Factorisations of the Garside element in the dual braid monoids

Vivien Ripoll

École Normale Supérieure
Département de Mathématiques et Applications
30 June 2010
Journées Garside
Caen
(9) Dual braid monoids and noncrossing partition lattices

- The dual braid monoid
- Factorisations in the noncrossing partition lattice
(2) Factorisations from the geometry of the discriminant
- The Lyashko-Looijenga covering
- Factorisations as fibers of LL
- Combinatorics of the submaximal factorisations
(9) Dual braid monoids and noncrossing partition lattices
- The dual braid monoid
- Factorisations in the noncrossing partition lattice

2 Factorisations from the geometry of the discriminant

- The Lyashko-Looijenga covering
- Factorisations as fibers of LL
- Combinatorics of the submaximal factorisations

Classical setting: Artin-Tits monoids

W finite real reflection group, S system of fundamental reflections.

Classical setting: Artin-Tits monoids

W finite real reflection group, S system of fundamental reflections. Artin-Tits monoid of (W, S) :

$$
A_{+}(W, S):=\langle S \mid \forall s, t \in S, \underbrace{s t s \ldots}_{m_{s, t}}=\underbrace{t s t \ldots}_{m_{s, t}}\rangle_{\text {Mon }}
$$

Classical setting: Artin-Tits monoids

W finite real reflection group, S system of fundamental reflections. Artin-Tits monoid of (W, S) :

$$
A_{+}(W, S):=\langle S \mid \forall s, t \in S, \underbrace{s t s \ldots}_{m_{s, t}}=\underbrace{t s t \ldots}_{m_{s, t}}\rangle_{\text {Mon }} .
$$

Alternative presentation [Tits] :
$\langle\underline{W}| \underline{w} \cdot \underline{w}^{\prime}=\underline{w} w^{\prime}$ whenever $\left.\ell_{S}(w)+\ell_{S}\left(w^{\prime}\right)=\ell_{S}\left(w w^{\prime}\right)\right\rangle_{\text {Mon }}$.

Classical setting: Artin-Tits monoids

W finite real reflection group, S system of fundamental reflections. Artin-Tits monoid of (W, S) :

$$
A_{+}(W, S):=\langle S \mid \forall s, t \in S, \underbrace{s t s \ldots}_{m_{s, t}}=\underbrace{t s t \ldots}_{m_{s, t}}\rangle_{\text {Mon }} .
$$

Alternative presentation [Tits] :
$\langle\underline{W}| \underline{w} \cdot \underline{w^{\prime}}=\underline{w} w^{\prime}$ whenever $\left.\ell_{S}(w)+\ell_{S}\left(w^{\prime}\right)=\ell_{S}\left(w w^{\prime}\right)\right\rangle_{\text {Mon }}$.

- Garside monoid;

Classical setting: Artin-Tits monoids

W finite real reflection group, S system of fundamental reflections. Artin-Tits monoid of (W, S) :

$$
A_{+}(W, S):=\langle S \mid \forall s, t \in S, \underbrace{s t s \ldots}_{m_{s, t}}=\underbrace{t s t \ldots}_{m_{s, t}}\rangle_{\text {Mon }} .
$$

Alternative presentation [Tits] :
$\langle\underline{W}| \underline{w} \cdot \underline{w^{\prime}}=\underline{w} w^{\prime}$ whenever $\left.\ell_{S}(w)+\ell_{S}\left(w^{\prime}\right)=\ell_{S}\left(w w^{\prime}\right)\right\rangle_{\text {Mon }}$.

- Garside monoid;
- Garside element: (copy of) w_{0} (the longest element);

Classical setting: Artin-Tits monoids

W finite real reflection group, S system of fundamental reflections. Artin-Tits monoid of (W, S) :

$$
A_{+}(W, S):=\langle S \mid \forall s, t \in S, \underbrace{s t s \ldots}_{m_{s, t}}=\underbrace{t s t \ldots}_{m_{s, t}}\rangle_{\text {Mon }} .
$$

Alternative presentation [Tits] :
$\langle\underline{W}| \underline{w} \cdot \underline{w^{\prime}}=\underline{w} w^{\prime}$ whenever $\left.\ell_{S}(w)+\ell_{S}\left(w^{\prime}\right)=\ell_{S}\left(w w^{\prime}\right)\right\rangle_{\text {Mon }}$.

- Garside monoid;
- Garside element: (copy of) w_{0} (the longest element);
- simple elements: (copy of) $W=\left\{w \in W \mid w \preccurlyeq s w_{0}\right\}$ (lattice for $\preccurlyeq s$),

Classical setting: Artin-Tits monoids

W finite real reflection group, S system of fundamental reflections. Artin-Tits monoid of (W, S) :

$$
A_{+}(W, S):=\langle S \mid \forall s, t \in S, \underbrace{s t s \ldots}_{m_{s, t}}=\underbrace{t s t \ldots}_{m_{s, t}}\rangle_{\text {Mon }} .
$$

Alternative presentation [Tits] :
$\langle\underline{W}| \underline{w} \cdot \underline{w^{\prime}}=\underline{w} w^{\prime}$ whenever $\left.\ell_{S}(w)+\ell_{S}\left(w^{\prime}\right)=\ell_{S}\left(w w^{\prime}\right)\right\rangle_{\text {Mon }}$.

- Garside monoid;
- Garside element: (copy of) w_{0} (the longest element);
- simple elements: (copy of) $W=\left\{w \in W \mid w \preccurlyeq s w_{0}\right\}$ (lattice for $\preccurlyeq s$),

Classical setting: Artin-Tits monoids

W finite real reflection group, S system of fundamental reflections. Artin-Tits monoid of (W, S) :

$$
A_{+}(W, S):=\langle S \mid \forall s, t \in S, \underbrace{s t s \ldots}_{m_{s, t}}=\underbrace{t s t \ldots}_{m_{s, t}}\rangle_{\text {Mon }} .
$$

Alternative presentation [Tits] :
$\langle\underline{W}| \underline{w} \cdot \underline{w}^{\prime}=\underline{w} w^{\prime}$ whenever $\left.\ell_{S}(w)+\ell_{S}\left(w^{\prime}\right)=\ell_{S}\left(w w^{\prime}\right)\right\rangle_{\text {Mon }}$.

- Garside monoid;
- Garside element: (copy of) w_{0} (the longest element);
- simple elements: (copy of) $W=\left\{w \in W \mid w \preccurlyeq s w_{0}\right\}$ (lattice for $\preccurlyeq s$), where

$$
u \preccurlyeq s v \Leftrightarrow \ell_{S}(u)+\ell_{S}\left(u^{-1} v\right)=\ell_{S}(v) ;
$$

Classical setting: Artin-Tits monoids

W finite real reflection group, S system of fundamental reflections. Artin-Tits monoid of (W, S) :

$$
A_{+}(W, S):=\langle S \mid \forall s, t \in S, \underbrace{s t s \ldots}_{m_{s, t}}=\underbrace{t s t \ldots}_{m_{s, t}}\rangle_{\text {Mon }} .
$$

Alternative presentation [Tits] :
$\langle\underline{W}| \underline{w} \cdot \underline{w^{\prime}}=\underline{w} w^{\prime}$ whenever $\left.\ell_{S}(w)+\ell_{S}\left(w^{\prime}\right)=\ell_{S}\left(w w^{\prime}\right)\right\rangle_{\text {Mon }}$.

- Garside monoid;
- Garside element: (copy of) w_{0} (the longest element);
- simple elements: (copy of) $W=\left\{w \in W \mid w \preccurlyeq s w_{0}\right\}$ (lattice for $\preccurlyeq s$), where

$$
u \preccurlyeq s v \Leftrightarrow \ell_{S}(u)+\ell_{S}\left(u^{-1} v\right)=\ell_{S}(v) ;
$$

- $A_{+}(W, S)$ embeds in $B(W)$ (the braid group of W).

Dual braid monoid

Basic idea: replace S with $\mathcal{R}:=\{$ all reflections in $W\}$. \rightsquigarrow new definition of length $\left(\ell_{\mathcal{R}}\right)$ and of partial order $\left(\preccurlyeq_{\mathcal{R}}\right)$.

Dual braid monoid

Basic idea: replace S with $\mathcal{R}:=\{$ all reflections in $W\}$. \rightsquigarrow new definition of length $\left(\ell_{\mathcal{R}}\right)$ and of partial order $\left(\preccurlyeq_{\mathcal{R}}\right)$.

Definition (Dual braid monoid of W)
$M(W, c)$ is the monoid with presentation
$\langle\underline{[1, c]}| \underline{w} \cdot \underline{w^{\prime}}=\underline{w} w^{\prime}$ if $\left.\ell_{\mathcal{R}}(w)+\ell_{\mathcal{R}}\left(w^{\prime}\right)=\ell_{\mathcal{R}}\left(w w^{\prime}\right)\right\rangle$.

Dual braid monoid

Basic idea: replace S with $\mathcal{R}:=\{$ all reflections in $W\}$. \rightsquigarrow new definition of length $\left(\ell_{\mathcal{R}}\right)$ and of partial order $\left(\preccurlyeq_{\mathcal{R}}\right)$.

Definition (Dual braid monoid of W)
$M(W, c)$ is the monoid with presentation
$\langle\underline{[1, c]}| \underline{w} \cdot \underline{w^{\prime}}=\underline{w} w^{\prime}$ if $\left.\ell_{\mathcal{R}}(w)+\ell_{\mathcal{R}}\left(w^{\prime}\right)=\ell_{\mathcal{R}}\left(w w^{\prime}\right)\right\rangle$.

- Garside monoid;

Dual braid monoid

Basic idea: replace S with $\mathcal{R}:=\{$ all reflections in $W\}$. \rightsquigarrow new definition of length $\left(\ell_{\mathcal{R}}\right)$ and of partial order $\left(\preccurlyeq_{\mathcal{R}}\right)$.

Definition (Dual braid monoid of W)
$M(W, c)$ is the monoid with presentation
$\langle\underline{[1, c]}| \underline{w} \cdot \underline{w^{\prime}}=\underline{w} w^{\prime}$ if $\left.\ell_{\mathcal{R}}(w)+\ell_{\mathcal{R}}\left(w^{\prime}\right)=\ell_{\mathcal{R}}\left(w w^{\prime}\right)\right\rangle$.

- Garside monoid;
- Garside element: (copy of) c (a Coxeter element);

Dual braid monoid

Basic idea: replace S with $\mathcal{R}:=\{$ all reflections in $W\}$. \rightsquigarrow new definition of length $\left(\ell_{\mathcal{R}}\right)$ and of partial order $\left(\preccurlyeq_{\mathcal{R}}\right)$.

Definition (Dual braid monoid of W)
$M(W, c)$ is the monoid with presentation
$\langle\underline{[1, c]}| \underline{w} \cdot \underline{w^{\prime}}=\underline{w} w^{\prime}$ if $\left.\ell_{\mathcal{R}}(w)+\ell_{\mathcal{R}}\left(w^{\prime}\right)=\ell_{\mathcal{R}}\left(w w^{\prime}\right)\right\rangle$.

- Garside monoid;
- Garside element: (copy of) c (a Coxeter element);
- simple elements: (copy of) $[1, c]=\left\{w \in W \mid w \preccurlyeq_{\mathcal{R}} c\right\}$ (lattice for $\preccurlyeq_{\mathcal{R}}$);

Dual braid monoid

Basic idea: replace S with $\mathcal{R}:=\{$ all reflections in $W\}$. \rightsquigarrow new definition of length $\left(\ell_{\mathcal{R}}\right)$ and of partial order $\left(\preccurlyeq_{\mathcal{R}}\right)$.

Definition (Dual braid monoid of W)
$M(W, c)$ is the monoid with presentation
$\langle\underline{[1, c]}| \underline{w} \cdot \underline{w^{\prime}}=\underline{w} w^{\prime}$ if $\left.\ell_{\mathcal{R}}(w)+\ell_{\mathcal{R}}\left(w^{\prime}\right)=\ell_{\mathcal{R}}\left(w w^{\prime}\right)\right\rangle$.

- Garside monoid;
- Garside element: (copy of) c (a Coxeter element);
- simple elements: (copy of) $[1, c]=\left\{w \in W \mid w \preccurlyeq_{\mathcal{R}} c\right\}$ (lattice for $\preccurlyeq_{\mathcal{R}}$);
- $M(W, c)$ embeds in $B(W)$, but is not isomorphic to the Artin-Tits monoid.

Dual braid monoid

Basic idea: replace S with $\mathcal{R}:=\{$ all reflections in $W\}$. \rightsquigarrow new definition of length $\left(\ell_{\mathcal{R}}\right)$ and of partial order $\left(\preccurlyeq_{\mathcal{R}}\right)$.

Definition (Dual braid monoid of W)

$M(W, c)$ is the monoid with presentation
$\langle\underline{[1, c]}| \underline{w} \cdot \underline{w^{\prime}}=\underline{w} w^{\prime}$ if $\left.\ell_{\mathcal{R}}(w)+\ell_{\mathcal{R}}\left(w^{\prime}\right)=\ell_{\mathcal{R}}\left(w w^{\prime}\right)\right\rangle$.

- Garside monoid;
- Garside element: (copy of) c (a Coxeter element);
- simple elements: (copy of) $[1, c]=\left\{w \in W \mid w \preccurlyeq_{\mathcal{R}} c\right\}$ (lattice for $\preccurlyeq_{\mathcal{R}}$);
- $M(W, c)$ embeds in $B(W)$, but is not isomorphic to the Artin-Tits monoid.
- the construction extends to (well-generated) complex reflection groups.

Complex reflection groups

V : complex vector space, of dim. n.

Definition

A (finite) complex reflection group is a finite subgroup of $\mathrm{GL}(V)$ generated by complex reflections.
A complex reflection is an element $s \in G L(V)$ of finite order, s.t. $\operatorname{Ker}(s-\operatorname{ld} v)$ is a hyperplane:

$$
S_{\underset{\mathcal{B}}{ }}^{\leftrightarrow} \text { matrix } \operatorname{Diag}(\zeta, 1, \ldots, 1), \text { with } \zeta \text { root of unity }
$$

Complex reflection groups

V : complex vector space, of dim. n.

Definition

A (finite) complex reflection group is a finite subgroup of $\mathrm{GL}(\mathrm{V})$ generated by complex reflections.
A complex reflection is an element $s \in \mathrm{GL}(V)$ of finite order, s.t. $\operatorname{Ker}(s-\operatorname{ld} v)$ is a hyperplane:

$$
s_{\overleftrightarrow{\mathcal{B}}} \text { matrix } \operatorname{Diag}(\zeta, 1, \ldots, 1) \text {, with } \zeta \text { root of unity }
$$

Shephard-Todd's classification (1954):

- an infinite series with 3 parameters $G(d e, e, r)$;
- 34 exceptional groups.

Invariant theory

W a complex reflection group.
W acts on $S\left(V^{*}\right)$ (polynomial algebra $\mathbb{C}\left[v_{1}, \ldots, v_{n}\right]$).

Invariant theory

W a complex reflection group.
W acts on $S\left(V^{*}\right)$ (polynomial algebra $\mathbb{C}\left[v_{1}, \ldots, v_{n}\right]$).

Theorem (Chevalley-Shephard-Todd)

There exist fundamental invariant polynomials f_{1}, \ldots, f_{n} (homogeneous), s.t.

$$
S\left(V^{*}\right)^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]
$$

Their degrees $d_{1} \leq \cdots \leq d_{n}$ do not depend on the choice of f_{1}, \ldots, f_{n} (invariant degrees of W).

Invariant theory

W a complex reflection group.
W acts on $S\left(V^{*}\right)$ (polynomial algebra $\mathbb{C}\left[v_{1}, \ldots, v_{n}\right]$).

Theorem (Chevalley-Shephard-Todd)

There exist fundamental invariant polynomials f_{1}, \ldots, f_{n} (homogeneous), s.t.

$$
S\left(V^{*}\right)^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]
$$

Their degrees $d_{1} \leq \cdots \leq d_{n}$ do not depend on the choice of f_{1}, \ldots, f_{n} (invariant degrees of W).
\rightsquigarrow isomorphism : $W \backslash V \xrightarrow{\sim} \mathbb{C}^{n}$

$$
\bar{v} \mapsto\left(f_{1}(v), \ldots, f_{n}(v)\right) .
$$

(1) Dual braid monoids and noncrossing partition lattices - The dual braid monoid

- Factorisations in the noncrossing partition lattice

2 Factorisations from the geometry of the discriminant

- The Lyashko-Looijenga covering
- Factorisations as fibers of LL
- Combinatorics of the submaximal factorisations

The noncrossing partition lattice

Suppose W irreducible, well-generated.
Let c be a fixed Coxeter element (i.e. $e^{2 i \pi / h}$-regular, where
$h=d_{n}$).

The noncrossing partition lattice

Suppose W irreducible, well-generated.
Let c be a fixed Coxeter element (i.e. $e^{2 i \pi / h}$-regular, where
$h=d_{n}$).
Definition (Noncrossing partition lattice of type W)

$$
\operatorname{NCP}_{W}(c):=\{w \in W \mid w \preccurlyeq \mathcal{R} c\}
$$

(the structure does not depend on the choice of c.)

The noncrossing partition lattice

Suppose W irreducible, well-generated.
Let c be a fixed Coxeter element (i.e. $e^{2 i \pi / h}$-regular, where $h=d_{n}$).

Definition (Noncrossing partition lattice of type W)

$$
\operatorname{NCP}_{W}(c):=\left\{w \in W \mid w \preccurlyeq_{\mathcal{R}} c\right\}
$$

(the structure does not depend on the choice of c.)

Fundamental example

If $W=\mathfrak{S}_{n}$ (type \mathbf{A}), NCP ${ }_{W} \simeq$ \{noncrossing partitions of an n-gon\}.

The noncrossing partition lattice

Suppose W irreducible, well-generated.
Let c be a fixed Coxeter element (i.e. $e^{2 i \pi / h}$-regular, where $h=d_{n}$).

Definition (Noncrossing partition lattice of type W)

$$
\operatorname{NCP}_{W}(c):=\{w \in W \mid w \preccurlyeq \mathcal{R} c\}
$$

(the structure does not depend on the choice of c.)

Fundamental example

If $W=\mathfrak{S}_{n}$ (type \mathbf{A}), NCP ${ }_{W} \simeq$ \{noncrossing partitions of an n-gon\}.

Very rich combinatorial object.

Multichains in NCP w

Chapoton's formula

The number of multichains $w_{1} \preccurlyeq \mathcal{R} \ldots \preccurlyeq \mathcal{R} w_{N} \preccurlyeq \mathcal{R} C$ in NCP w is:

$$
Z_{W}(N+1)=\prod_{i=1}^{n} \frac{d_{i}+N h}{d_{i}}
$$

Multichains in NCP w

Chapoton's formula

The number of multichains $w_{1} \preccurlyeq \mathcal{R} \ldots \preccurlyeq_{\mathcal{R}} w_{N} \preccurlyeq_{\mathcal{R}} c$ in NCP w is:

$$
Z_{W}(N+1)=\prod_{i=1}^{n} \frac{d_{i}+N h}{d_{i}}
$$

Called Fuss-Catalan numbers of type W : Cat ${ }^{(N)}(W)$.

Multichains in NCP w

Chapoton's formula

The number of multichains $w_{1} \preccurlyeq_{\mathcal{R}} \ldots \preccurlyeq_{\mathcal{R}} w_{N} \preccurlyeq_{\mathcal{R}} c$ in NCP w is:

$$
z_{W}(N+1)=\prod_{i=1}^{n} \frac{d_{i}+N h}{d_{i}}
$$

Called Fuss-Catalan numbers of type W : $\mathrm{Cat}^{(N)}(W)$.
Proof (Athanasiadis, Reiner, Bessis): case-by-case using the classification... even for $N=1$ (formula for $\left|N C P_{W}\right|$).

Block factorisations of c

(will appear naturally in the geometry of $B(W)$)

Block factorisations of c

(will appear naturally in the geometry of $B(W)$)
Definition
$\left(w_{1}, \ldots, w_{p}\right)$ is a block factorisation of c if :

Block factorisations of c

(will appear naturally in the geometry of $B(W)$)
Definition
$\left(w_{1}, \ldots, w_{p}\right)$ is a block factorisation of c if :

- $W_{1} \ldots W_{p}=c$;

Block factorisations of c

(will appear naturally in the geometry of $B(W)$)

Definition

$\left(w_{1}, \ldots, w_{p}\right)$ is a block factorisation of c if :

- $w_{1} \ldots w_{p}=c$;
- $w_{1}, \ldots, w_{p} \in W-\{1\}$;

Block factorisations of c

(will appear naturally in the geometry of $B(W)$)

Definition

$\left(w_{1}, \ldots, w_{p}\right)$ is a block factorisation of c if :

- $w_{1} \ldots w_{p}=c$;
- $w_{1}, \ldots, w_{p} \in W-\{1\} ;$
- $\ell_{\mathcal{R}}\left(w_{1}\right)+\cdots+\ell_{\mathcal{R}}\left(w_{p}\right)=\ell_{\mathcal{R}}(c)=n$ (i.e. $w_{1} \preccurlyeq \mathcal{R} w_{1} w_{2} \preccurlyeq_{\mathcal{R}} \ldots \preccurlyeq_{\mathcal{R}} w_{1} \ldots w_{p-1} \preccurlyeq_{\mathcal{R}} c$).

Block factorisations of c

(will appear naturally in the geometry of $B(W)$)

Definition

$\left(w_{1}, \ldots, w_{p}\right)$ is a block factorisation of c if :

- $w_{1} \ldots w_{p}=c$;
- $w_{1}, \ldots, w_{p} \in W-\{1\} ;$
- $\ell_{\mathcal{R}}\left(w_{1}\right)+\cdots+\ell_{\mathcal{R}}\left(w_{p}\right)=\ell_{\mathcal{R}}(c)=n$ (i.e. $w_{1} \preccurlyeq \mathcal{R} w_{1} w_{2} \preccurlyeq_{\mathcal{R}} \ldots \preccurlyeq_{\mathcal{R}} w_{1} \ldots w_{p-1} \preccurlyeq_{\mathcal{R}} c$).

Block factorisations of c

(will appear naturally in the geometry of $B(W)$)

Definition

$\left(w_{1}, \ldots, w_{p}\right)$ is a block factorisation of c if :

- $w_{1} \ldots w_{p}=c$;
- $w_{1}, \ldots, w_{p} \in W-\{1\} ;$
- $\ell_{\mathcal{R}}\left(w_{1}\right)+\cdots+\ell_{\mathcal{R}}\left(w_{p}\right)=\ell_{\mathcal{R}}(c)=n$ (i.e. $w_{1} \preccurlyeq_{\mathcal{R}} w_{1} w_{2} \preccurlyeq_{\mathcal{R}} \ldots \preccurlyeq_{\mathcal{R}} w_{1} \ldots w_{p-1} \preccurlyeq_{\mathcal{R}} c$).

FACT $_{p}(c):=\{$ factorisations in p blocks $\}$

Block factorisations of c

(will appear naturally in the geometry of $B(W)$)

Definition

$\left(w_{1}, \ldots, w_{p}\right)$ is a block factorisation of c if :

- $w_{1} \ldots w_{p}=c$;
- $w_{1}, \ldots, w_{p} \in W-\{1\} ;$
- $\ell_{\mathcal{R}}\left(w_{1}\right)+\cdots+\ell_{\mathcal{R}}\left(w_{p}\right)=\ell_{\mathcal{R}}(c)=n$ (i.e. $w_{1} \preccurlyeq \mathcal{R} w_{1} w_{2} \preccurlyeq \mathcal{R} \ldots \preccurlyeq_{\mathcal{R}} w_{1} \ldots w_{p-1} \preccurlyeq_{\mathcal{R}} c$).
$\operatorname{FACT}_{p}(c):=\{$ factorisations in p blocks $\}$
\rightsquigarrow determines a partition of n, and even a composition (ordered partition) of n.

Block factorisations of c

(will appear naturally in the geometry of $B(W)$)

Definition

$\left(w_{1}, \ldots, w_{p}\right)$ is a block factorisation of c if :

- $w_{1} \ldots w_{p}=c$;
- $w_{1}, \ldots, w_{p} \in W-\{1\} ;$
- $\ell_{\mathcal{R}}\left(w_{1}\right)+\cdots+\ell_{\mathcal{R}}\left(w_{p}\right)=\ell_{\mathcal{R}}(c)=n$

$$
\text { (i.e. } w_{1} \preccurlyeq \mathcal{R} w_{1} w_{2} \preccurlyeq \mathcal{R} \ldots \preccurlyeq_{\mathcal{R}} w_{1} \ldots w_{p-1} \preccurlyeq \mathcal{R} c \text {). }
$$

$\operatorname{FACT}_{p}(c):=\{$ factorisations in p blocks $\}$
\rightsquigarrow determines a partition of n, and even a composition (ordered partition) of n.
Ex. : $\operatorname{FACT}_{n}(c)=\operatorname{FACT}_{1^{n}}(c)=\operatorname{Red}_{\mathcal{R}}(c)$.
$\mathrm{FACT}_{n-1}(c)=\mathrm{FACT}_{2^{1} 1^{n-2}}$.

Factorisations vs multichains

Combinatorics of factorisations: similar to multichains. But factors must be non-trivial (\sim strict chains).

Factorisations vs multichains

Combinatorics of factorisations: similar to multichains. But factors must be non-trivial (\rightsquigarrow strict chains).

Conversion formulas

$$
\begin{aligned}
& \operatorname{Cat}^{(N)}(W)=\sum_{k=1}^{n}\binom{N+1}{k}\left|\operatorname{FACT}_{k}(c)\right| \\
& \left|\operatorname{FACT}_{p}(c)\right|=\Delta^{p} Z_{W}(0)=\sum_{k=1}^{p}(-1)^{p-k}\binom{p}{k} \operatorname{Cat}^{(k)}(W)
\end{aligned}
$$

$(\Delta: P \mapsto P(X+1)-P(X)$.
(4) Dual braid monoids and noncrossing partition lattices

- The dual braid monoid
- Factorisations in the noncrossing partition lattice
(2) Factorisations from the geometry of the discriminant
- The Lyashko-Looijenga covering
- Factorisations as fibers of LL
- Combinatorics of the submaximal factorisations

Discriminant of W

$\mathcal{A}:=\{$ reflection hyperplanes of $W\}$. For $H \in \mathcal{A}$:

- α_{H} : linear form with kernel H;
- e_{H} : order of the parabolic subgroup W_{H}.

Definition
Discriminant of $W: \quad \Delta_{W}:=\prod_{H \in \mathcal{A}} \alpha_{H}^{e_{H}}$.

Discriminant of W

$\mathcal{A}:=\{$ reflection hyperplanes of $W\}$. For $H \in \mathcal{A}$:

- α_{H} : linear form with kernel H;
- e_{H} : order of the parabolic subgroup W_{H}.

Definition

Discriminant of $W: \quad \Delta_{W}:=\prod_{H \in \mathcal{A}} \alpha_{H}^{e_{H}}$.

- $\Delta_{W} \in \mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]$
- Δ_{W} is the equation of the hypersurface \mathcal{H}, quotient of $\cup_{H \in \mathcal{A}} H$, in $W \backslash V \simeq \mathbb{C}^{n}$.

Discriminant of W

$\mathcal{A}:=\{$ reflection hyperplanes of $W\}$. For $H \in \mathcal{A}$:

- α_{H} : linear form with kernel H;
- e_{H} : order of the parabolic subgroup W_{H}.

Definition

Discriminant of $W: \quad \Delta_{W}:=\prod_{H \in \mathcal{A}} \alpha_{H}^{e_{H}}$.

- $\Delta_{W} \in \mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]$
- Δ_{W} is the equation of the hypersurface \mathcal{H}, quotient of $\bigcup_{H \in \mathcal{A}} H$, in $W \backslash V \simeq \mathbb{C}^{n}$.
Basic case in type A:

$$
\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)^{2}=\operatorname{Disc}\left(T^{n}-\sigma_{1} T^{n-1}+\cdots+(-1)^{n} \sigma_{n} ; T\right)
$$

Discriminant of a well-generated group

Suppose W acts irreducibly on V (of dim. n), and is well-generated (i.e. can be generated by n reflections).

Discriminant of a well-generated group

Suppose W acts irreducibly on V (of dim. n), and is well-generated (i.e. can be generated by n reflections).

Proposition

If W is well-generated, the discriminant Δ_{W} is monic of degree n in f_{n}. The fundamental invariants f_{1}, \ldots, f_{n} can be chosen s.t.:

$$
\Delta_{W}=f_{n}^{n}+a_{2} f_{n}^{n-2}+a_{3} f_{n}^{n-3}+\cdots+a_{n-1} f_{n}+a_{n}
$$

with $a_{i} \in \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right]$ (homogeneous polynomial of degree ih).

Lyashko-Looijenga morphism of type W

Definition (Lyashko-Looijenga morphism)

It is an algebraic morphism, which is quasi-homogeneous for the weights $\operatorname{deg}\left(f_{j}\right)=d_{j}, \operatorname{deg}\left(a_{i}\right)=i h$.

Lyashko-Looijenga morphism of type W

Definition (Lyashko-Looijenga morphism)

It is an algebraic morphism, which is quasi-homogeneous for the weights $\operatorname{deg}\left(f_{j}\right)=d_{j}, \operatorname{deg}\left(a_{i}\right)=i h$.

Define $Y:=\operatorname{Spec} \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right]$.
$\rightsquigarrow W \backslash V \simeq Y \times \mathbb{C}$.
LL: $Y \rightarrow E_{n}=\{$ configurations of n points in $\mathbb{C}\}$
$y \mapsto$ \{roots, with multiplicities, of $\Delta_{W}\left(y, f_{n}\right)$ in $\left.f_{n}\right\}$

Lyashko-Looijenga covering

$$
\begin{aligned}
E_{n}^{\text {reg }} & :=\{\text { configurations of } n \text { distincts points }\} \subseteq E_{n} \\
\mathcal{K} & :=\mathrm{LL}^{-1}\left(E_{n}-E_{n}^{\text {reg }}\right) \\
& =\left\{y \in Y \mid \Delta_{W}\left(y, f_{n}\right) \text { has multiple roots in } f_{n}\right\} \\
& =\left\{y \in Y \mid D_{\mathrm{LL}}(y)=0\right\},
\end{aligned}
$$

Lyashko-Looijenga covering

$$
\begin{aligned}
E_{n}^{\text {reg }} & : \\
\mathcal{K} & :=\{\text { configurations of } n \text { distincts points }\} \subseteq E_{n} \\
& =\left\{y \in Y \mid \Delta_{W}-1\left(E_{n}-E_{n}^{\text {reg }}\right)\right. \\
& =\left\{y \in Y \mid D_{\mathrm{LL}}(y)=0\right\}, \\
D_{\mathrm{LL}} & :=\operatorname{Disc}\left(\Delta_{w}\left(y, f_{n}\right) ; f_{n}\right) \\
& =\operatorname{Disc}\left(f_{n}^{n}+a_{2} f_{n}^{n-2}+\cdots+a_{n} ; f_{n}\right) .
\end{aligned}
$$

Lyashko-Looijenga covering

$$
\begin{aligned}
E_{n}^{\text {reg }} & : \\
\mathcal{K} & :=\{\text { configurations of } n \text { distincts points }\} \subseteq E_{n} \\
& =\left\{y \in Y \mid \Delta_{w}\left(y, E_{n}-E_{n}^{\text {reg }}\right)\right. \\
& =\left\{y \in Y \mid D_{\mathrm{LL}}(y)=0\right\}, \\
D_{\mathrm{LL}} & :=\operatorname{Disc}\left(\Delta_{W}\left(y, f_{n}\right) ; f_{n}\right) \\
& =\operatorname{Disc}\left(f_{n}^{n}+a_{2} f_{n}^{n-2}+\cdots+a_{n} ; f_{n}\right) .
\end{aligned}
$$

Theorem (Looijenga, Lyashko, Bessis)

- The extension $\mathbb{C}\left[a_{2}, \ldots, a_{n}\right] \subseteq \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right]$ is free, with rank $n!h^{n} /|W|$.
- LL is a finite morphism.
- its restriction $Y-\mathcal{K} \rightarrow E_{n}^{\mathrm{reg}}$ is an unramified covering of degree $n!h^{n} /|W|$.
(4) Dual braid monoids and noncrossing partition lattices
- The dual braid monoid
- Factorisations in the noncrossing partition lattice
(2) Factorisations from the geometry of the discriminant
- The Lyashko-Looijenga covering
- Factorisations as fibers of LL
- Combinatorics of the submaximal factorisations

Factorisations arising from topology

Hypersurface $\mathcal{H} \subseteq W \backslash V \simeq Y \times \mathbb{C}$.

$$
(y, x) \in \mathcal{H} \quad \Longleftrightarrow \quad x \in \operatorname{LL}(y)
$$

Factorisations arising from topology

Hypersurface $\mathcal{H} \subseteq W \backslash V \simeq Y \times \mathbb{C}$.

$$
(y, x) \in \mathcal{H} \quad \Longleftrightarrow \quad x \in \operatorname{LL}(y)
$$

Topological constructions by Bessis (tunnels)
\leadsto a map

$$
\mathcal{H} \quad \rightarrow W
$$

$$
(y, x) \mapsto c_{y, x}
$$

Factorisations arising from topology

Hypersurface $\mathcal{H} \subseteq W \backslash V \simeq Y \times \mathbb{C}$.

$$
(y, x) \in \mathcal{H} \quad \Longleftrightarrow \quad x \in \operatorname{LL}(y)
$$

Topological constructions by Bessis (tunnels)
$\leadsto \operatorname{amap} \mathcal{H} \rightarrow W$

$$
(y, x) \mapsto c_{y, x}
$$

s.t., if $\left(x_{1}, \ldots, x_{p}\right)$ is the ordered support of $\operatorname{LL}(y)$ (for the lex. order on $\left.\mathbb{C} \simeq \mathbb{R}^{2}\right)$, then: $\left(c_{y, x_{1}}, \ldots, c_{y, x_{\rho}}\right) \in \operatorname{FACT}_{p}(c)$.

Factorisations arising from topology

Hypersurface $\mathcal{H} \subseteq W \backslash V \simeq Y \times \mathbb{C}$.

$$
(y, x) \in \mathcal{H} \quad \Longleftrightarrow \quad x \in \operatorname{LL}(y)
$$

Topological constructions by Bessis (tunnels)
$\rightsquigarrow a \operatorname{map} \mathcal{H} \rightarrow W$

$$
(y, x) \mapsto c_{y, x}
$$

s.t., if $\left(x_{1}, \ldots, x_{p}\right)$ is the ordered support of $\operatorname{LL}(y)$ (for the lex. order on $\left.\mathbb{C} \simeq \mathbb{R}^{2}\right)$, then: $\left(c_{y, x_{1}}, \ldots, c_{y, x_{p}}\right) \in$ FACT $_{p}(c)$.
Notation : $\underline{\operatorname{fact}}(y):=\left(c_{y, x_{1}}, \ldots, c_{y, x_{p}}\right)$.

Factorisations arising from topology

Hypersurface $\mathcal{H} \subseteq W \backslash V \simeq Y \times \mathbb{C}$.

$$
(y, x) \in \mathcal{H} \quad \Longleftrightarrow \quad x \in \operatorname{LL}(y)
$$

Topological constructions by Bessis (tunnels)
$\rightsquigarrow a \operatorname{map} \quad \mathcal{H} \rightarrow W$

$$
(y, x) \mapsto c_{y, x}
$$

s.t., if $\left(x_{1}, \ldots, x_{p}\right)$ is the ordered support of $\operatorname{LL}(y)$ (for the lex. order on $\left.\mathbb{C} \simeq \mathbb{R}^{2}\right)$, then: $\left(c_{y, x_{1}}, \ldots, c_{y, x_{p}}\right) \in$ FACT $_{p}(c)$.
Notation : $\underline{\operatorname{fact}}(y):=\left(c_{y, x_{1}}, \ldots, c_{y, x_{p}}\right)$.
\mathcal{R}-length and conjugacy class of $c_{y, x}$ depend on the position of (y, x) in $\mathcal{H} \ldots$

Stratification of $W \backslash V$ and parabolic Coxeter elements

Stratification of V with the flats (intersection lattice) :
$\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\}$.

Stratification of $W \backslash V$ and parabolic Coxeter elements

Stratification of V with the flats (intersection lattice) :
$\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\}$.
Quotient by $W \rightsquigarrow$ stratification $\overline{\mathcal{L}}=W \backslash \mathcal{L}=(W \cdot L)_{L \in \mathcal{L}}$.

Stratification of $W \backslash V$ and parabolic Coxeter elements

Stratification of V with the flats (intersection lattice) :
$\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\}$.
Quotient by $W \rightsquigarrow$ stratification $\overline{\mathcal{L}}=W \backslash \mathcal{L}=(W \cdot L)_{L \in \mathcal{L}}$.
For $\Lambda \in \overline{\mathcal{L}}, \Lambda^{0}:=\Lambda$ minus its strata strictly included.

Stratification of $W \backslash V$ and parabolic Coxeter elements

Stratification of V with the flats (intersection lattice) :
$\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\}$.
Quotient by $W \rightsquigarrow$ stratification $\overline{\mathcal{L}}=W \backslash \mathcal{L}=(W \cdot L)_{L \in \mathcal{L}}$.
For $\Lambda \in \overline{\mathcal{L}}, \Lambda^{0}:=\Lambda$ minus its strata strictly included.
Bijection [Steinberg] :
$\mathcal{L} \leftrightarrow\{$ parabolic subgroups of $W\}=: P S G(W)$.

Stratification of $W \backslash V$ and parabolic Coxeter elements

Stratification of V with the flats (intersection lattice) :
$\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\}$.
Quotient by $W \rightsquigarrow$ stratification $\overline{\mathcal{L}}=W \backslash \mathcal{L}=(W \cdot L)_{L \in \mathcal{L}}$.
For $\Lambda \in \overline{\mathcal{L}}, \Lambda^{0}:=\Lambda$ minus its strata strictly included.
Bijection [Steinberg] :
$\mathcal{L} \leftrightarrow\{$ parabolic subgroups of $W\}=: P S G(W)$.
\rightsquigarrow natural bijections :

$$
\overline{\mathcal{L}} \quad \leftrightarrow \quad P S G(W) / \text { conj. }
$$

Stratification of $W \backslash V$ and parabolic Coxeter elements

Stratification of V with the flats (intersection lattice) :
$\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\}$.
Quotient by $W \rightsquigarrow$ stratification $\overline{\mathcal{L}}=W \backslash \mathcal{L}=(W \cdot L)_{L \in \mathcal{L}}$.
For $\Lambda \in \overline{\mathcal{L}}, \Lambda^{0}:=\Lambda$ minus its strata strictly included.
Bijection [Steinberg] :
$\mathcal{L} \leftrightarrow\{$ parabolic subgroups of $W\}=: P S G(W)$.
\rightsquigarrow natural bijections :

$$
\overline{\mathcal{L}} \quad \leftrightarrow \quad P S G(W) / \text { conj. } \quad \leftrightarrow \quad \text { Cox-parab }(W) / \text { conj. }
$$

Cox-parab(W) : parabolic Coxeter elements, i.e. Coxeter elements of a p.s.g. of W.

Stratification of $W \backslash V$ and parabolic Coxeter elements

Stratification of V with the flats (intersection lattice) :
$\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\}$.
Quotient by $W \rightsquigarrow$ stratification $\overline{\mathcal{L}}=W \backslash \mathcal{L}=(W \cdot L)_{L \in \mathcal{L}}$.
For $\Lambda \in \overline{\mathcal{L}}, \Lambda^{0}:=\Lambda$ minus its strata strictly included.
Bijection [Steinberg] :
$\mathcal{L} \leftrightarrow\{$ parabolic subgroups of $W\}=: P S G(W)$.
\rightsquigarrow natural bijections :

$$
\begin{array}{ccccc}
\overline{\mathcal{L}} & \leftrightarrow & P S G(W) / \text { conj. } & \leftrightarrow & \text { Cox-parab }(W) / \text { conj. } \\
\operatorname{codim}(\Lambda) & \leftrightarrow & \operatorname{rang}\left(W^{\prime}\right) & \leftrightarrow & \ell\left(c^{\prime}\right)
\end{array}
$$

Cox-parab(W) : parabolic Coxeter elements, i.e. Coxeter elements of a p.s.g. of W.

Factorisations and LL

Proposition

Fix $y \in Y$. For all $x \in \operatorname{LL}(y), c_{y, x}$ is a parabolic Coxeter element of W. Its length is the multiplicity of x in $\operatorname{LL}(y)$; its conjugacy class corresponds to the unique stratum \wedge in $\overline{\mathcal{L}}$ s.t. $(y, x) \in \Lambda^{0}$.

Factorisations and LL

Proposition

Fix $y \in Y$. For all $x \in \operatorname{LL}(y), c_{y, x}$ is a parabolic Coxeter element of W. Its length is the multiplicity of x in $\operatorname{LL}(y)$; its conjugacy class corresponds to the unique stratum \wedge in $\overline{\mathcal{L}}$ s.t. $(y, x) \in \Lambda^{0}$.

Block factorisations \rightsquigarrow composition of n
$\omega \in E_{n} \rightsquigarrow$ composition of n (multiplicities in the lex. order)

Factorisations and LL

Proposition

Fix $y \in Y$. For all $x \in \operatorname{LL}(y), c_{y, x}$ is a parabolic Coxeter element of W. Its length is the multiplicity of x in $\operatorname{LL}(y)$; its conjugacy class corresponds to the unique stratum \wedge in $\overline{\mathcal{L}}$ s.t. $(y, x) \in \Lambda^{0}$.

Block factorisations \rightsquigarrow composition of n
$\omega \in E_{n} \rightsquigarrow$ composition of n (multiplicities in the lex. order)
Prop. \Rightarrow compatibility of fact (y) and $\operatorname{LL}(y)$ (same comp.)

Factorisations and LL

Proposition

Fix $y \in Y$. For all $x \in \operatorname{LL}(y), c_{y, x}$ is a parabolic Coxeter element of W. Its length is the multiplicity of x in $\operatorname{LL}(y)$; its conjugacy class corresponds to the unique stratum \wedge in $\overline{\mathcal{L}}$ s.t. $(y, x) \in \Lambda^{0}$.

Block factorisations \rightsquigarrow composition of n
$\omega \in E_{n} \rightsquigarrow$ composition of n (multiplicities in the lex. order)
Prop. \Rightarrow compatibility of fact (y) and $\operatorname{LL}(y)$ (same comp.)

Theorem (Bessis)

The map $Y \xrightarrow{L L \times f a c t} E_{n} \times \operatorname{FACT}(c)$ is injective, and its image is the set of compatible pairs.

Factorisations and LL

Proposition

Fix $y \in Y$. For all $x \in \operatorname{LL}(y), c_{y, x}$ is a parabolic Coxeter element of W. Its length is the multiplicity of x in $\operatorname{LL}(y)$; its conjugacy class corresponds to the unique stratum \wedge in $\overline{\mathcal{L}}$ s.t. $(y, x) \in \Lambda^{0}$.

Block factorisations \rightsquigarrow composition of n
$\omega \in E_{n} \rightsquigarrow$ composition of n (multiplicities in the lex. order)
Prop. \Rightarrow compatibility of fact (y) and $\operatorname{LL}(y)$ (same comp.)

Theorem (Bessis)

The map $Y \xrightarrow{\text { LL } \times \text { fact }} E_{n} \times \operatorname{FACT}(c)$ is injective, and its image is the set of compatible pairs.
$\forall \omega \in E_{n}$, fact induces $\mathrm{LL}^{-1}(\omega) \xrightarrow{\sim} \mathrm{FACT}_{\mu}(c)$, where μ is the composition of ω.

Reduced decompositions of c

$\left|\operatorname{Red}_{\mathcal{R}}(c)\right|=\left|\operatorname{FACT}_{\mu}(c)\right|$ for $\mu=(1, \ldots, 1)$

Reduced decompositions of c

$\left|\operatorname{Red}_{\mathcal{R}}(c)\right|=\left|\operatorname{FACT}_{\mu}(c)\right|$ for $\mu=(1, \ldots, 1)$

$$
=\left|\mathrm{LL}^{-1}(\omega)\right| \quad \text { for } \omega \in E_{n}^{\text {reg }}
$$

Reduced decompositions of c

$\left|\operatorname{Red}_{\mathcal{R}}(c)\right|=\left|\operatorname{FACT}_{\mu}(c)\right|$ for $\mu=(1, \ldots, 1)$
$=\left|\mathrm{LL}^{-1}(\omega)\right| \quad$ for $\omega \in E_{n}^{\text {reg }}$
$=\operatorname{deg}(L L)$
$=\frac{n!h^{n}}{|W|}$

Reduced decompositions of c

$$
\begin{aligned}
\left|\operatorname{Red}_{\mathcal{R}}(c)\right| & =\left|\operatorname{FACT}_{\mu}(c)\right| \text { for } \mu=(1, \ldots, 1) \\
& =\left|\operatorname{LL}^{-1}(\omega)\right| \quad \text { for } \omega \in E_{n}^{\text {reg }} \\
& =\operatorname{deg}(L L) \\
& =\frac{n!h^{n}}{|W|}
\end{aligned}
$$

Can we compute in the same way
\mid FACT $_{n-1}(c)|=|$ FACT $_{2^{11 n-2}}(c) \mid$?
(4) Dual braid monoids and noncrossing partition lattices

- The dual braid monoid
- Factorisations in the noncrossing partition lattice
(2) Factorisations from the geometry of the discriminant
- The Lyashko-Looijenga covering
- Factorisations as fibers of LL
- Combinatorics of the submaximal factorisations

Irreducible components of \mathcal{K}

Ramified part of $\mathrm{LL}: \mathcal{K} \rightarrow E_{n}-E_{n}^{\text {reg }}$.
$\mathcal{K}=\left\{y \in Y \mid D_{\mathrm{LL}}(y)=0\right\}$.

Irreducible components of \mathcal{K}

Ramified part of LL: $\mathcal{K} \rightarrow E_{n}-E_{n}^{\text {reg }}$.
$\mathcal{K}=\left\{y \in Y \mid D_{\mathrm{LL}}(y)=0\right\}$.
$\overline{\mathcal{L}}_{2}:=\{$ strata of $\overline{\mathcal{L}}$ with codimension 2$\}$

Irreducible components of \mathcal{K}

Ramified part of $\mathrm{LL}: \mathcal{K} \rightarrow E_{n}-E_{n}^{\text {reg }}$.
$\mathcal{K}=\left\{y \in Y \mid D_{\mathrm{LL}}(y)=0\right\}$.
$\overline{\mathcal{L}}_{2}:=\{$ strata of $\overline{\mathcal{L}}$ with codimension 2$\}$
$\varphi: \begin{aligned} W \backslash V \simeq Y \times \mathbb{C} & \rightarrow Y \\ \bar{V}=(y, x) & \mapsto y\end{aligned}, ~$

Irreducible components of \mathcal{K}

Ramified part of $\mathrm{LL}: \mathcal{K} \rightarrow E_{n}-E_{n}^{\text {reg }}$.
$\mathcal{K}=\left\{y \in Y \mid D_{\mathrm{LL}}(y)=0\right\}$.
$\overline{\mathcal{L}}_{2}:=\{$ strata of $\overline{\mathcal{L}}$ with codimension 2$\}$
$\varphi: W \backslash V \simeq Y \times \mathbb{C} \rightarrow Y$ $\bar{v}=(y, x) \quad \mapsto y$

Proposition

The irreducible components of \mathcal{K} are the $\varphi(\Lambda)$, for $\Lambda \in \overline{\mathcal{L}}_{2}$.

Restriction of LL to a component of \mathcal{K}

Write $D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$, with D_{Λ} irreducibles in $\mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right]$ s.t. $\varphi(\Lambda)=\left\{D_{\Lambda}=0\right\}$.

Restriction of LL to a component of \mathcal{K}

Write $D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$, with D_{Λ} irreducibles in $\mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right]$ s.t. $\varphi(\Lambda)=\left\{D_{\Lambda}=0\right\}$.

Define the restriction

$$
\mathrm{LL}_{\Lambda}: \varphi(\Lambda) \rightarrow E_{n}-E_{n}^{\mathrm{reg}}
$$

Restriction of LL to a component of \mathcal{K}

Write $D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$, with D_{Λ} irreducibles in $\mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right]$ s.t. $\varphi(\Lambda)=\left\{D_{\Lambda}=0\right\}$.

Define the restriction

$$
\mathrm{LL}_{\Lambda}: \varphi(\Lambda) \rightarrow E_{n}-E_{n}^{\mathrm{reg}} .
$$

LL_{\wedge} corresponds to the extension

$$
\mathbb{C}\left[a_{2}, \ldots, a_{n}\right] /\left(D_{\mathrm{LL}}\right) \subseteq \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right] /\left(D_{\Lambda}\right)
$$

Restriction of $L L$ to a component of \mathcal{K}

Write $D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$, with D_{Λ} irreducibles in $\mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right]$ s.t. $\varphi(\Lambda)=\left\{D_{\Lambda}=0\right\}$.

Define the restriction

$$
\mathrm{LL}_{\Lambda}: \varphi(\Lambda) \rightarrow E_{n}-E_{n}^{\mathrm{reg}} .
$$

LL_{\wedge} corresponds to the extension

$$
\mathbb{C}\left[a_{2}, \ldots, a_{n}\right] /\left(D_{\mathrm{LL}}\right) \subseteq \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right] /\left(D_{\Lambda}\right)
$$

$$
\frac{\Pi \operatorname{deg}\left(a_{i}\right)}{\operatorname{deg}\left(D_{\mathrm{LL}}\right)} / \frac{\Pi \operatorname{deg}\left(f_{j}\right)}{\operatorname{deg}\left(D_{\Lambda}\right)}=\frac{(n-2)!h^{n-2}}{|W|} \operatorname{deg} D_{\Lambda}
$$

Factorisations of type \wedge

Theorem (R.)
For any stratum \wedge in $\overline{\mathcal{L}}_{2}$:

- $L L_{\Lambda}$ is a finite morphism of degree $\frac{(n-2)!h^{n-1}}{|W|} \operatorname{deg} D_{\Lambda}$;

Factorisations of type \wedge

Theorem (R.)

For any stratum \wedge in $\overline{\mathcal{L}}_{2}$:

- $L L_{\Lambda}$ is a finite morphism of degree $\frac{(n-2)!h^{n-1}}{|W|} \operatorname{deg} D_{\Lambda}$;
- the number of factorisations of c in $n-2$ reflections + one (length 2) element of conjugacy class corresponding to \wedge (in any order) equals :

$$
\left|\operatorname{FACT}_{n-1}^{\wedge}(c)\right|=\frac{(n-1)!h^{n-1}}{|W|} \operatorname{deg} D_{\wedge}
$$

Submaximal factorisations

To obtain $\left|\operatorname{FACT}_{n-1}(c)\right|$, we need to compute $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}} \operatorname{deg}\left(D_{\Lambda}\right)$.

Submaximal factorisations

To obtain $\left|\operatorname{FACT}_{n-1}(c)\right|$, we need to compute $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}} \operatorname{deg}\left(D_{\Lambda}\right)$. Recall $D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.

Submaximal factorisations

To obtain $\left|\operatorname{FACT}_{n-1}(c)\right|$, we need to compute $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}} \operatorname{deg}\left(D_{\Lambda}\right)$. Recall $D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.

Proposition

Let $J_{\mathrm{LL}}:=\operatorname{Jac}(\mathrm{LL})=\operatorname{Jac}\left(\left(a_{2}, \ldots, a_{n}\right) /\left(f_{1}, \ldots, f_{n-1}\right)\right)$. Then

$$
J_{\mathrm{LL}} \doteq \prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}-1}
$$

Submaximal factorisations

To obtain $\left|\operatorname{FACT}_{n-1}(c)\right|$, we need to compute $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}} \operatorname{deg}\left(D_{\Lambda}\right)$. Recall $D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.

Proposition

Let $J_{\mathrm{LL}}:=\operatorname{Jac}(\mathrm{LL})=\operatorname{Jac}\left(\left(a_{2}, \ldots, a_{n}\right) /\left(f_{1}, \ldots, f_{n-1}\right)\right)$. Then

$$
J_{\mathrm{LL}} \doteq \prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}-1}
$$

Corollary
The number of factorisations of a Coxeter element cin $n-1$ blocks is :

Submaximal factorisations

To obtain $\left|\operatorname{FACT}_{n-1}(c)\right|$, we need to compute $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}} \operatorname{deg}\left(D_{\Lambda}\right)$. Recall $D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.

Proposition

Let $J_{\mathrm{LL}}:=\operatorname{Jac}(\mathrm{LL})=\operatorname{Jac}\left(\left(a_{2}, \ldots, a_{n}\right) /\left(f_{1}, \ldots, f_{n-1}\right)\right)$. Then

$$
J_{\mathrm{LL}} \doteq \prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}-1}
$$

Corollary
The number of factorisations of a Coxeter element cin $n-1$ blocks is :

$$
\left|\operatorname{FACT}_{n-1}(c)\right|=\frac{(n-1)!h^{n-1}}{|W|}\left(\frac{(n-1)(n-2)}{2} h+\sum_{i=1}^{n-1} d_{i}\right)
$$

Conclusion, prospects

- We travelled from the numerology of $\operatorname{Red}_{\mathcal{R}}(c)$ (non-ramified part of LL) to that of $\mathrm{FACT}_{n-1}(c)$, without adding any case-by-case analysis.

Conclusion, prospects

- We travelled from the numerology of $\operatorname{Red}_{\mathcal{R}}(c)$ (non-ramified part of LL) to that of $\mathrm{FACT}_{n-1}(c)$, without adding any case-by-case analysis.
- Finer combinatorial formulas, containing new invariant integers for reflection groups (the $\operatorname{deg}\left(D_{\Lambda}\right)$).

Conclusion, prospects

- We travelled from the numerology of $\operatorname{Red}_{\mathcal{R}}(c)$ (non-ramified part of LL) to that of $\mathrm{FACT}_{n-1}(c)$, without adding any case-by-case analysis.
- Finer combinatorial formulas, containing new invariant integers for reflection groups (the $\operatorname{deg}\left(D_{\Lambda}\right)$).
- We recover geometrically some combinatorial results known in the real case [Krattenthaler].

Conclusion, prospects

- We travelled from the numerology of $\operatorname{Red}_{\mathcal{R}}(c)$ (non-ramified part of LL) to that of $\mathrm{FACT}_{n-1}(c)$, without adding any case-by-case analysis.
- Finer combinatorial formulas, containing new invariant integers for reflection groups (the $\operatorname{deg}\left(D_{\Lambda}\right)$).
- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the $\left.\left|\mathrm{FACT}_{k}(c)\right|\right)$? Problem of the complexity of formulas. Should we interpret Chapoton's formula as a ramification formula for LL?

Conclusion, prospects

- We travelled from the numerology of $\operatorname{Red}_{\mathcal{R}}(c)$ (non-ramified part of LL) to that of $\mathrm{FACT}_{n-1}(c)$, without adding any case-by-case analysis.
- Finer combinatorial formulas, containing new invariant integers for reflection groups (the $\operatorname{deg}\left(D_{\Lambda}\right)$).
- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the $\left.\left|\mathrm{FACT}_{k}(c)\right|\right)$? Problem of the complexity of formulas. Should we interpret Chapoton's formula as a ramification formula for LL ?
- Combinatorics of the block factorisations of the Garside element: is it interesting in other families of Garside structures ?

Conclusion, prospects

- We travelled from the numerology of $\operatorname{Red}_{\mathcal{R}}(c)$ (non-ramified part of LL) to that of $\mathrm{FACT}_{n-1}(c)$, without adding any case-by-case analysis.
- Finer combinatorial formulas, containing new invariant integers for reflection groups (the $\operatorname{deg}\left(D_{\Lambda}\right)$).
- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the $\left.\left|\mathrm{FACT}_{k}(c)\right|\right)$? Problem of the complexity of formulas. Should we interpret Chapoton's formula as a ramification formula for LL ?
- Combinatorics of the block factorisations of the Garside element: is it interesting in other families of Garside structures ?

Conclusion, prospects

- We travelled from the numerology of $\operatorname{Red}_{\mathcal{R}}(c)$ (non-ramified part of LL) to that of $\mathrm{FACT}_{n-1}(c)$, without adding any case-by-case analysis.
- Finer combinatorial formulas, containing new invariant integers for reflection groups (the $\operatorname{deg}\left(D_{\Lambda}\right)$).
- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the $\left.\left|\mathrm{FACT}_{k}(c)\right|\right)$? Problem of the complexity of formulas. Should we interpret Chapoton's formula as a ramification formula for LL ?
- Combinatorics of the block factorisations of the Garside element: is it interesting in other families of Garside structures ?

Thank you！

（Merci，gracias．．．）

