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Classical setting: Artin-Tits monoids

W finite real reflection group, S system of fundamental
reflections.

Artin-Tits monoid of (W ,S) :

A+(W ,S) :=
〈
S | ∀s, t ∈ S, sts . . .︸ ︷︷ ︸

ms,t

= tst ...︸︷︷︸
ms,t

〉
Mon.

Alternative presentation [Tits] :
〈W | w .w ′ = ww ′ whenever `S(w) + `S(w ′) = `S(ww ′)〉Mon .

Garside monoid;
Garside element: (copy of) w0 (the longest element);
simple elements: (copy of) W = {w ∈W | w 4S w0}
(lattice for 4S), where

u 4S v ⇔ `S(u) + `S(u−1v) = `S(v);

A+(W ,S) embeds in B(W ) (the braid group of W ).



Classical setting: Artin-Tits monoids

W finite real reflection group, S system of fundamental
reflections. Artin-Tits monoid of (W ,S) :

A+(W ,S) :=
〈
S | ∀s, t ∈ S, sts . . .︸ ︷︷ ︸

ms,t

= tst ...︸︷︷︸
ms,t

〉
Mon.

Alternative presentation [Tits] :
〈W | w .w ′ = ww ′ whenever `S(w) + `S(w ′) = `S(ww ′)〉Mon .

Garside monoid;
Garside element: (copy of) w0 (the longest element);
simple elements: (copy of) W = {w ∈W | w 4S w0}
(lattice for 4S), where

u 4S v ⇔ `S(u) + `S(u−1v) = `S(v);

A+(W ,S) embeds in B(W ) (the braid group of W ).



Classical setting: Artin-Tits monoids

W finite real reflection group, S system of fundamental
reflections. Artin-Tits monoid of (W ,S) :

A+(W ,S) :=
〈
S | ∀s, t ∈ S, sts . . .︸ ︷︷ ︸

ms,t

= tst ...︸︷︷︸
ms,t

〉
Mon.

Alternative presentation [Tits] :
〈W | w .w ′ = ww ′ whenever `S(w) + `S(w ′) = `S(ww ′)〉Mon .

Garside monoid;
Garside element: (copy of) w0 (the longest element);
simple elements: (copy of) W = {w ∈W | w 4S w0}
(lattice for 4S), where

u 4S v ⇔ `S(u) + `S(u−1v) = `S(v);

A+(W ,S) embeds in B(W ) (the braid group of W ).



Classical setting: Artin-Tits monoids

W finite real reflection group, S system of fundamental
reflections. Artin-Tits monoid of (W ,S) :

A+(W ,S) :=
〈
S | ∀s, t ∈ S, sts . . .︸ ︷︷ ︸

ms,t

= tst ...︸︷︷︸
ms,t

〉
Mon.

Alternative presentation [Tits] :
〈W | w .w ′ = ww ′ whenever `S(w) + `S(w ′) = `S(ww ′)〉Mon .

Garside monoid;

Garside element: (copy of) w0 (the longest element);
simple elements: (copy of) W = {w ∈W | w 4S w0}
(lattice for 4S),

where

u 4S v ⇔ `S(u) + `S(u−1v) = `S(v);

A+(W ,S) embeds in B(W ) (the braid group of W ).



Classical setting: Artin-Tits monoids

W finite real reflection group, S system of fundamental
reflections. Artin-Tits monoid of (W ,S) :

A+(W ,S) :=
〈
S | ∀s, t ∈ S, sts . . .︸ ︷︷ ︸

ms,t

= tst ...︸︷︷︸
ms,t

〉
Mon.

Alternative presentation [Tits] :
〈W | w .w ′ = ww ′ whenever `S(w) + `S(w ′) = `S(ww ′)〉Mon .

Garside monoid;
Garside element: (copy of) w0 (the longest element);

simple elements: (copy of) W = {w ∈W | w 4S w0}
(lattice for 4S),

where

u 4S v ⇔ `S(u) + `S(u−1v) = `S(v);

A+(W ,S) embeds in B(W ) (the braid group of W ).



Classical setting: Artin-Tits monoids

W finite real reflection group, S system of fundamental
reflections. Artin-Tits monoid of (W ,S) :

A+(W ,S) :=
〈
S | ∀s, t ∈ S, sts . . .︸ ︷︷ ︸

ms,t

= tst ...︸︷︷︸
ms,t

〉
Mon.

Alternative presentation [Tits] :
〈W | w .w ′ = ww ′ whenever `S(w) + `S(w ′) = `S(ww ′)〉Mon .

Garside monoid;
Garside element: (copy of) w0 (the longest element);
simple elements: (copy of) W = {w ∈W | w 4S w0}
(lattice for 4S),

where

u 4S v ⇔ `S(u) + `S(u−1v) = `S(v);

A+(W ,S) embeds in B(W ) (the braid group of W ).



Classical setting: Artin-Tits monoids

W finite real reflection group, S system of fundamental
reflections. Artin-Tits monoid of (W ,S) :

A+(W ,S) :=
〈
S | ∀s, t ∈ S, sts . . .︸ ︷︷ ︸

ms,t

= tst ...︸︷︷︸
ms,t

〉
Mon.

Alternative presentation [Tits] :
〈W | w .w ′ = ww ′ whenever `S(w) + `S(w ′) = `S(ww ′)〉Mon .

Garside monoid;
Garside element: (copy of) w0 (the longest element);
simple elements: (copy of) W = {w ∈W | w 4S w0}
(lattice for 4S),

where

u 4S v ⇔ `S(u) + `S(u−1v) = `S(v);

A+(W ,S) embeds in B(W ) (the braid group of W ).



Classical setting: Artin-Tits monoids

W finite real reflection group, S system of fundamental
reflections. Artin-Tits monoid of (W ,S) :

A+(W ,S) :=
〈
S | ∀s, t ∈ S, sts . . .︸ ︷︷ ︸

ms,t

= tst ...︸︷︷︸
ms,t

〉
Mon.

Alternative presentation [Tits] :
〈W | w .w ′ = ww ′ whenever `S(w) + `S(w ′) = `S(ww ′)〉Mon .

Garside monoid;
Garside element: (copy of) w0 (the longest element);
simple elements: (copy of) W = {w ∈W | w 4S w0}
(lattice for 4S), where

u 4S v ⇔ `S(u) + `S(u−1v) = `S(v);

A+(W ,S) embeds in B(W ) (the braid group of W ).



Classical setting: Artin-Tits monoids

W finite real reflection group, S system of fundamental
reflections. Artin-Tits monoid of (W ,S) :

A+(W ,S) :=
〈
S | ∀s, t ∈ S, sts . . .︸ ︷︷ ︸

ms,t

= tst ...︸︷︷︸
ms,t

〉
Mon.

Alternative presentation [Tits] :
〈W | w .w ′ = ww ′ whenever `S(w) + `S(w ′) = `S(ww ′)〉Mon .

Garside monoid;
Garside element: (copy of) w0 (the longest element);
simple elements: (copy of) W = {w ∈W | w 4S w0}
(lattice for 4S), where

u 4S v ⇔ `S(u) + `S(u−1v) = `S(v);

A+(W ,S) embeds in B(W ) (the braid group of W ).



Dual braid monoid

Basic idea: replace S with R := {all reflections in W}.
 new definition of length (`R) and of partial order (4R).

Definition (Dual braid monoid of W )

M(W , c) is the monoid with presentation〈
[1, c] | w .w ′ = ww ′ if `R(w) + `R(w ′) = `R(ww ′)

〉
.

Garside monoid;
Garside element: (copy of) c (a Coxeter element);
simple elements: (copy of) [1, c] = {w ∈W | w 4R c}
(lattice for 4R);
M(W , c) embeds in B(W ), but is not isomorphic to the
Artin-Tits monoid.
the construction extends to (well-generated) complex
reflection groups.
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Complex reflection groups

V : complex vector space, of dim. n.

Definition
A (finite) complex reflection group is a finite subgroup of GL(V )
generated by complex reflections.
A complex reflection is an element s ∈ GL(V ) of finite order, s.t.
Ker(s − IdV ) is a hyperplane:

s ↔
B

matrix Diag(ζ,1, . . . ,1) , with ζ root of unity.

Shephard-Todd’s classification (1954):

an infinite series with 3 parameters G(de,e, r) ;
34 exceptional groups.
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Invariant theory

W a complex reflection group.
W acts on S(V ∗) (polynomial algebra C[v1, . . . , vn]).

Theorem (Chevalley-Shephard-Todd)
There exist fundamental invariant polynomials f1, . . . , fn
(homogeneous), s.t.

S(V ∗)W = C[f1, . . . , fn] .

Their degrees d1 ≤ · · · ≤ dn do not depend on the choice of
f1, . . . , fn (invariant degrees of W).

 isomorphism : W\V ∼−→ Cn

v̄ 7→ (f1(v), . . . , fn(v)).



Invariant theory

W a complex reflection group.
W acts on S(V ∗) (polynomial algebra C[v1, . . . , vn]).

Theorem (Chevalley-Shephard-Todd)
There exist fundamental invariant polynomials f1, . . . , fn
(homogeneous), s.t.

S(V ∗)W = C[f1, . . . , fn] .

Their degrees d1 ≤ · · · ≤ dn do not depend on the choice of
f1, . . . , fn (invariant degrees of W).

 isomorphism : W\V ∼−→ Cn

v̄ 7→ (f1(v), . . . , fn(v)).



Invariant theory

W a complex reflection group.
W acts on S(V ∗) (polynomial algebra C[v1, . . . , vn]).

Theorem (Chevalley-Shephard-Todd)
There exist fundamental invariant polynomials f1, . . . , fn
(homogeneous), s.t.

S(V ∗)W = C[f1, . . . , fn] .

Their degrees d1 ≤ · · · ≤ dn do not depend on the choice of
f1, . . . , fn (invariant degrees of W).

 isomorphism : W\V ∼−→ Cn

v̄ 7→ (f1(v), . . . , fn(v)).



1 Dual braid monoids and noncrossing partition lattices
The dual braid monoid
Factorisations in the noncrossing partition lattice

2 Factorisations from the geometry of the discriminant
The Lyashko-Looijenga covering
Factorisations as fibers of LL
Combinatorics of the submaximal factorisations



The noncrossing partition lattice

Suppose W irreducible, well-generated.
Let c be a fixed Coxeter element (i.e. e2iπ/h-regular, where
h = dn).

Definition (Noncrossing partition lattice of type W )

NCPW (c) := {w ∈W | w 4R c}

(the structure does not depend on the choice of c.)

Fundamental example

If W = Sn (type A), NCPW ' {noncrossing partitions of an
n-gon}.

Very rich combinatorial object.
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Multichains in NCPW

Chapoton’s formula
The number of multichains w1 4R . . . 4R wN 4R c in NCPW is :

ZW (N + 1) =
n∏

i=1

di + Nh
di

.

Called Fuss-Catalan numbers of type W : Cat(N)(W ).

Proof (Athanasiadis, Reiner, Bessis): case-by-case using the
classification... even for N = 1 (formula for | NCPW |).
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Block factorisations of c

(will appear naturally in the geometry of B(W ))

Definition
(w1, . . . ,wp) is a block factorisation of c if :

w1 . . .wp = c ;
w1, . . . ,wp ∈W − {1};
`R(w1) + · · ·+ `R(wp) = `R(c) = n
(i.e. w1 4R w1w2 4R . . . 4R w1 . . .wp−1 4R c).

FACTp(c) := {factorisations in p blocks}
 determines a partition of n, and even a composition (ordered
partition) of n.
Ex. : FACTn(c) = FACT1n (c) = RedR(c).
FACTn−1(c) = FACT211n−2 .
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Factorisations vs multichains

Combinatorics of factorisations: similar to multichains.
But factors must be non-trivial ( strict chains).

Conversion formulas

Cat(N)(W ) =
n∑

k=1

(
N + 1

k

)
| FACTk (c)|

| FACTp(c)| = ∆pZW (0) =

p∑
k=1

(−1)p−k
(

p
k

)
Cat(k)(W )

(∆ : P 7→ P(X + 1)− P(X ).)
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Discriminant of W

A := {reflection hyperplanes of W}. For H ∈ A:
αH : linear form with kernel H;
eH : order of the parabolic subgroup WH .

Definition

Discriminant of W : ∆W :=
∏

H∈A
αeH

H .

∆W ∈ C[V ]W = C[f1, . . . , fn]

∆W is the equation of the hypersurface H, quotient of⋃
H∈AH, in W\V ' Cn.

Basic case in type A :∏
1≤i<j≤n

(xi − xj)
2 = Disc(T n − σ1T n−1 + · · ·+ (−1)nσn; T )
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Discriminant of a well-generated group

Suppose W acts irreducibly on V (of dim. n), and is
well-generated (i.e. can be generated by n reflections).

Proposition
If W is well-generated, the discriminant ∆W is monic of degree
n in fn. The fundamental invariants f1, . . . , fn can be chosen s.t.:

∆W = f n
n + a2f n−2

n + a3f n−3
n + · · ·+ an−1fn + an,

with ai ∈ C[f1, . . . , fn−1] (homogeneous polynomial of degree
ih).
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Lyashko-Looijenga morphism of type W

Definition (Lyashko-Looijenga morphism)

LL : Cn−1 → Cn−1

(f1, . . . , fn−1) 7→ (a2, . . . ,an)

It is an algebraic morphism, which is quasi-homogeneous for
the weights deg(fj) = dj , deg(ai) = ih.

Define Y := Spec C[f1, . . . , fn−1].
 W\V ' Y × C.

LL : Y → En = {configurations of n points in C}
y 7→ {roots, with multiplicities, of ∆W (y , fn) in fn}
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Lyashko-Looijenga covering

E reg
n := {configurations of n distincts points} ⊆ En

K := LL−1(En − E reg
n )

= {y ∈ Y | ∆W (y , fn) has multiple roots in fn}
= {y ∈ Y | DLL(y) = 0} ,

with

DLL := Disc(∆W (y , fn); fn)

= Disc(f n
n + a2f n−2

n + · · ·+ an; fn).

Theorem (Looijenga, Lyashko, Bessis)

The extension C[a2, . . . ,an] ⊆ C[f1, . . . , fn−1] is free, with
rank n!hn/|W |.
LL is a finite morphism.
its restriction Y −K� E reg

n is an unramified covering of
degree n!hn/|W |.
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Factorisations arising from topology

Hypersurface H ⊆W\V ' Y × C.

(y , x) ∈ H ⇐⇒ x ∈ LL(y)

Topological constructions by Bessis (tunnels)
 a map H → W

(y , x) 7→ cy ,x
s.t., if (x1, . . . , xp) is the ordered support of LL(y) (for the lex.
order on C ' R2), then: (cy ,x1 , . . . , cy ,xp ) ∈ FACTp(c).

Notation : fact(y) := (cy ,x1 , . . . , cy ,xp ).

R-length and conjugacy class of cy ,x depend on the position of
(y , x) in H ...
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Stratification of W\V and parabolic Coxeter elements

Stratification of V with the flats (intersection lattice) :
L :=

{⋂
H∈B H | B ⊆ A

}
.

Quotient by W  stratification L̄ = W\L = (W · L)L∈L.
For Λ ∈ L̄, Λ0 := Λ minus its strata strictly included.

Bijection [Steinberg] :
L ↔ {parabolic subgroups of W} =: PSG(W ).
 natural bijections :

L̄ ↔ PSG(W )/conj. ↔ Cox-parab(W )/conj.

codim(Λ) ↔ rang(W ′) ↔ `(c′)

Cox-parab(W ) : parabolic Coxeter elements, i.e. Coxeter
elements of a p.s.g. of W .
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Factorisations and LL

Proposition

Fix y ∈ Y. For all x ∈ LL(y), cy ,x is a parabolic Coxeter element
of W. Its length is the multiplicity of x in LL(y); its conjugacy
class corresponds to the unique stratum Λ in L̄ s.t. (y , x) ∈ Λ0.

Block factorisations composition of n
ω ∈ En  composition of n (multiplicities in the lex. order)
Prop. ⇒ compatibility of fact(y) and LL(y) (same comp.)

Theorem (Bessis)

The map Y
LL× fact−−−−−→ En × FACT(c) is injective, and its image is

the set of compatible pairs.

∀ω ∈ En, fact induces LL−1(ω)
∼−→ FACTµ(c), where µ is the

composition of ω.
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Reduced decompositions of c

|RedR(c)| = | FACTµ(c)| for µ = (1, . . . ,1)

= |LL−1(ω)| for ω ∈ E reg
n

= deg(LL)

=
n!hn

|W |

Can we compute in the same way
| FACTn−1(c)| = | FACT211n−2(c)| ?
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Irreducible components of K

Ramified part of LL : K� En − E reg
n .

K = {y ∈ Y | DLL(y) = 0}.

L̄2 := {strata of L̄ with codimension 2}

ϕ : W\V ' Y × C → Y
v̄ = (y , x) 7→ y

Proposition

The irreducible components of K are the ϕ(Λ), for Λ ∈ L̄2.
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Restriction of LL to a component of K

Write DLL =
∏

Λ∈L̄2
DrΛ

Λ , with DΛ irreducibles in C[f1, . . . , fn−1]
s.t. ϕ(Λ) = {DΛ = 0}.

Define the restriction

LLΛ : ϕ(Λ)→ En − E reg
n .

LLΛ corresponds to the extension

C[a2, . . . ,an]/(DLL) ⊆ C[f1, . . . , fn−1]/(DΛ) .

∏
deg(ai)

deg(DLL)

/∏
deg(fj)

deg(DΛ)
=

(n − 2)!hn−2

|W |
deg DΛ
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Factorisations of type Λ

Theorem (R.)

For any stratum Λ in L̄2 :

LLΛ is a finite morphism of degree (n−2)! hn−1

|W | deg DΛ ;

the number of factorisations of c in n − 2 reflections + one
(length 2) element of conjugacy class corresponding to Λ
(in any order) equals :

| FACTΛ
n−1(c)| =

(n − 1)! hn−1

|W |
deg DΛ .
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Submaximal factorisations

To obtain | FACTn−1(c)|, we need to compute
∑

Λ∈L̄2
deg(DΛ).

Recall DLL =
∏

Λ∈L̄2
DrΛ

Λ .

Proposition

Let JLL := Jac(LL) = Jac((a2, . . . ,an)/(f1, . . . , fn−1)). Then

JLL
.
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The number of factorisations of a Coxeter element c in n − 1
blocks is :

| FACTn−1(c)| =
(n − 1)! hn−1

|W |

(
(n − 1)(n − 2)

2
h +

n−1∑
i=1

di

)
.



Submaximal factorisations

To obtain | FACTn−1(c)|, we need to compute
∑

Λ∈L̄2
deg(DΛ).

Recall DLL =
∏

Λ∈L̄2
DrΛ

Λ .

Proposition

Let JLL := Jac(LL) = Jac((a2, . . . ,an)/(f1, . . . , fn−1)). Then

JLL
.

=
∏

Λ∈L̄2

DrΛ−1
Λ .

Corollary

The number of factorisations of a Coxeter element c in n − 1
blocks is :

| FACTn−1(c)| =
(n − 1)! hn−1

|W |

(
(n − 1)(n − 2)

2
h +

n−1∑
i=1

di

)
.



Submaximal factorisations

To obtain | FACTn−1(c)|, we need to compute
∑

Λ∈L̄2
deg(DΛ).

Recall DLL =
∏

Λ∈L̄2
DrΛ

Λ .

Proposition

Let JLL := Jac(LL) = Jac((a2, . . . ,an)/(f1, . . . , fn−1)). Then

JLL
.

=
∏

Λ∈L̄2

DrΛ−1
Λ .

Corollary

The number of factorisations of a Coxeter element c in n − 1
blocks is :

| FACTn−1(c)| =
(n − 1)! hn−1

|W |

(
(n − 1)(n − 2)

2
h +

n−1∑
i=1

di

)
.



Submaximal factorisations

To obtain | FACTn−1(c)|, we need to compute
∑

Λ∈L̄2
deg(DΛ).

Recall DLL =
∏

Λ∈L̄2
DrΛ

Λ .

Proposition

Let JLL := Jac(LL) = Jac((a2, . . . ,an)/(f1, . . . , fn−1)). Then

JLL
.

=
∏

Λ∈L̄2

DrΛ−1
Λ .

Corollary

The number of factorisations of a Coxeter element c in n − 1
blocks is :

| FACTn−1(c)| =
(n − 1)! hn−1

|W |

(
(n − 1)(n − 2)

2
h +

n−1∑
i=1

di

)
.



Submaximal factorisations

To obtain | FACTn−1(c)|, we need to compute
∑

Λ∈L̄2
deg(DΛ).

Recall DLL =
∏

Λ∈L̄2
DrΛ

Λ .

Proposition

Let JLL := Jac(LL) = Jac((a2, . . . ,an)/(f1, . . . , fn−1)). Then

JLL
.

=
∏

Λ∈L̄2

DrΛ−1
Λ .

Corollary

The number of factorisations of a Coxeter element c in n − 1
blocks is :

| FACTn−1(c)| =
(n − 1)! hn−1

|W |

(
(n − 1)(n − 2)

2
h +

n−1∑
i=1

di

)
.



Conclusion, prospects

We travelled from the numerology of RedR(c)
(non-ramified part of LL) to that of FACTn−1(c), without
adding any case-by-case analysis.

Finer combinatorial formulas, containing new invariant
integers for reflection groups (the deg(DΛ)).
We recover geometrically some combinatorial results
known in the real case [Krattenthaler].
Can we go further (compute the | FACTk (c)|) ? Problem of
the complexity of formulas. Should we interpret Chapoton’s
formula as a ramification formula for LL ?
Combinatorics of the block factorisations of the Garside
element: is it interesting in other families of Garside
structures ?
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Thank you !

(Merci, gracias...)
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