} \simeq \mathbb{C}^3$

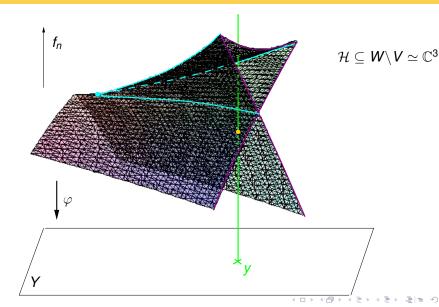
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

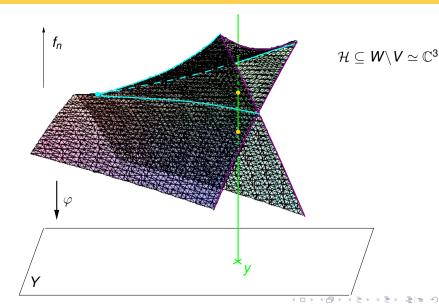


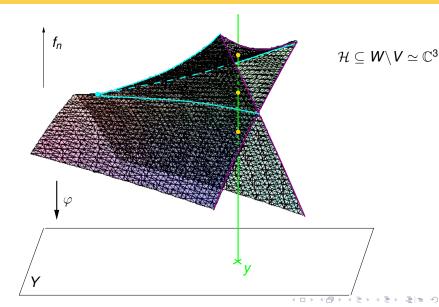
 $\mathcal{H} \subseteq \mathit{W} \backslash \mathit{V} \simeq \mathbb{C}^3$

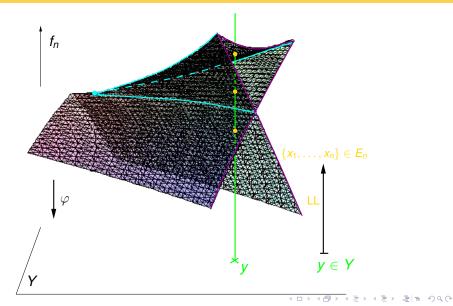


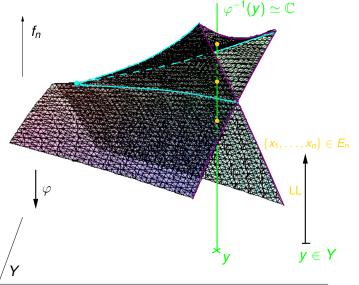


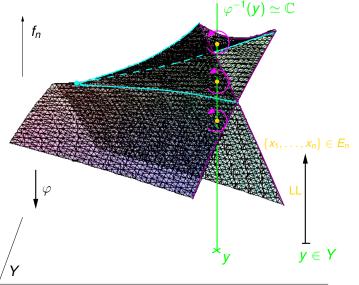


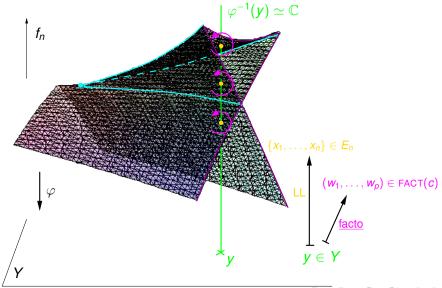


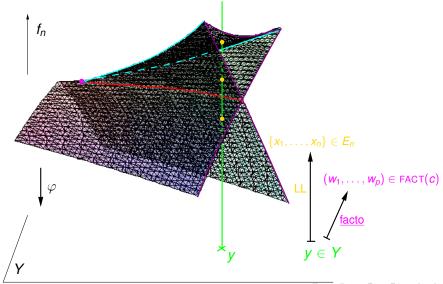


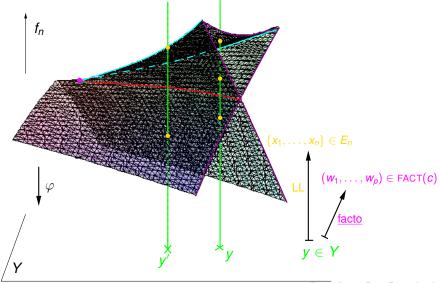


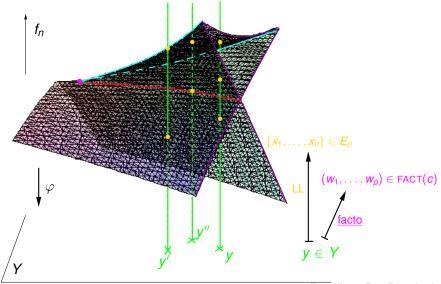




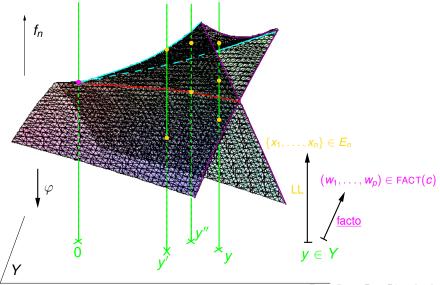








◆□> ◆□> ◆豆> ◆豆> ◆□> ◆□> ◆□>



$$V/W = Y \times \mathbb{C}.$$

$$\begin{array}{ll} V/W = Y \times \mathbb{C}. \\ \text{LL} : & Y \to E_n := \{ \text{multisets of } n \text{ points in } \mathbb{C} \} \\ & y \mapsto \{ \text{roots, with multiplicities, of } \Delta_W(y, f_n) \text{ in } f_n \} \end{array}$$

$$V/W = Y \times \mathbb{C}.$$
LL: $Y \rightarrow E_n := \{ \text{multisets of } n \text{ points in } \mathbb{C} \}$

$$y \mapsto \{ \text{roots, with multiplicities, of } \Delta_W(y, f_n) \text{ in } f_n \}$$

$$\Delta_W = f_n^n + a_2 f_n^{n-2} + a_3 f_n^{n-3} + \dots + a_{n-1} f_n + a_n.$$
Definition (LL as an algebraic (homogeneous) morphism)
$$LL: \qquad \mathbb{C}^{n-1} \rightarrow \qquad \mathbb{C}^{n-1}$$

$$(f_1, \dots, f_{n-1}) \mapsto (a_2, \dots, a_n)$$

$$V/W = Y \times \mathbb{C}.$$
LL: $Y \rightarrow E_n := \{ \text{multisets of } n \text{ points in } \mathbb{C} \}$

$$y \mapsto \{ \text{roots, with multiplicities, of } \Delta_W(y, f_n) \text{ in } f_n \}$$

$$\Delta_W = f_n^n + a_2 f_n^{n-2} + a_3 f_n^{n-3} + \dots + a_{n-1} f_n + a_n.$$
Definition (LL as an algebraic (homogeneous) morphism)
$$LL: \qquad \mathbb{C}^{n-1} \rightarrow \qquad \mathbb{C}^{n-1}$$

$$(f_1, \dots, f_{n-1}) \mapsto (a_2, \dots, a_n)$$

<u>facto</u> : $Y \rightarrow FACT(c) := \{ strict R \text{-factorisations of } c \}$

$$V/W = Y \times \mathbb{C}.$$
LL: $Y \rightarrow E_n := \{ \text{multisets of } n \text{ points in } \mathbb{C} \}$

$$y \mapsto \{ \text{roots, with multiplicities, of } \Delta_W(y, f_n) \text{ in } f_n \}$$

$$\Delta_W = f_n^n + a_2 f_n^{n-2} + a_3 f_n^{n-3} + \dots + a_{n-1} f_n + a_n.$$
Definition (LL as an algebraic (homogeneous) morphism)
$$LL: \qquad \mathbb{C}^{n-1} \rightarrow \qquad \mathbb{C}^{n-1}$$

$$(f_1, \dots, f_{n-1}) \mapsto (a_2, \dots, a_n)$$

<u>facto</u> : $Y \rightarrow FACT(c) := \{ strict R \text{-factorisations of } c \}$ Geometrical compatibilities:

- length of the factors (\leftrightarrow multiplicities in the multiset LL(y));
- conjugacy classes of the factors (\leftrightarrow parabolic strata in \mathcal{H}).

Details

Let ω be a multiset in E_n .

Compatibility $\Rightarrow \forall y \in LL^{-1}(\omega)$, the distribution of lengths of factors of <u>facto(y)</u> is the same (composition of *n*).

▲□▶▲□▶▲□▶▲□▶ 三回 のQ@

Let ω be a multiset in E_n .

Compatibility $\Rightarrow \forall y \in LL^{-1}(\omega)$, the distribution of lengths of factors of <u>facto(y)</u> is the same (composition of *n*).

Theorem (Bessis'07)

The map <u>facto</u> induces a bijection between the fiber $LL^{-1}(\omega)$ and the set of strict factorisations of same "composition" as ω .

Let ω be a multiset in E_n .

Compatibility $\Rightarrow \forall y \in LL^{-1}(\omega)$, the distribution of lengths of factors of <u>facto(y)</u> is the same (composition of *n*).

Theorem (Bessis'07)

The map <u>facto</u> induces a bijection between the fiber $LL^{-1}(\omega)$ and the set of strict factorisations of same "composition" as ω .

Equivalently, the product map:

$$Y \xrightarrow{\text{LL} \times \underline{\text{facto}}} E_n \times \text{FACT}(c)$$

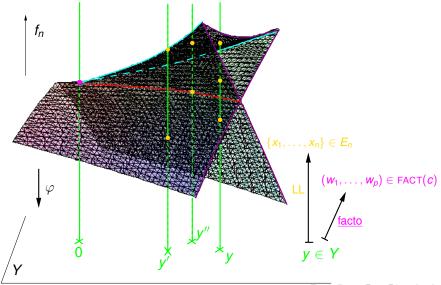
is injective, and its image is the set of "compatible" pairs.

Fuss-Catalan numbers of type W

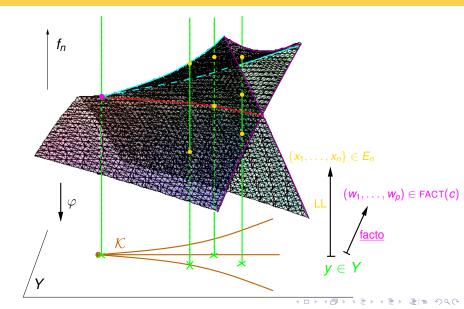
Pactorisations as fibers of a Lyashko-Looijenga covering

Maximal and submaximal factorisations of a Coxeter element

Bifurcation locus (\mathcal{K}) of LL



Bifurcation locus (\mathcal{K}) of LL



Bifurcation locus:

$$\mathcal{K} := \mathsf{LL}^{-1}(\mathcal{E}_n - \mathcal{E}_n^{\mathrm{reg}})$$

= { $y \in Y \mid \Delta_W(y, f_n)$ has multiple roots w.r.t. f_n }
= { $y \in Y \mid D_{\mathsf{LL}}(y) = 0$ }

◆□▶ ◆□▶ ◆目▶ ◆目▶ ④ ● ●

Bifurcation locus:

$$\begin{aligned} \mathcal{K} &:= \ \mathsf{LL}^{-1}(E_n - E_n^{\mathrm{reg}}) \\ &= \ \{y \in Y \mid \Delta_W(y, f_n) \text{ has multiple roots w.r.t. } f_n\} \\ &= \ \{y \in Y \mid D_{\mathsf{LL}}(y) = 0\} \end{aligned}$$

where

 $D_{LL} := \text{Disc}(\Delta_W(y, f_n); f_n).$

Bifurcation locus:

$$C := LL^{-1}(E_n - E_n^{reg})$$

= {y \in Y | \Delta_W(y, f_n) has multiple roots w.r.t. f_n}
= {y \in Y | D_{LL}(y) = 0}

where

 $D_{LL} := \text{Disc}(\Delta_W(y, f_n); f_n).$

Proposition (Bessis)

LL: Y − K → E^{reg}_n is a topological covering, of degree
 n! hⁿ / |W|;

◆□▶ ◆□▶ ▲□▶ ▲□▶ ●□□ のQ@

Bifurcation locus:

 $\mathcal{K} := \mathsf{LL}^{-1}(\mathcal{E}_n - \mathcal{E}_n^{\mathrm{reg}})$ = { $y \in Y \mid \Delta_W(y, f_n)$ has multiple roots w.r.t. f_n } = { $y \in Y \mid D_{L_1}(y) = 0$ }

where

 $D_{LL} := \text{Disc}(\Delta_W(y, f_n); f_n).$

Proposition (Bessis)

 LL : Y − K → E^{reg}_n is a topological covering, of degree n! hⁿ/ |W|;

•
$$|\operatorname{FACT}_n(c)| = n! h^n / |W|$$

Bifurcation locus:

$$C := LL^{-1}(E_n - E_n^{reg})$$

= {y \in Y | \Delta_W(y, f_n) has multiple roots w.r.t. f_n}
= {y \in Y | D_{LL}(y) = 0}

where

 $D_{LL} := \text{Disc}(\Delta_W(y, f_n); f_n).$

Proposition (Bessis)

 LL: Y − K → E^{reg}_n is a topological covering, of degree <u>n!</u> hⁿ/ |W|;

• $|\operatorname{FACT}_n(c)| = n! h^n / |W|.$

Can we compute $|FACT_{n-1}(c)|$?

Want to study the restriction of LL : $\mathcal{K} \to \mathbf{E}_n - \mathbf{E}_n^{\text{reg}}$.

Want to study the restriction of LL : $\mathcal{K} \to \mathbf{E}_n - \mathbf{E}_n^{reg}$.

Proposition

There are (canonical) bijections between:

the set of irreducible components of K (or irreducible factors of D_{LL});

▲□▶▲□▶▲□▶▲□▶ 三回 のQ@

Want to study the restriction of LL : $\mathcal{K} \to \mathbf{E}_n - \mathbf{E}_n^{\text{reg}}$.

Proposition

There are (canonical) bijections between:

- the set of irreducible components of *K* (or irreducible factors of D_{LL});
- the set of conjugacy classes of elements of NCP_W of length 2;

Irreducible components of ${\boldsymbol{\mathcal{K}}}$

Want to study the restriction of LL : $\mathcal{K} \to \mathbf{E}_n - \mathbf{E}_n^{reg}$.

Proposition

There are (canonical) bijections between:

- the set of irreducible components of *K* (or irreducible factors of D_{LL});
- the set of conjugacy classes of elements of NCP_W of length 2;
- the set of conjugacy classes of parabolic subgroups of W of rank 2.

Explanations

Want to study the restriction of LL : $\mathcal{K} \to \mathbf{E}_n - \mathbf{E}_n^{reg}$.

Proposition

There are (canonical) bijections between:

- the set of irreducible components of *K* (or irreducible factors of D_{LL});
- the set of conjugacy classes of elements of NCP_W of length 2;
- the set of conjugacy classes of parabolic subgroups of W of rank 2.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ●□□ のQ@

Explanations

Denote "this" set by $\overline{\mathcal{L}}_2$.

Irreducible components of ${\boldsymbol{\mathcal{K}}}$

Want to study the restriction of LL : $\mathcal{K} \rightarrow E_n - E_n^{reg}$.

Proposition

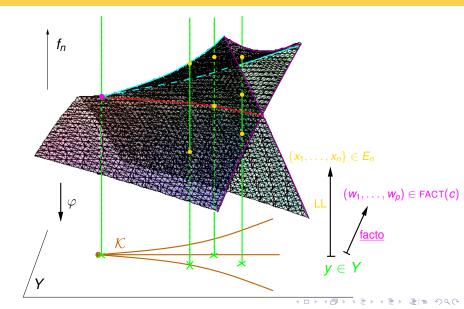
There are (canonical) bijections between:

- the set of irreducible components of *K* (or irreducible factors of D_{LL});
- the set of conjugacy classes of elements of NCP_W of length 2;
- the set of conjugacy classes of parabolic subgroups of W of rank 2.

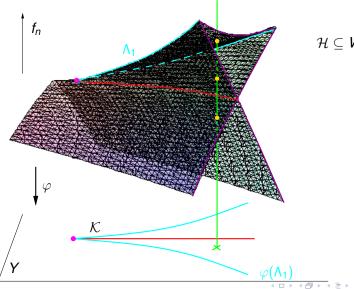
▲□▶▲□▶▲□▶▲□▶ 三回 のQ@

Explanations

Denote "this" set by $\overline{\mathcal{L}}_2$. Thus: $D_{LL} = \prod_{\Lambda \in \overline{\mathcal{L}}_2} D_{\Lambda}^{r_{\Lambda}}$ (irreducible factors in $\mathbb{C}[f_1, \dots, f_{n-1}]$).

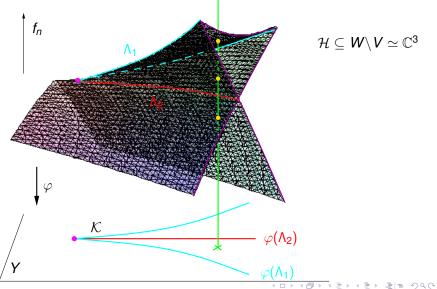


Irreducible components of ${\boldsymbol{\mathcal{K}}}$



$\mathcal{H} \subseteq \mathit{W} \backslash \mathit{V} \simeq \mathbb{C}^3$

Irreducible components of ${\boldsymbol{\mathcal{K}}}$



$\mathcal{H} \subseteq W \backslash V \simeq \mathbb{C}^3$

Submaximal factorisations of type A

FACT $_{n-1}^{\Lambda}(c)$:= set of factorisations of c in n-1 factors, with:

- n 2 reflections; and
- 1 element of length 2 and conjugacy class A.

Submaximal factorisations of type A

 $FACT_{n-1}^{\Lambda}(c) :=$ set of factorisations of c in n-1 factors, with:

n − 2 reflections; and

• 1 element of length 2 and conjugacy class A.

Remark: FACT^{Λ}_{n-1}(c) = <u>facto</u>({"generic" points in { $D_{\Lambda} = 0$ }}).

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Submaximal factorisations of type A

FACT^{Λ}_{n-1}(*c*) := set of factorisations of *c* in n-1 factors, with:

• n-2 reflections; and

• 1 element of length 2 and conjugacy class A.

Remark: FACT^{Λ}_{n-1}(c) = <u>facto</u>({"generic" points in { $D_{\Lambda} = 0$ }}).

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

The restriction $LL_{\Lambda} : \mathcal{K}_{\Lambda} \to E_n - E_n^{reg}$

Submaximal factorisations of type Λ

FACT^{Λ}_{n-1}(*c*) := set of factorisations of *c* in n-1 factors, with:

• n-2 reflections; and

• 1 element of length 2 and conjugacy class A.

Remark: FACT^{Λ}_{n-1}(c) = <u>facto</u>({"generic" points in { $D_{\Lambda} = 0$ }}).

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

The restriction $LL_{\Lambda} : \mathcal{K}_{\Lambda} \to E_n - E_n^{reg}$ corresponds to the extension $\mathbb{C}[a_2, \ldots, a_n]/(D) \subseteq \mathbb{C}[f_1, \ldots, f_{n-1}]/(D_{\Lambda})$.

Submaximal factorisations of type Λ

FACT^{Λ}_{n-1}(*c*) := set of factorisations of *c* in n-1 factors, with:

• n-2 reflections; and

• 1 element of length 2 and conjugacy class A.

Remark: FACT^{Λ}_{n-1}(c) = <u>facto</u>({"generic" points in { $D_{\Lambda} = 0$ }}).

The restriction $LL_{\Lambda} : \mathcal{K}_{\Lambda} \to E_n - E_n^{reg}$ corresponds to the extension $\mathbb{C}[a_2, \ldots, a_n]/(D) \subseteq \mathbb{C}[f_1, \ldots, f_{n-1}]/(D_{\Lambda})$.

Theorem (R.)

For any Λ in $\overline{\mathcal{L}}_2$,

• LL_{Λ} is a finite morphism of degree $\frac{(n-2)! h^{n-1}}{|W|} \deg D_{\Lambda}$;

Submaximal factorisations of type Λ

FACT^{Λ}_{n-1}(*c*) := set of factorisations of *c* in n-1 factors, with:

• n-2 reflections; and

• 1 element of length 2 and conjugacy class A.

Remark: FACT^{Λ}_{n-1}(c) = <u>facto</u>({"generic" points in { $D_{\Lambda} = 0$ }}).

The restriction $LL_{\Lambda} : \mathcal{K}_{\Lambda} \to E_n - E_n^{reg}$ corresponds to the extension $\mathbb{C}[a_2, \ldots, a_n]/(D) \subseteq \mathbb{C}[f_1, \ldots, f_{n-1}]/(D_{\Lambda})$.

Theorem (R.)

For any Λ in $\overline{\mathcal{L}}_2$,

- LL_{Λ} is a finite morphism of degree $\frac{(n-2)! h^{n-1}}{|W|} \deg D_{\Lambda}$;
- the number of factorisations of c of type ∧ is

$$|\operatorname{FACT}_{n-1}^{\Lambda}(c)| = rac{(n-1)! h^{n-1}}{|W|} \deg D_{\Lambda} \; .$$

Problem: find a general computation of $\sum_{\Lambda \in \bar{\mathcal{L}}_2} \text{deg } D_{\Lambda}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ④ ● ●

Problem: find a general computation of $\sum_{\Lambda \in \bar{\mathcal{L}}_2} \deg D_{\Lambda}$. Recall that $D_{LL} = \prod_{\Lambda \in \bar{\mathcal{L}}_2} D_{\Lambda}^{r_{\Lambda}}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Problem: find a general computation of $\sum_{\Lambda \in \bar{\mathcal{L}}_2} \deg D_{\Lambda}$.

Recall that $D_{LL} = \prod_{\Lambda \in \bar{\mathcal{L}}_2} D_{\Lambda}^{r_{\Lambda}}$.

Proposition (Saito; R.) Set $J_{LL} := Jac((a_2, ..., a_n)/(f_1, ..., f_{n-1}))$. Then: $J_{LL} \doteq \prod_{\Lambda \in \overline{\mathcal{L}}_2} D_{\Lambda}^{r_{\Lambda}-1}$

Virtual reflection groups?

Problem: find a general computation of $\sum_{\Lambda \in \bar{\mathcal{L}}_2} \deg D_{\Lambda}$.

Recall that $D_{LL} = \prod_{\Lambda \in \bar{\mathcal{L}}_2} D_{\Lambda}^{r_{\Lambda}}$.

Proposition (Saito; R.) Set $J_{LL} := \text{Jac}((a_2, \dots, a_n)/(f_1, \dots, f_{n-1}))$. Then: $J_{LL} \doteq \prod_{\Lambda \in \overline{\mathcal{L}}_2} D_{\Lambda}^{r_{\Lambda}-1}$

Virtual reflection groups?

So,
$$\sum \deg D_{\Lambda} = \deg D_{LL} - \deg J_{LL} = \dots$$

Corollary

Let W be an irreducible, well-generated complex reflection group, of rank n. The number of strict factorisations of a Coxeter element c in n - 1 factors is:

Corollary

Let W be an irreducible, well-generated complex reflection group, of rank n. The number of strict factorisations of a Coxeter element c in n - 1 factors is:

$$|\operatorname{FACT}_{n-1}(c)| = \frac{(n-1)! h^{n-1}}{|W|} \left(\frac{(n-1)(n-2)}{2} h + \sum_{i=1}^{n-1} d_i \right)$$

Corollary

Let W be an irreducible, well-generated complex reflection group, of rank n. The number of strict factorisations of a Coxeter element c in n - 1 factors is:

$$|\operatorname{FACT}_{n-1}(c)| = \frac{(n-1)! h^{n-1}}{|W|} \left(\frac{(n-1)(n-2)}{2} h + \sum_{i=1}^{n-1} d_i \right) .$$

We recover what is predicted by Chapoton's formula;

Corollary

Let W be an irreducible, well-generated complex reflection group, of rank n. The number of strict factorisations of a Coxeter element c in n - 1 factors is:

$$|\operatorname{FACT}_{n-1}(c)| = \frac{(n-1)! h^{n-1}}{|W|} \left(\frac{(n-1)(n-2)}{2} h + \sum_{i=1}^{n-1} d_i \right)$$

- We recover what is predicted by Chapoton's formula;
- but the proof is more satisfactory and enlightening: we travelled from the numerology of $FACT_n(c)$ (non-ramified part of LL) to that of $FACT_{n-1}(c)$, without adding any case-by-case analysis.

.

• We recover geometrically some combinatorial results known in the real case [Krattenthaler].

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the | FACT_k(c)|) ? Can we interpret Chapoton's formula as a ramification formula for LL ?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ●□□ のQ@

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the | FACT_k(c)|) ? Can we interpret Chapoton's formula as a ramification formula for LL ?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ●□□ のQ@

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the | FACT_k(c)|) ? Can we interpret Chapoton's formula as a ramification formula for LL ?

Merci !

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the | FACT_k(c)|) ? Can we interpret Chapoton's formula as a ramification formula for LL ?

Merci !

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the | FACT_k(c)|) ? Can we interpret Chapoton's formula as a ramification formula for LL ?

Merci !

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the | FACT_k(c)|) ? Can we interpret Chapoton's formula as a ramification formula for LL ?

Merci !

Conclusion, questions

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the | FACT_k(c)|) ? Can we interpret Chapoton's formula as a ramification formula for LL ?

Merci !

Conclusion, questions

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the | FACT_k(c)|) ? Can we interpret Chapoton's formula as a ramification formula for LL ?

Merci !

Conclusion, questions

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the | FACT_k(c)|) ? Can we interpret Chapoton's formula as a ramification formula for LL ?

Merci !

Outline

- Stratifications
- Comparison reflection groups / LL extensions

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stratifications

Stratification of *V* with the "flats" (intersection lattice): $\mathcal{L} := \{\bigcap_{H \in \mathcal{A}} H \mid \mathcal{B} \subseteq \mathcal{A}\}.$

Bijections [Steinberg]: stratification $\overline{\mathcal{L}} = \mathcal{L}/W \iff p.sg.(W)/conj.$

Bijections [Steinberg]: stratification $\overline{\mathcal{L}} = \mathcal{L}/W \iff p.sg.(W)/conj. \iff NCP_W/conj.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ●□□ のQ@

 $\begin{array}{rcl} \textbf{Bijections} \ [\texttt{Steinberg}]: \\ & \texttt{stratification} \ \bar{\mathcal{L}} = \mathcal{L}/W & \leftrightarrow & \texttt{p.sg.}(W)/\texttt{conj.} & \leftrightarrow & \texttt{NCP}_W/\texttt{conj.} \\ & \texttt{codim}(\Lambda) & = & \texttt{rank}(W_\Lambda) & = & \ell_R(w_\Lambda) \end{array}$

Bijections [Steinberg]: stratification $\overline{\mathcal{L}} = \mathcal{L}/W \leftrightarrow \text{p.sg.}(W)/\text{conj.} \leftrightarrow \text{NCP}_W/\text{conj.}$ codim(Λ) = rank(W_Λ) = $\ell_R(w_\Lambda)$

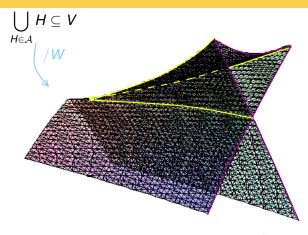
Remark: \mathcal{H} is the union of strata of $\overline{\mathcal{L}}$ of codim. 1.

Bijections [Steinberg]: stratification $\overline{\mathcal{L}} = \mathcal{L}/W \leftrightarrow \text{p.sg.}(W)/\text{conj.} \leftrightarrow \text{NCP}_W/\text{conj.}$ codim(Λ) = rank(W_Λ) = $\ell_R(w_\Lambda)$

Remark: \mathcal{H} is the union of strata of $\overline{\mathcal{L}}$ of codim. 1.

Conjugacy classes of factors of $\underline{facto}(y) \leftrightarrow \text{strata containing the intersection points.}$

A Return to <u>facto</u>

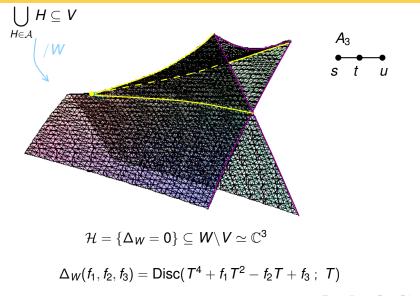


 $\mathcal{H} = \{\Delta_W = 0\} \subseteq W \setminus V \simeq \mathbb{C}^3$

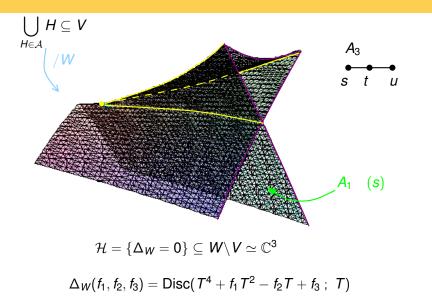
 $\Delta_{W}(f_{1}, f_{2}, f_{3}) = \text{Disc}(T^{4} + f_{1}T^{2} - f_{2}T + f_{3}; T)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

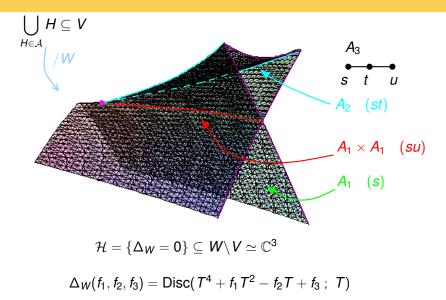
Return to facto



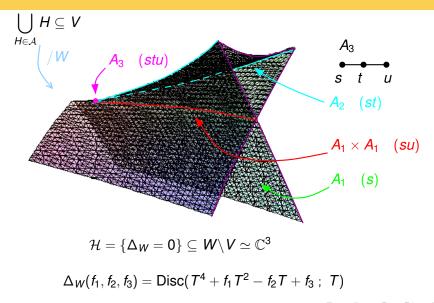
Return to facto



A Return to <u>facto</u>



Return to facto



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Irreducible components of \mathcal{K} , details

$$\overline{\mathcal{L}}_2 := \{ \text{strata of } \overline{\mathcal{L}} \text{ of codim. } 2 \}.$$

 $\overline{\mathcal{L}}_2 := \{ \text{strata of } \overline{\mathcal{L}} \text{ of codim. } 2 \}.$

Steinberg's theorem $\Rightarrow \bar{\mathcal{L}}_2$ is in bijection with:

• {conjugacy classes of parabolic subgroups of *W* of rank 2}

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

• {conjugacy classes of elements of NCP_W of length 2}

 $\overline{\mathcal{L}}_2 := \{ \text{strata of } \overline{\mathcal{L}} \text{ of codim. } 2 \}.$

Steinberg's theorem $\Rightarrow \overline{\mathcal{L}}_2$ is in bijection with:

• {conjugacy classes of parabolic subgroups of *W* of rank 2}

• {conjugacy classes of elements of NCP_W of length 2}

Proposition

The $\varphi(\Lambda)$, for $\Lambda \in \overline{\mathcal{L}}_2$, are the irreducible components of \mathcal{K} (where φ is the projection $V/W \twoheadrightarrow Y$).

 \blacktriangleleft Return to Irreducible components of ${\mathcal K}$

Reflection group vs. Lyashko-Looijenga extension

Reflection group W	Extension LL
$V \rightarrow V/W$	$Y \to \mathbb{C}^{n-1}$
$\mathbb{C}[f_1,\ldots,f_n] = \mathbb{C}[V]^W \subseteq \mathbb{C}[V]$ degree <i>W</i>	$\mathbb{C}[a_2,\ldots,a_n] \subseteq \mathbb{C}[f_1,\ldots,f_{n-1}]$ degree <i>n</i> ! $h^n / W $
$V^{ m reg} woheadrightarrow V^{ m reg}/W$ Generic fiber $ agma W$	$egin{array}{lll} {Y} - {\mathcal{K}} woheadrightarrow {E}_n^{ ext{reg}} \ \simeq {Red}_R({m{c}}) \end{array}$
ramified on $\bigcup_{H\in\mathcal{A}} H \twoheadrightarrow \mathcal{H}$	$\mathcal{K} = \bigcup_{\Lambda \in \tilde{\mathcal{L}}_2} \varphi(\Lambda) \twoheadrightarrow E_n - E_n^{\mathrm{reg}}$
$\Delta_{W} = \prod_{H \in \mathcal{A}} \alpha_{H}^{e_{H}}$	$D_{LL} = \prod_{\Lambda \in ar{\mathcal{L}}_2} D^{r_\Lambda}_\Lambda$
$egin{aligned} egin{aligned} egi$	$J_{LL} = \prod D_{\Lambda}^{r_{\Lambda}-1}$ $r_{\Lambda} = \text{pseudo-order of}$ elements of NCP _W of type Λ

