Chains in the noncrossing partition lattice of a reflection group Ketten im Kreuzungsfreipartitionsverband einer Spiegelungsgruppe (?)

Vivien RIPOLL

Universität Wien

Arbeitsgemeinschaft Diskrete Mathematik Wien, 19. November 2013

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Introduction

- *V*: real vector space of finite dimension.
- W ≤ GL(V): a finite reflection group, *i.e.* finite subgroup of GL(V) generated by reflections
 (→ structure of a finite Coxeter group).

Note: results remain valid for a more general class of groups (well-generated complex reflection groups).

Combinatorics of the noncrossing partition lattice of *W* (*via* factorisations of a Coxeter element)

Invariant theory of W
 (via geometry of the discriminant of W)

(日) (日) (日) (日) (日) (日) (日)

Introduction

- V: real vector space of finite dimension.
- W ≤ GL(V): a finite reflection group, *i.e.* finite subgroup of GL(V) generated by reflections
 (→ structure of a finite Coxeter group).

Note: results remain valid for a more general class of groups (well-generated complex reflection groups).

Combinatorics of the noncrossing partition lattice of *W* (*via* factorisations of a Coxeter element)

Invariant theory of W
 (via geometry of the discriminant of W)

(日) (日) (日) (日) (日) (日) (日)

Introduction

- V: real vector space of finite dimension.
- W ≤ GL(V): a finite reflection group, *i.e.* finite subgroup of GL(V) generated by reflections
 (→ structure of a finite Coxeter group).

Note: results remain valid for a more general class of groups (well-generated complex reflection groups).

Combinatorics of the noncrossing partition lattice of *W* (*via* factorisations of a Coxeter element)

Invariant theory of W
 ↔ (via geometry of the discriminant of W)

Outline

1

Combinatorics of the noncrossing partition lattice

- The noncrossing partition lattice of a reflection group
- Chains and Fuß-Catalan numbers
- Factorisations of a Coxeter element
- Geometry of the hyperplane arrangement and of the discriminant
 - Discriminant and braid group
 - Geometric factorisations
 - Stratification and parabolic Coxeter elements

3 Lyashko-Looijenga covering and geometric factorisations

- The Lyashko-Looijenga covering
- Enumeration of maximal factorisations
- Enumeration of submaximal factorisations

Outline

Combinatorics of the noncrossing partition lattice

- The noncrossing partition lattice of a reflection group
- Chains and Fuß-Catalan numbers
- Factorisations of a Coxeter element
- 2 Geometry of the hyperplane arrangement and of the discriminant
 - Discriminant and braid group
 - Geometric factorisations
 - Stratification and parabolic Coxeter elements

3 Lyashko-Looijenga covering and geometric factorisations

(日) (日) (日) (日) (日) (日) (日)

- The Lyashko-Looijenga covering
- Enumeration of maximal factorisations
- Enumeration of submaximal factorisations

The noncrossing partition lattice of type W

- Define $R := \{ all reflections of W \}.$
- → reflection length (or absolute length) l_R. (forget about the usual Coxeter length l_S !)
- Absolute order \preccurlyeq_R :

 $u \preccurlyeq_R v$ if and only if $\ell_R(u) + \ell_R(u^{-1}v) = \ell_R(v)$.

 Fix c : a Coxeter element in W (particular conjugacy class of elements of length n = rk(W)).

Definition (Noncrossing partition lattice of type W)

 $\mathsf{NC}(W,c) := \{ w \in W \mid w \preccurlyeq c \}$

(日) (日) (日) (日) (日) (日) (日)

Note: the structure doesn't depend on the choice of the Coxeter element (conjugacy) \rightsquigarrow write NC(W).

The noncrossing partition lattice of type W

- Define $R := \{ all reflections of W \}.$
- → reflection length (or absolute length) l_R. (forget about the usual Coxeter length l_S !)
- Absolute order \preccurlyeq_R :

 $u \preccurlyeq_R v$ if and only if $\ell_R(u) + \ell_R(u^{-1}v) = \ell_R(v)$.

 Fix c : a Coxeter element in W (particular conjugacy class of elements of length n = rk(W)).

Definition (Noncrossing partition lattice of type W)

 $\mathsf{NC}(W, c) := \{ w \in W \mid w \preccurlyeq c \}$

Note: the structure doesn't depend on the choice of the Coxeter element (conjugacy) \rightsquigarrow write NC(*W*).

- *W* := \mathfrak{S}_n , with generating set *R* := {all transpositions}
- c := n-cycle (1 2 3 ... n)
- $NC(W, c) \leftrightarrow \{noncrossing partitions of an n-gon\}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- $W := \mathfrak{S}_n$, with generating set $R := \{$ all transpositions $\}$
- c := n-cycle (1 2 3 ... n)
- $NC(W, c) \leftrightarrow \{noncrossing partitions of an n-gon\}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- *W* := \mathfrak{S}_n , with generating set *R* := {all transpositions}
- c := n-cycle (1 2 3 ... n)
- NC(W, c) \leftrightarrow {noncrossing partitions of an *n*-gon}

(ロ) (同) (三) (三) (三) (○) (○)

- *W* := \mathfrak{S}_n , with generating set *R* := {all transpositions}
- c := n-cycle (1 2 3 ... n)
- NC(W, c) \leftrightarrow {noncrossing partitions of an *n*-gon}

- W := S_n, with generating set R := {all transpositions}
- c := n-cycle (1 2 3 ... n)
- NC(W, c) \leftrightarrow {noncrossing partitions of an *n*-gon}

- *W* := \mathfrak{S}_n , with generating set *R* := {all transpositions}
- c := n-cycle (1 2 3 ... n)
- NC(W, c) \leftrightarrow {noncrossing partitions of an *n*-gon}

Fuß-Catalan numbers

Kreweras's formula for multichains of noncrossing partitions

- $W := \mathfrak{S}_n;$
- c : an n-cycle.

The number of multichains $w_1 \preccurlyeq w_2 \preccurlyeq \ldots \preccurlyeq w_p \preccurlyeq c$ in NC(*W*, *c*) is the **Fuß-Catalan number**

$$\operatorname{Cat}^{(p)}(n) = \prod_{i=2}^{n} \frac{i+pn}{i} = \frac{1}{pn+1} \binom{(p+1)n}{n}$$

Chapoton's formula for multichains in NC(W)

- $W := \mathfrak{S}_n;$
- c : an n-cycle.

The number of multichains $w_1 \preccurlyeq w_2 \preccurlyeq \ldots \preccurlyeq w_p \preccurlyeq c$ in NC(*W*, *c*) is the **Fuß-Catalan number**

$$\operatorname{Cat}^{(p)}(n) = \prod_{i=2}^{n} \frac{i+pn}{i} = \frac{1}{pn+1} \binom{(p+1)n}{n}$$

Chapoton's formula for multichains in NC(W)

- *W* := an irreducible reflection group of rank *n*;
- c : an n-cycle.

The number of multichains $w_1 \preccurlyeq w_2 \preccurlyeq \ldots \preccurlyeq w_p \preccurlyeq c$ in NC(*W*, *c*) is the **Fuß-Catalan number**

$$\operatorname{Cat}^{(p)}(n) = \prod_{i=2}^{n} \frac{i+pn}{i} = \frac{1}{pn+1} \binom{(p+1)n}{n}$$

Chapoton's formula for multichains in NC(W)

- *W* := an irreducible reflection group of rank *n*;
- c : a Coxeter element.

The number of multichains $w_1 \preccurlyeq w_2 \preccurlyeq \ldots \preccurlyeq w_p \preccurlyeq c$ in NC(*W*, *c*) is the **Fuß-Catalan number**

$$\operatorname{Cat}^{(p)}(n) = \prod_{i=2}^{n} \frac{i+pn}{i} = \frac{1}{pn+1} \binom{(p+1)n}{n}$$

Chapoton's formula for multichains in NC(W)

- *W* := an irreducible reflection group of rank *n*;
- c : a Coxeter element.

The number of multichains $w_1 \preccurlyeq w_2 \preccurlyeq \ldots \preccurlyeq w_p \preccurlyeq c$ in NC(*W*, *c*) is the Fuß-Catalan number of type *W*

$$\operatorname{Cat}^{(p)}(n) = \prod_{i=2}^{n} \frac{i+pn}{i} = \frac{1}{pn+1} \binom{(p+1)n}{n}$$

(日) (日) (日) (日) (日) (日) (日)

Chapoton's formula for multichains in NC(W)

- *W* := an irreducible reflection group of rank *n*;
- c : a Coxeter element.

The number of multichains $w_1 \preccurlyeq w_2 \preccurlyeq \ldots \preccurlyeq w_p \preccurlyeq c$ in NC(*W*, *c*) is the Fuß-Catalan number of type *W*

$$\operatorname{Cat}^{(p)}(W) = \prod_{i=1}^{n} \frac{d_i + ph}{d_i} = \frac{1}{|W|} \prod_{i=1}^{n} (d_i + ph) \ .$$

(日) (日) (日) (日) (日) (日) (日)

Chapoton's formula for multichains in NC(W)

- *W* := an irreducible reflection group of rank *n*;
- c : a Coxeter element.

The number of multichains $w_1 \preccurlyeq w_2 \preccurlyeq \ldots \preccurlyeq w_p \preccurlyeq c$ in NC(*W*, *c*) is the Fuß-Catalan number of type *W*

$$\mathsf{Cat}^{(p)}(W) = \prod_{i=1}^n \frac{d_i + ph}{d_i} = \frac{1}{|W|} \prod_{i=1}^n (d_i + ph)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $(d_1 \leq \cdots \leq d_n = h$: invariant degrees of W)

Chapoton's formula for multichains in NC(W)

- *W* := an irreducible reflection group of rank *n*;
- c : a Coxeter element.

The number of multichains $w_1 \preccurlyeq w_2 \preccurlyeq \ldots \preccurlyeq w_p \preccurlyeq c$ in NC(*W*, *c*) is the Fuß-Catalan number of type *W*

$$\operatorname{Cat}^{(p)}(W) = \prod_{i=1}^{n} \frac{d_i + ph}{d_i} = \frac{1}{|W|} \prod_{i=1}^{n} (d_i + ph) \ .$$

 $(d_1 \leq \cdots \leq d_n = h$: invariant degrees of W)

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case! **Remark:** $Cat^{(1)}(W)$ (and $Cat^{(p)}(W)$) appear in other contexts: Fomin-Zelevinsky cluster algebras, nonnesting partitions...

Definition (Block factorisations of *c*) $(w_1, ..., w_p) \in (W - \{1\})^p$ is a block factorisation of *c* if • $w_1 ... w_p = c$. • $\ell_R(w_1) + \dots + \ell_R(w_p) = \ell_R(c) = n$. FACT_p(*c*) := {block factorisations of *c* in *p* factors}.

"Factorisations +> chains".

● Problem : ≼ vs ≺ ? Use conversion formulas:

$$\#\{W_1 \preccurlyeq \ldots \preccurlyeq W_p \preccurlyeq c\} = \sum_{k=1}^{p+1} \binom{p+1}{k} \# \operatorname{FACT}_k(c)$$

- Bad news : we obtain much more complicated formulas.
- Good news : we can interpret some of them geometrically (and even refine them); in particular for p = n or n − 1.
 (□) (□) (□) (□) (□) (□)

Definition (Block factorisations of *c*) $(w_1, ..., w_p) \in (W - \{1\})^p$ is a block factorisation of *c* if • $w_1 ... w_p = c$. • $\ell_B(w_1) + \cdots + \ell_B(w_p) = \ell_B(c) = n$.

FACT_p(c) := {block factorisations of c in p factors}.

"Factorisations ↔ chains".

● Problem : ≼ vs ≺ ? Use conversion formulas:

$$\#\{W_1 \preccurlyeq \ldots \preccurlyeq W_p \preccurlyeq c\} = \sum_{k=1}^{p+1} \binom{p+1}{k} \# \operatorname{FACT}_k(c)$$

- Bad news : we obtain much more complicated formulas.
- Good news : we can interpret some of them geometrically (and even refine them); in particular for p = n or n - 1.

Definition (Block factorisations of *c*) $(w_1, ..., w_p) \in (W - \{1\})^p$ is a block factorisation of *c* if • $w_1 ... w_p = c$. • $\ell_B(w_1) + \cdots + \ell_B(w_p) = \ell_B(c) = n$.

 $FACT_{p}(c) := \{ block factorisations of c in p factors \}.$

- "Factorisations \leftrightarrow chains".
- **Problem** : $\preccurlyeq vs \prec$? Use conversion formulas:

$$\#\{W_1 \preccurlyeq \ldots \preccurlyeq W_p \preccurlyeq c\} = \sum_{k=1}^{p+1} \binom{p+1}{k} \# FACT_k(c)$$

- Bad news : we obtain much more complicated formulas.
- **Good news** : we can interpret some of them geometrically (and even refine them); in particular for p = n or n 1.

Definition (Block factorisations of *c*) $(w_1, ..., w_p) \in (W - \{1\})^p$ is a block factorisation of *c* if • $w_1 ... w_p = c$. • $\ell_R(w_1) + \cdots + \ell_R(w_p) = \ell_R(c) = n$.

 $FACT_{p}(c) := \{block \text{ factorisations of } c \text{ in } p \text{ factors} \}.$

- "Factorisations \leftrightarrow chains".
- **Problem** : $\prec vs \prec$? Use conversion formulas:

$$\#\{w_1 \preccurlyeq \ldots \preccurlyeq w_p \preccurlyeq c\} = \sum_{k=1}^{p+1} \binom{p+1}{k} \# FACT_k(c)$$

- Bad news : we obtain much more complicated formulas.
- **Good news** : we can interpret some of them geometrically (and even refine them); in particular for p = n or n 1.

Definition (Block factorisations of *c*) $(w_1, ..., w_p) \in (W - \{1\})^p$ is a block factorisation of *c* if • $w_1 ... w_p = c$. • $\ell_B(w_1) + \cdots + \ell_B(w_p) = \ell_B(c) = n$.

FACT_p(c) := {block factorisations of c in p factors}.

- "Factorisations ↔ chains".
- **Problem** : $\prec vs \prec$? Use conversion formulas:

$$\#\{w_1 \preccurlyeq \ldots \preccurlyeq w_p \preccurlyeq c\} = \sum_{k=1}^{p+1} \binom{p+1}{k} \# FACT_k(c)$$

- Bad news : we obtain much more complicated formulas.
- Good news : we can interpret some of them geometrically (and even refine them); in particular for p = n or n - 1.

Definition (Block factorisations of *c*) $(w_1, ..., w_p) \in (W - \{1\})^p$ is a block factorisation of *c* if • $w_1 ... w_p = c$. • $\ell_B(w_1) + \cdots + \ell_B(w_p) = \ell_B(c) = n$.

FACT_p(c) := {block factorisations of c in p factors}.

- "Factorisations \leftrightarrow chains".
- **Problem** : $\prec vs \prec$? Use conversion formulas:

$$\#\{w_1 \preccurlyeq \ldots \preccurlyeq w_p \preccurlyeq c\} = \sum_{k=1}^{p+1} \binom{p+1}{k} \# FACT_k(c)$$

- Bad news : we obtain much more complicated formulas.
- Good news : we can interpret some of them geometrically (and even refine them); in particular for p = n or n 1.

Outline

① Combinatorics of the noncrossing partition lattice

- The noncrossing partition lattice of a reflection group
- Chains and Fuß-Catalan numbers
- Factorisations of a Coxeter element
- Geometry of the hyperplane arrangement and of the discriminant
 - Discriminant and braid group
 - Geometric factorisations
 - Stratification and parabolic Coxeter elements

3) Lyashko-Looijenga covering and geometric factorisations

(日) (日) (日) (日) (日) (日) (日)

- The Lyashko-Looijenga covering
- Enumeration of maximal factorisations
- Enumeration of submaximal factorisations

$\mathcal{A} := \{ \text{reflecting hyperplanes of } W \}$ (Coxeter arrangement).

It's too simple, now make the ambient space V complex! (replace V with $V \otimes \mathbb{C}$)

What does it look like?

・ロト・日本・日本・日本・日本・日本

 $\mathcal{A} := \{ \text{reflecting hyperplanes of } W \} \text{ (Coxeter arrangement).}$ It's too simple, now make the ambient space V complex! (replace V with $V \otimes \mathbb{C}$)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

What does it look like?

 $\mathcal{A} := \{ \text{reflecting hyperplanes of } W \} \text{ (Coxeter arrangement).}$ It's too simple, now make the ambient space V complex! (replace V with $V \otimes \mathbb{C}$)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

What does it look like?

 $\mathcal{A} := \{ \text{reflecting hyperplanes of } W \} \text{ (Coxeter arrangement).}$ It's too simple, now make the ambient space V complex! (replace V with $V \otimes \mathbb{C}$)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

What does it look like?

The quotient-space V/W

W acts on the polynomial algebra $\mathbb{C}[V]$.

Chevalley-Shephard-Todd's theorem

There exist invariant polynomials f_1, \ldots, f_n , homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^W = \mathbb{C}[f_1, \ldots, f_n]$.

The degrees $d_1 \leq \cdots \leq d_n = h$ of f_1, \ldots, f_n (called invariant degrees) do not depend on the choices of the fundamental invariants.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $\stackrel{\text{$\sim \rightarrow $ isomorphism: $V/W \xrightarrow{\sim} \mathbb{C}^n$} }{\overline{v} \mapsto (f_1(v), \dots, f_n(v)). }$

The quotient-space V/W

W acts on the polynomial algebra $\mathbb{C}[V]$.

Chevalley-Shephard-Todd's theorem

There exist invariant polynomials f_1, \ldots, f_n , homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^W = \mathbb{C}[f_1, \ldots, f_n]$.

The degrees $d_1 \leq \cdots \leq d_n = h$ of f_1, \ldots, f_n (called invariant degrees) do not depend on the choices of the fundamental invariants.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\stackrel{\text{$\sim \rightarrow $ isomorphism: $V/W \xrightarrow{\sim} \mathbb{C}^n$} }{\overline{v} \mapsto (f_1(v), \dots, f_n(v)). }$

The quotient-space V/W

W acts on the polynomial algebra $\mathbb{C}[V]$.

Chevalley-Shephard-Todd's theorem

There exist invariant polynomials f_1, \ldots, f_n , homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^W = \mathbb{C}[f_1, \ldots, f_n]$.

The degrees $d_1 \leq \cdots \leq d_n = h$ of f_1, \ldots, f_n (called invariant degrees) do not depend on the choices of the fundamental invariants.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\stackrel{\text{$\sim > $}}{\to} \begin{array}{ccc} \text{$\rm Somorphism: $V/W \xrightarrow{\sim} \mathbb{C}^n$} \\ \bar{v} & \mapsto & (f_1(v), \dots, f_n(v)). \end{array}$

The quotient-space V/W

W acts on the polynomial algebra $\mathbb{C}[V]$.

Chevalley-Shephard-Todd's theorem

There exist invariant polynomials f_1, \ldots, f_n , homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^W = \mathbb{C}[f_1, \ldots, f_n]$.

The degrees $d_1 \leq \cdots \leq d_n = h$ of f_1, \ldots, f_n (called invariant degrees) do not depend on the choices of the fundamental invariants.

(日) (日) (日) (日) (日) (日) (日)

$$\stackrel{\text{$\sim\sim$}}{\to} \text{ isomorphism: } V/W \stackrel{\sim}{\to} \mathbb{C}^n \\ \bar{v} \mapsto (f_1(v), \dots, f_n(v)).$$

$$\prod_{H \in \mathcal{A}} \alpha_H \in \mathbb{C}[V]$$

equation of $\bigcup_{H \in \mathcal{A}} H$.

$$\prod_{H \in \mathcal{A}} \alpha_{H}^{2} \in \mathbb{C}[V]$$

equation of $\bigcup_{H \in \mathcal{A}} H$.

$$\prod_{H \in \mathcal{A}} \alpha_{H}^{2} \in \mathbb{C}[V]^{W}$$
equation of $\bigcup_{H \in \mathcal{A}} H$.

$$\prod_{H\in\mathcal{A}}\alpha_{H}^{2} \in \mathbb{C}[V]^{W} = \mathbb{C}[f_{1},\ldots,f_{n}]$$

equation of $\bigcup_{H \in \mathcal{A}} H$.

$$\Delta_{W} := \prod_{H \in \mathcal{A}} \alpha_{H}^{2} \in \mathbb{C}[V]^{W} = \mathbb{C}[f_{1}, \dots, f_{n}] \quad (\text{discriminant of } W)$$

equation of $\bigcup_{H \in \mathcal{A}} H$.

$$\Delta_{W} := \prod_{H \in \mathcal{A}} \alpha_{H}^{2} \in \mathbb{C}[V]^{W} = \mathbb{C}[f_{1}, \dots, f_{n}] \quad (\text{discriminant of } W)$$

equation of $p(\bigcup_{H \in \mathcal{A}} H) = \mathcal{H}$, where $p: V \twoheadrightarrow V/W$.

Example $W = A_3$: discriminant ("swallowtail") $\bigcup_{H \in A} H \subseteq V$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Example $W = A_3$: discriminant ("swallowtail") $\bigcup_{H \in A} H \subseteq V$

- * ロ > * 個 > * 注 > * 注 > - 注 - のへで

hypersurface \mathcal{H} (discriminant) $\subseteq W \setminus V \simeq \mathbb{C}^3$

•
$$V^{\text{reg}} := V - \bigcup_{H \in \mathcal{A}} H$$

- *W* acts on *V*^{reg} (freely)
- Braid group of *W*:

$$B(W) := \pi_1(V^{\rm reg}/W) = \pi_1(\mathbb{C}^n - \mathcal{H})$$

Unramified covering $V^{\text{reg}} \rightarrow V^{\text{reg}}/W$

→ fibration exact sequence

$$1 \rightarrow \pi_1(V^{\mathrm{reg}}) \hookrightarrow \pi_1(V^{\mathrm{reg}}/W) \twoheadrightarrow W \rightarrow 1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 $\pi: B(W) \rightarrow W$ "canonical" surjection.

- $V^{\text{reg}} := V \bigcup_{H \in \mathcal{A}} H$
- W acts on V^{reg} (freely)
- Braid group of *W*:

$$B(W) := \pi_1(V^{\rm reg}/W) = \pi_1(\mathbb{C}^n - \mathcal{H})$$

Unramified covering $V^{\text{reg}} \rightarrow V^{\text{reg}}/W$

→ fibration exact sequence

 $1 \rightarrow \pi_1(V^{\mathrm{reg}}) \hookrightarrow \pi_1(V^{\mathrm{reg}}/W) \twoheadrightarrow W \rightarrow 1$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 $\pi : B(W) \rightarrow W$ "canonical" surjection.

- $V^{\text{reg}} := V \bigcup_{H \in \mathcal{A}} H$
- W acts on V^{reg} (freely)
- Braid group of W:

$$B(W) := \pi_1(V^{\rm reg}/W) = \pi_1(\mathbb{C}^n - \mathcal{H})$$

Unramified covering $V^{\text{reg}} \rightarrow V^{\text{reg}}/W$

→ fibration exact sequence

 $1 \rightarrow \pi_1(V^{\mathrm{reg}}) \hookrightarrow \pi_1(V^{\mathrm{reg}}/W) \twoheadrightarrow W \rightarrow 1$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 $\pi : B(W) \rightarrow W$ "canonical" surjection.

- $V^{\text{reg}} := V \bigcup_{H \in \mathcal{A}} H$
- *W* acts on *V*^{reg} (freely)
- Braid group of W:

$$B(W) := \pi_1(V^{\operatorname{reg}}/W) = \pi_1(\mathbb{C}^n - \mathcal{H})$$

Unramified covering
$$V^{\text{reg}} \rightarrow V^{\text{reg}}/W$$

→ fibration exact sequence

$$1
ightarrow \pi_1(\mathit{V}^{\mathrm{reg}}) \hookrightarrow \pi_1(\mathit{V}^{\mathrm{reg}}/\mathit{W}) \twoheadrightarrow \mathit{W}
ightarrow 1$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $\pi: B(W) \rightarrow W$ "canonical" surjection.

- $V^{\text{reg}} := V \bigcup_{H \in \mathcal{A}} H$
- *W* acts on *V*^{reg} (freely)
- Braid group of W:

$$B(W) := \pi_1(V^{\operatorname{reg}}/W) = \pi_1(\mathbb{C}^n - \mathcal{H})$$

Unramified covering
$$V^{\text{reg}} \rightarrow V^{\text{reg}}/W$$

→ fibration exact sequence

$$1
ightarrow \pi_1(V^{\mathrm{reg}}) \hookrightarrow \pi_1(V^{\mathrm{reg}}/W) \twoheadrightarrow W
ightarrow 1$$

 $\pi: B(W) \twoheadrightarrow W$ "canonical" surjection.

An element of B(W) = a loop around \mathcal{H} , up to homotopy.

Consider "vertical loops", i.e. for which f_1, \ldots, f_{n-1} remain constant. They are just loops in a punctured complex plane.

Call $\delta \in B(W)$ the simplest (clock-wise) vertical loop around $(0, 0, \dots, 0)$.

Facts:

- up to homotopy, this is also the simple vertical loop "around all H".
- its image $\pi(\delta)$ in W is a Coxeter element!

An element of B(W) = a loop around \mathcal{H} , up to homotopy.

Consider "vertical loops", i.e. for which f_1, \ldots, f_{n-1} remain constant. They are just loops in a punctured complex plane.

Call $\delta \in B(W)$ the simplest (clock-wise) vertical loop around $(0, 0, \dots, 0)$.

Facts:

- up to homotopy, this is also the simple vertical loop "around all H".
- its image $\pi(\delta)$ in W is a Coxeter element!

An element of B(W) = a loop around \mathcal{H} , up to homotopy.

Consider "vertical loops", i.e. for which f_1, \ldots, f_{n-1} remain constant. They are just loops in a punctured complex plane.

Call $\delta \in B(W)$ the simplest (clock-wise) vertical loop around $(0, 0, \dots, 0)$.

Facts:

- up to homotopy, this is also the simple vertical loop "around all \mathcal{H} ".
- its image $\pi(\delta)$ in *W* is a Coxeter element!

An element of B(W) = a loop around \mathcal{H} , up to homotopy.

Consider "vertical loops", i.e. for which f_1, \ldots, f_{n-1} remain constant. They are just loops in a punctured complex plane.

Call $\delta \in B(W)$ the simplest (clock-wise) vertical loop around $(0, 0, \dots, 0)$.

Facts:

- up to homotopy, this is also the simple vertical loop "around all \mathcal{H} ".
- its image $\pi(\delta)$ in W is a Coxeter element!

An element of B(W) = a loop around \mathcal{H} , up to homotopy.

Consider "vertical loops", i.e. for which f_1, \ldots, f_{n-1} remain constant. They are just loops in a punctured complex plane.

Call $\delta \in B(W)$ the simplest (clock-wise) vertical loop around $(0, 0, \dots, 0)$.

Facts:

- up to homotopy, this is also the simple vertical loop "around all \mathcal{H} ".
- its image $\pi(\delta)$ in W is a Coxeter element!

An element of B(W) = a loop around \mathcal{H} , up to homotopy.

Consider "vertical loops", i.e. for which f_1, \ldots, f_{n-1} remain constant. They are just loops in a punctured complex plane.

Call $\delta \in B(W)$ the simplest (clock-wise) vertical loop around $(0, 0, \dots, 0)$.

Facts:

- up to homotopy, this is also the simple vertical loop "around all \mathcal{H} ".
- its image $\pi(\delta)$ in W is a Coxeter element!
- → we can break up δ into smaller parts, using the homotopy. → factorisations of $\pi(\delta) = c$!

Theorem (Orlik-Solomon)

If W is a real (or complex well-generated) reflection group, then the discriminant Δ_W is monic of degree n in the variable f_n .

So if we fix f_1, \ldots, f_{n-1} , the polynomial Δ_W , viewed as a polynomial in f_n , has generically *n* distinct roots... ... it has multiple roots whenever (f_1, \ldots, f_{n-1}) is a zero of

 $D_W := \mathsf{Disc}(\Delta_W(f_1, \ldots, f_n) ; f_n) \in \mathbb{C}[f_1, \ldots, f_{n-1}].$

Definition

The bifurcation locus of Δ_W (w.r.t. f_n) is the hypersurface of \mathbb{C}^{n-1} :

 $\mathcal{K}:=\{D_W=0\}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem (Orlik-Solomon)

If W is a real (or complex well-generated) reflection group, then the discriminant Δ_W is monic of degree n in the variable f_n .

So if we fix f_1, \ldots, f_{n-1} , the polynomial Δ_W , viewed as a polynomial in f_n , has generically *n* distinct roots... ... it has multiple roots whenever (f_1, \ldots, f_{n-1}) is a zero o

 $D_W := \mathsf{Disc}(\Delta_W(f_1,\ldots,f_n); f_n) \in \mathbb{C}[f_1,\ldots,f_{n-1}].$

Definition

The bifurcation locus of Δ_W (w.r.t. f_n) is the hypersurface of \mathbb{C}^{n-1} :

 $\mathcal{K} := \{D_W = 0\}$

(日) (日) (日) (日) (日) (日) (日)

Theorem (Orlik-Solomon)

If W is a real (or complex well-generated) reflection group, then the discriminant Δ_W is monic of degree n in the variable f_n .

So if we fix f_1, \ldots, f_{n-1} , the polynomial Δ_W , viewed as a polynomial in f_n , has generically *n* distinct roots... ... it has multiple roots whenever (f_1, \ldots, f_{n-1}) is a zero of

 $D_W := \mathsf{Disc}(\Delta_W(f_1, \ldots, f_n) ; f_n) \in \mathbb{C}[f_1, \ldots, f_{n-1}].$

Definition

The bifurcation locus of Δ_W (w.r.t. f_n) is the hypersurface of \mathbb{C}^{n-1} :

$$\mathcal{K}:=\{D_W=0\}$$

Theorem (Orlik-Solomon)

If W is a real (or complex well-generated) reflection group, then the discriminant Δ_W is monic of degree n in the variable f_n .

So if we fix f_1, \ldots, f_{n-1} , the polynomial Δ_W , viewed as a polynomial in f_n , has generically *n* distinct roots... ... it has multiple roots whenever (f_1, \ldots, f_{n-1}) is a zero of

 $D_W := \mathsf{Disc}(\Delta_W(f_1, \ldots, f_n) ; f_n) \in \mathbb{C}[f_1, \ldots, f_{n-1}].$

Definition

The bifurcation locus of Δ_W (w.r.t. f_n) is the hypersurface of \mathbb{C}^{n-1} :

$$\mathcal{K} := \{D_W = 0\}$$

$$\mathcal{H}\subseteq \mathit{W}\backslash \mathit{V}\simeq \mathbb{C}^3$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

$$\mathcal{H} \subseteq W \setminus V \simeq \mathbb{C}^3$$

◆□> ◆□> ◆豆> ◆豆> ・豆・ のへぐ

 $\mathcal{H} \subseteq W ackslash V \simeq \mathbb{C}^3$

▲ロト▲舂▶▲恵▶▲恵▶ 恵 のなぐ

 $\mathcal{H} \subseteq \mathit{W} \backslash \mathit{V} \simeq \mathbb{C}^3$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

 $\mathcal{H} \subseteq \mathit{W} \backslash \mathit{V} \simeq \mathbb{C}^3$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

 $\mathcal{H} \subseteq \mathit{W} \backslash \mathit{V} \simeq \mathbb{C}^3$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ● ● ●

◆ロト ◆課 ▶ ◆語 ▶ ◆語 ▶ ○語 ○ の久(で)

▲ロ▶▲舂▶▲恵▶▲恵▶ 恵 のQで

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Bifurcation locus and geometric factorisations

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

$$Y \simeq \mathbb{C}^{n-1}$$
 (with coordinates f_1, \ldots, f_{n-1}).
facto : $y \in Y \mapsto (\gamma_1, \ldots, \gamma_p) \in B(W)^p \mapsto (w_1, \ldots, w_p) \in W^p$
(where $w_i = \pi(\gamma_i)$)

Facts:

• $\gamma_1 \dots \gamma_p = \delta$ and $w_1 \dots w_p = \pi(\delta) = c$.

• If $y \in Y - \mathcal{K}$, then p = n and w_1, \ldots, w_n are reflections.

- In general, \(\ell_R(w_i)\) equals the multiplicity of the correponding point (y, x_i) in the discriminant.
- $\sum_{i} \ell_R(w_i) = n$, i.e., <u>facto(y</u>) is always a block factorisation of *c*.
- Better: the conjugacy class of w_i is also dictated by the geometry...

$$Y \simeq \mathbb{C}^{n-1}$$
 (with coordinates f_1, \ldots, f_{n-1}).
facto : $y \in Y \mapsto (\gamma_1, \ldots, \gamma_p) \in B(W)^p \mapsto (w_1, \ldots, w_p) \in W^p$
(where $w_i = \pi(\gamma_i)$)

Facts:

•
$$\gamma_1 \dots \gamma_p = \delta$$
 and $w_1 \dots w_p = \pi(\delta) = c$.

• If $y \in Y - \mathcal{K}$, then p = n and w_1, \ldots, w_n are reflections.

- In general, l_R(w_i) equals the multiplicity of the correponding point (y, x_i) in the discriminant.
- $\sum_{i} \ell_{R}(w_{i}) = n$, i.e., <u>facto(y</u>) is always a block factorisation of *c*.
- Better: the conjugacy class of w_i is also dictated by the geometry...

$$Y \simeq \mathbb{C}^{n-1}$$
 (with coordinates f_1, \ldots, f_{n-1}).
facto : $y \in Y \mapsto (\gamma_1, \ldots, \gamma_p) \in B(W)^p \mapsto (w_1, \ldots, w_p) \in W^p$
(where $w_i = \pi(\gamma_i)$)

•
$$\gamma_1 \dots \gamma_p = \delta$$
 and $w_1 \dots w_p = \pi(\delta) = c$.

- If $y \in Y K$, then p = n and w_1, \ldots, w_n are reflections.
- In general, l_R(w_i) equals the multiplicity of the correponding point (y, x_i) in the discriminant.
- $\sum_{i} \ell_{R}(w_{i}) = n$, i.e., <u>facto(y</u>) is always a block factorisation of *c*.
- Better: the conjugacy class of w_i is also dictated by the geometry...

$$Y \simeq \mathbb{C}^{n-1}$$
 (with coordinates f_1, \ldots, f_{n-1}).
facto : $y \in Y \mapsto (\gamma_1, \ldots, \gamma_p) \in B(W)^p \mapsto (w_1, \ldots, w_p) \in W^p$
(where $w_i = \pi(\gamma_i)$)

•
$$\gamma_1 \ldots \gamma_p = \delta$$
 and $w_1 \ldots w_p = \pi(\delta) = c$.

- If $y \in Y \mathcal{K}$, then p = n and w_1, \ldots, w_n are reflections.
- In general, \(\ell_R(w_i)\) equals the multiplicity of the correponding point (y, x_i) in the discriminant.
- $\sum_{i} \ell_{R}(w_{i}) = n$, i.e., <u>facto(y</u>) is always a block factorisation of *c*.
- Better: the conjugacy class of w_i is also dictated by the geometry...

$$Y \simeq \mathbb{C}^{n-1}$$
 (with coordinates f_1, \ldots, f_{n-1}).
facto : $y \in Y \mapsto (\gamma_1, \ldots, \gamma_p) \in B(W)^p \mapsto (w_1, \ldots, w_p) \in W^p$
(where $w_i = \pi(\gamma_i)$)

•
$$\gamma_1 \ldots \gamma_p = \delta$$
 and $w_1 \ldots w_p = \pi(\delta) = c$.

- If $y \in Y K$, then p = n and w_1, \ldots, w_n are reflections.
- In general, \(\ell_R(w_i)\) equals the multiplicity of the correponding point (y, x_i) in the discriminant.
- $\sum_{i} \ell_R(w_i) = n$, i.e., <u>facto(y</u>) is always a block factorisation of *c*.
- Better: the conjugacy class of w_i is also dictated by the geometry...

$$Y \simeq \mathbb{C}^{n-1}$$
 (with coordinates f_1, \ldots, f_{n-1}).
facto : $y \in Y \mapsto (\gamma_1, \ldots, \gamma_p) \in B(W)^p \mapsto (w_1, \ldots, w_p) \in W^p$
(where $w_i = \pi(\gamma_i)$)

•
$$\gamma_1 \ldots \gamma_p = \delta$$
 and $w_1 \ldots w_p = \pi(\delta) = c$.

- If $y \in Y K$, then p = n and w_1, \ldots, w_n are reflections.
- In general, \(\ell_R(w_i)\) equals the multiplicity of the correponding point (y, x_i) in the discriminant.
- $\sum_{i} \ell_{R}(w_{i}) = n$, i.e., <u>facto(y</u>) is always a block factorisation of *c*.
- Better: the conjugacy class of w_i is also dictated by the geometry...

Stratification of V with the "flats" (intersection lattice):

 $\mathcal{L} := \left\{ \bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A} \right\} \xrightarrow{\sim} PSG(W) \quad (\text{parabolic subgps of } W) \\ \downarrow \qquad \mapsto \qquad W_L \quad (\text{pointwise stabilizer of } L)$

- A parabolic subgroup is a reflection group [Steinberg].
- Its Coxeter elements are called parabolic Coxeter elements.

 $L_0 \in \mathcal{L} \quad \leftrightarrow \quad W_0 \in \mathsf{PSG}(W) \quad \leftarrow \quad c_0 \text{ parabolic Coxeter elt}$ $\mathsf{codim}(L_0) = \quad \mathsf{rk}(W_0) = \quad \ell_R(c_0)$

Stratification of V with the "flats" (intersection lattice):

A parabolic subgroup is a reflection group [Steinberg].

 Its Coxeter elements are called parabolic Coxeter elements.

 $\begin{array}{rcl} L_0 \in \mathcal{L} & \leftrightarrow & W_0 \in \mathsf{PSG}(W) & \leftarrow & c_0 \text{ parabolic Coxeter elt} \\ \mathsf{codim}(L_0) & = & \mathsf{rk}(W_0) & = & \ell_{\mathcal{R}}(c_0) \end{array}$

Stratification of V with the "flats" (intersection lattice):

 $\begin{array}{ccc} \mathcal{L} := \left\{ \bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A} \right\} & \xrightarrow{\sim} & \mathsf{PSG}(\mathcal{W}) & (\text{parabolic subgps of } \mathcal{W}) \\ \mathcal{L} & \mapsto & \mathcal{W}_L & (\text{pointwise stabilizer of } L) \end{array}$

A parabolic subgroup is a reflection group [Steinberg].

 Its Coxeter elements are called parabolic Coxeter elements.

 $\begin{array}{rcl} L_0 \in \mathcal{L} & \leftrightarrow & W_0 \in \mathsf{PSG}(W) & \leftarrow & c_0 \text{ parabolic Coxeter elt} \\ \mathsf{codim}(L_0) & = & \mathsf{rk}(W_0) & = & \ell_{\mathcal{R}}(c_0) \end{array}$

・ロト・日本・日本・日本・日本・日本

Stratification of V with the "flats" (intersection lattice):

 $\begin{array}{ccc} \mathcal{L} := \left\{ \bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A} \right\} & \xrightarrow{\sim} & \mathsf{PSG}(\mathcal{W}) & (\text{parabolic subgps of } \mathcal{W}) \\ \mathcal{L} & \mapsto & \mathcal{W}_L & (\text{pointwise stabilizer of } L) \end{array}$

• A parabolic subgroup is a reflection group [Steinberg].

• Its Coxeter elements are called parabolic Coxeter elements.

 $\begin{array}{rcccc} L_0 \in \mathcal{L} & \leftrightarrow & W_0 \in \mathsf{PSG}(W) & \leftarrow & c_0 \text{ parabolic Coxeter elt} \\ \mathsf{codim}(L_0) & = & \mathsf{rk}(W_0) & = & \ell_{\mathcal{R}}(c_0) \end{array}$

Stratification of V with the "flats" (intersection lattice):

 $\begin{array}{ccc} \mathcal{L} := \left\{ \bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A} \right\} & \xrightarrow{\sim} & \mathsf{PSG}(\mathcal{W}) & (\text{parabolic subgps of } \mathcal{W}) \\ \mathcal{L} & \mapsto & \mathcal{W}_L & (\text{pointwise stabilizer of } L) \end{array}$

- A parabolic subgroup is a reflection group [Steinberg].
- Its Coxeter elements are called parabolic Coxeter elements.

 $\begin{array}{rcccc} L_0 \in \mathcal{L} & \leftrightarrow & W_0 \in \mathsf{PSG}(W) & \leftarrow & c_0 \text{ parabolic Coxeter elt} \\ \mathsf{codim}(L_0) & = & \mathsf{rk}(W_0) & = & \ell_{\mathcal{R}}(c_0) \end{array}$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Stratification of V with the "flats" (intersection lattice):

 $\begin{array}{ccc} \mathcal{L} := \left\{ \bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A} \right\} & \xrightarrow{\sim} & \mathsf{PSG}(\mathcal{W}) & (\text{parabolic subgps of } \mathcal{W}) \\ \mathcal{L} & \mapsto & \mathcal{W}_L & (\text{pointwise stabilizer of } L) \end{array}$

- A parabolic subgroup is a reflection group [Steinberg].
- Its Coxeter elements are called parabolic Coxeter elements.

 $\begin{array}{rcccc} L_0 \in \mathcal{L} & \leftrightarrow & W_0 \in \mathsf{PSG}(W) & \leftarrow & c_0 \text{ parabolic Coxeter elt} \\ \mathsf{codim}(L_0) & = & \mathsf{rk}(W_0) & = & \ell_{\mathcal{R}}(c_0) \end{array}$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Stratification of V with the "flats" (intersection lattice):

 $\begin{array}{ccc} \mathcal{L} := \left\{ \bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A} \right\} & \xrightarrow{\sim} & \mathsf{PSG}(\mathcal{W}) & (\text{parabolic subgps of } \mathcal{W}) \\ \mathcal{L} & \mapsto & \mathcal{W}_L & (\text{pointwise stabilizer of } L) \end{array}$

- A parabolic subgroup is a reflection group [Steinberg].
- Its Coxeter elements are called parabolic Coxeter elements.
- $\begin{array}{rcl} L_0 \in \mathcal{L} & \leftrightarrow & W_0 \in \mathsf{PSG}(W) & \leftarrow & c_0 \text{ parabolic Coxeter elt} \\ \operatorname{codim}(L_0) & = & \operatorname{rk}(W_0) & = & \ell_R(c_0) \end{array}$

Stratification of V with the "flats" (intersection lattice):

 $\begin{array}{ccc} \mathcal{L} := \left\{ \bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A} \right\} & \xrightarrow{\sim} & \mathsf{PSG}(\mathcal{W}) & (\text{parabolic subgps of } \mathcal{W}) \\ \mathcal{L} & \mapsto & \mathcal{W}_L & (\text{pointwise stabilizer of } L) \end{array}$

- A parabolic subgroup is a reflection group [Steinberg].
- Its Coxeter elements are called parabolic Coxeter elements.
- $\begin{array}{rcl} L_0 \in \mathcal{L} & \leftrightarrow & W_0 \in \mathsf{PSG}(W) & \leftarrow & c_0 \text{ parabolic Coxeter elt} \\ \mathsf{codim}(L_0) & = & \mathsf{rk}(W_0) & = & \ell_{\mathcal{R}}(c_0) \end{array}$

Stratification of V with the "flats" (intersection lattice):

 $\begin{array}{ccc} \mathcal{L} := \left\{ \bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A} \right\} & \xrightarrow{\sim} & \mathsf{PSG}(\mathcal{W}) & (\text{parabolic subgps of } \mathcal{W}) \\ \mathcal{L} & \mapsto & \mathcal{W}_L & (\text{pointwise stabilizer of } L) \end{array}$

- A parabolic subgroup is a reflection group [Steinberg].
- Its Coxeter elements are called parabolic Coxeter elements.

 $\begin{array}{rcccc} L_0 \in \mathcal{L} & \leftrightarrow & \textit{W}_0 \in \mathsf{PSG}(\textit{W}) & \leftarrow & \textit{c}_0 \text{ parabolic Coxeter elt} \\ \mathsf{codim}(L_0) & = & \mathsf{rk}(\textit{W}_0) & = & \ell_{\mathit{R}}(\textit{c}_0) \end{array}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Construct a stratification of V/W, image of the stratification \mathcal{L} : $\overline{\mathcal{L}} = \mathcal{L}/W = (p(L))_{L \in \mathcal{L}} = (W \cdot L)_{L \in \mathcal{L}}.$

 $\mathcal{L} \qquad \leftrightarrow \quad \{ \text{parabolic subgroups of } W \} \quad \leftrightarrow \quad \{ \text{parab. Coxete} \\ \text{codim}(\Lambda) = \qquad \text{rank}(W_{\Lambda}) = \qquad \ell_{R}(w)$

Proposition

The set $\overline{\mathcal{L}}$ is in canonical bijection with:

• the set of conjugacy classes of parabolic subgroups of W;

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

- the set of conjugacy classes of parabolic Coxeter elements;
- the set of conjugacy classes of elements of NC(W).

Construct a stratification of V/W, image of the stratification \mathcal{L} : $\overline{\mathcal{L}} = \mathcal{L}/W = (p(\mathcal{L}))_{\mathcal{L} \in \mathcal{L}} = (W \cdot \mathcal{L})_{\mathcal{L} \in \mathcal{L}}.$

 $\begin{array}{cccc} \mathcal{L} & \leftrightarrow & \{ \text{parabolic subgroups of } W \} & \leftrightarrow & \{ \text{parab. Coxete} \\ \text{codim}(\Lambda) & = & \text{rank}(W_{\Lambda}) & = & \ell_{\mathcal{B}}(W_{\Lambda}) \end{array}$

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Proposition

The set $\overline{\mathcal{L}}$ is in canonical bijection with:

- the set of conjugacy classes of parabolic subgroups of W;
- the set of conjugacy classes of parabolic Coxeter elements;
- the set of conjugacy classes of elements of NC(W).

Construct a stratification of V/W, image of the stratification \mathcal{L} : $\overline{\mathcal{L}} = \mathcal{L}/W = (p(\mathcal{L}))_{\mathcal{L} \in \mathcal{L}} = (W \cdot \mathcal{L})_{\mathcal{L} \in \mathcal{L}}.$

 $\begin{array}{cccc} \bar{\mathcal{L}} & \leftrightarrow & \mathsf{PSG}(W)/\mathsf{conj.} & \leftrightarrow & \{\mathsf{parab. Coxeter elts} \}/\mathsf{conj.} \\ \mathsf{codim}(\Lambda) & = & \mathsf{rank}(W_\Lambda) & = & \ell_{\mathcal{R}}(w_\Lambda) \end{array}$

Proposition

The set $\overline{\mathcal{L}}$ is in canonical bijection with:

• the set of conjugacy classes of parabolic subgroups of W;

・ コット (雪) (小田) (コット 日)

- the set of conjugacy classes of parabolic Coxeter elements;
- the set of conjugacy classes of elements of NC(W).

Construct a stratification of V/W, image of the stratification \mathcal{L} : $\overline{\mathcal{L}} = \mathcal{L}/W = (p(L))_{L \in \mathcal{L}} = (W \cdot L)_{L \in \mathcal{L}}.$

 $\begin{array}{cccc} \bar{\mathcal{L}} & \leftrightarrow & \mathsf{PSG}(W)/\mathsf{conj.} & \leftrightarrow & \{\mathsf{parab. Coxeter elts }\}/\mathsf{conj.} \\ \mathsf{codim}(\Lambda) & = & \mathsf{rank}(W_\Lambda) & = & \ell_R(w_\Lambda) \end{array}$

Proposition

The set $\overline{\mathcal{L}}$ is in canonical bijection with:

• the set of conjugacy classes of parabolic subgroups of W;

- the set of conjugacy classes of parabolic Coxeter elements;
- the set of conjugacy classes of elements of NC(W).

Construct a stratification of V/W, image of the stratification \mathcal{L} : $\overline{\mathcal{L}} = \mathcal{L}/W = (p(L))_{L \in \mathcal{L}} = (W \cdot L)_{L \in \mathcal{L}}.$

 $\overline{\mathcal{L}} \leftrightarrow \mathsf{PSG}(W)/\mathsf{conj.} \leftrightarrow \{\mathsf{parab. Coxeter elts}\}/\mathsf{conj.}$ $\mathsf{codim}(\Lambda) = \mathsf{rank}(W_{\Lambda}) = \ell_{\mathcal{R}}(w_{\Lambda})$

Proposition

The set $\overline{\mathcal{L}}$ is in canonical bijection with:

the set of conjugacy classes of parabolic subgroups of W;

- the set of conjugacy classes of parabolic Coxeter elements;
- the set of conjugacy classes of elements of NC(W).

Construct a stratification of V/W, image of the stratification \mathcal{L} : $\overline{\mathcal{L}} = \mathcal{L}/W = (p(L))_{L \in \mathcal{L}} = (W \cdot L)_{L \in \mathcal{L}}.$

 $\overline{\mathcal{L}} \leftrightarrow \mathsf{PSG}(W)/\mathsf{conj.} \leftrightarrow \{\mathsf{parab. Coxeter elts}\}/\mathsf{conj.}$ $\mathsf{codim}(\Lambda) = \mathsf{rank}(W_{\Lambda}) = \ell_{\mathcal{B}}(w_{\Lambda})$

Proposition

The set $\overline{\mathcal{L}}$ is in canonical bijection with:

• the set of conjugacy classes of parabolic subgroups of W;

(日) (日) (日) (日) (日) (日) (日)

- the set of conjugacy classes of parabolic Coxeter elements;
- the set of conjugacy classes of elements of NC(W).

Construct a stratification of V/W, image of the stratification \mathcal{L} : $\overline{\mathcal{L}} = \mathcal{L}/W = (p(L))_{L \in \mathcal{L}} = (W \cdot L)_{L \in \mathcal{L}}.$

 $\overline{\mathcal{L}} \leftrightarrow \mathsf{PSG}(W)/\mathsf{conj.} \leftrightarrow \{\mathsf{parab. Coxeter elts}\}/\mathsf{conj.}$ $\mathsf{codim}(\Lambda) = \mathsf{rank}(W_{\Lambda}) = \ell_{\mathcal{B}}(w_{\Lambda})$

Proposition

The set $\overline{\mathcal{L}}$ is in canonical bijection with:

• the set of conjugacy classes of parabolic subgroups of W;

(日) (日) (日) (日) (日) (日) (日)

- the set of conjugacy classes of parabolic Coxeter elements;
- the set of conjugacy classes of elements of NC(W).

Construct a stratification of V/W, image of the stratification \mathcal{L} : $\overline{\mathcal{L}} = \mathcal{L}/W = (p(L))_{L \in \mathcal{L}} = (W \cdot L)_{L \in \mathcal{L}}.$

 $\overline{\mathcal{L}} \leftrightarrow \mathsf{PSG}(W)/\mathsf{conj.} \leftrightarrow \{\mathsf{parab. Coxeter elts}\}/\mathsf{conj.}$ $\mathsf{codim}(\Lambda) = \mathsf{rank}(W_{\Lambda}) = \ell_{\mathcal{B}}(w_{\Lambda})$

Proposition

The set $\overline{\mathcal{L}}$ is in canonical bijection with:

• the set of conjugacy classes of parabolic subgroups of W;

(日) (日) (日) (日) (日) (日) (日)

- the set of conjugacy classes of parabolic Coxeter elements;
- the set of conjugacy classes of elements of NC(W).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

<□ > < @ > < E > < E > E のQ@

 $\mathcal{H} = \{\Delta_W = 0\} \subseteq W \setminus V \simeq \mathbb{C}^3$

 $\mathcal{H} = \{\Delta_W = 0\} \subseteq W \setminus V \simeq \mathbb{C}^3$

Conjugacy classes of factors

For any factor w_i in some <u>facto(y)</u>:

- *w_i* is a parabolic Coxeter element;
- its conjugacy class corresponds (via bijection above) to the minimal stratum of *L* in which lies the corresponding point (*y*, *x_i*).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

① Combinatorics of the noncrossing partition lattice

- The noncrossing partition lattice of a reflection group
- Chains and Fuß-Catalan numbers
- Factorisations of a Coxeter element
- 2 Geometry of the hyperplane arrangement and of the discriminant
 - Discriminant and braid group
 - Geometric factorisations
 - Stratification and parabolic Coxeter elements

3 Lyashko-Looijenga covering and geometric factorisations

- The Lyashko-Looijenga covering
- Enumeration of maximal factorisations
- Enumeration of submaximal factorisations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Definition

 $\begin{array}{rcl} \mathsf{LL}: & Y & \to & E_n := \{ \text{multisets of } n \text{ points in } \mathbb{C} \} \\ & y & \mapsto & \{ \text{roots, with multiplicities, of } \Delta_W(y, f_n) \text{ in } f_n \} \end{array}$

$$\Delta_W = f_n^n + a_2 f_n^{n-2} + a_3 f_n^{n-3} + \dots + a_{n-1} f_n + a_n.$$

Definition (LL as an algebraic (homogeneous) morphism) LL : $\mathbb{C}^{n-1} \rightarrow \mathbb{C}^{n-1}$ $(f_1, \dots, f_{n-1}) \mapsto (a_2, \dots, a_n)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Proposition (Bessis) LL : $Y - \mathcal{K} \twoheadrightarrow E_n^{\text{reg}}$ is a topological covering, of degree $\frac{2h \cdot 3h \dots nh}{d_1 \dots d_{n-1}} = \frac{n! h^n}{|W|}$

Definition

LL :
$$Y \rightarrow E_n := \{ \text{multisets of } n \text{ points in } \mathbb{C} \}$$

 $y \mapsto \{ \text{roots, with multiplicities, of } \Delta_W(y, f_n) \text{ in } f_n \}$

$$\Delta_W = f_n^n + a_2 f_n^{n-2} + a_3 f_n^{n-3} + \cdots + a_{n-1} f_n + a_n.$$

Definition (LL as an algebraic (homogeneous) morphism)

$$\mathsf{LL}: \begin{array}{cc} \mathbb{C}^{n-1} & \to & \mathbb{C}^{n-1} \\ (f_1, \dots, f_{n-1}) & \mapsto & (a_2, \dots, a_n) \end{array}$$

Proposition (Bessis)
LL :
$$Y - \mathcal{K} \rightarrow E_n^{\text{reg}}$$
 is a topological covering, of degree

$$\frac{2h \cdot 3h \dots nh}{d_1 \dots d_{n-1}} = \frac{n! h^n}{|W|}$$

・ロン ・ 四 と ・ 回 と ・ 回 と

-

Definition

LL :
$$Y \rightarrow E_n := \{ \text{multisets of } n \text{ points in } \mathbb{C} \}$$

 $y \mapsto \{ \text{roots, with multiplicities, of } \Delta_W(y, f_n) \text{ in } f_n \}$

$$\Delta_W = f_n^n + a_2 f_n^{n-2} + a_3 f_n^{n-3} + \cdots + a_{n-1} f_n + a_n.$$

Definition (LL as an algebraic (homogeneous) morphism)

$$\mathsf{LL}: \begin{array}{ccc} \mathbb{C}^{n-1} & \to & \mathbb{C}^{n-1} \\ (f_1, \dots, f_{n-1}) & \mapsto & (a_2, \dots, a_n) \end{array}$$

Proposition (Bessis)

 $\mathsf{LL}: Y - \mathcal{K} \twoheadrightarrow E_n^{\text{reg}}$ is a topological covering, of degree

$$\frac{2h\cdot 3h\ldots nh}{d_1\ldots d_{n-1}} = \frac{n! \ h^n}{|W|}$$

Definition

LL :
$$Y \rightarrow E_n := \{ \text{multisets of } n \text{ points in } \mathbb{C} \}$$

 $y \mapsto \{ \text{roots, with multiplicities, of } \Delta_W(y, f_n) \text{ in } f_n \}$

$$\Delta_W = f_n^n + a_2 f_n^{n-2} + a_3 f_n^{n-3} + \cdots + a_{n-1} f_n + a_n.$$

Definition (LL as an algebraic (homogeneous) morphism)

$$\mathsf{LL}: \begin{array}{ccc} \mathbb{C}^{n-1} & \to & \mathbb{C}^{n-1} \\ (f_1, \dots, f_{n-1}) & \mapsto & (a_2, \dots, a_n) \end{array}$$

Proposition (Bessis)

 $LL: Y - \mathcal{K} \twoheadrightarrow \textit{E}_n^{\text{reg}}$ is a topological covering, of degree

$$\frac{2h\cdot 3h\ldots nh}{d_1\ldots d_{n-1}} = \frac{n! \ h^n}{|W|}$$

Note: for $y \in Y$, LL(y) and <u>facto(y</u>) have necessarily the same associated *composition of n*.

Theorem (Bessis '07)

The product map:

 $Y \xrightarrow{\text{LL} \times \underline{\text{facto}}} E_n \times \text{FACT}(c)$

is injective, and is a bijection onto the set of "compatible" pairs.

Equivalently, for $\omega \in E_n$, the map <u>facto</u> induces a bijection between the fiber $LL^{-1}(\omega)$ and the set of block factorisations of same "composition" as ω .

→→ a way to compute cardinalities of sets of factorisations using algebraic properties of LL.

Note: for $y \in Y$, LL(y) and <u>facto(y</u>) have necessarily the same associated *composition of n*.

Theorem (Bessis '07)

The product map:

$Y \xrightarrow{\text{LL} \times \underline{\text{facto}}} E_n \times \text{FACT}(c)$

is injective, and is a bijection onto the set of "compatible" pairs.

Equivalently, for $\omega \in E_n$, the map <u>facto</u> induces a bijection between the fiber $LL^{-1}(\omega)$ and the set of block factorisations of same "composition" as ω .

→ a way to compute cardinalities of sets of factorisations using algebraic properties of LL.

Note: for $y \in Y$, LL(y) and <u>facto(y</u>) have necessarily the same associated *composition of n*.

Theorem (Bessis '07)

The product map:

 $Y \xrightarrow{\text{LL} \times \underline{\text{facto}}} E_n \times \text{FACT}(c)$

is injective, and is a bijection onto the set of "compatible" pairs.

Equivalently, for $\omega \in E_n$, the map facto induces a bijection between the fiber $LL^{-1}(\omega)$ and the set of block factorisations of same "composition" as ω .

 → a way to compute cardinalities of sets of factorisations using algebraic properties of LL.

Note: for $y \in Y$, LL(y) and <u>facto(y</u>) have necessarily the same associated *composition of n*.

Theorem (Bessis '07)

The product map:

 $Y \xrightarrow{\text{LL} \times \underline{\text{facto}}} E_n \times \text{FACT}(c)$

is injective, and is a bijection onto the set of "compatible" pairs.

Equivalently, for $\omega \in E_n$, the map facto induces a bijection between the fiber $LL^{-1}(\omega)$ and the set of block factorisations of same "composition" as ω .

 \rightsquigarrow a way to compute cardinalities of sets of factorisations using algebraic properties of LL.

(a.k.a reduced decompositions of c)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Strata of codimension 2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Strata of codimension 2

 $\mathcal{H} \subseteq \mathit{W} \backslash \mathit{V} \simeq \mathbb{C}^3$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Strata of codimension 2

$\mathcal{H}\subseteq \mathit{W}\backslash \mathit{V}\simeq \mathbb{C}^3$

$$\overline{\mathcal{L}}_2 := \{ \text{strata of } \overline{\mathcal{L}} \text{ of codimension } 2 \}$$

 \leftrightarrow {conjugacy classes of elements of NC(W) of length 2}

Proposition

The $\varphi(\Lambda)$, for $\Lambda \in \overline{\mathcal{L}}_2$, are the irreducible components of \mathcal{K} .

 \rightsquigarrow we can write $D_W = \prod_{\Lambda \in \overline{\mathcal{L}}_2} D_{\Lambda}^{r_{\Lambda}}$, where $r_{\Lambda} \ge 1$ and the D_{Λ} are polynomials in f_1, \ldots, f_{n-1} .

Theorem (R.)

For $\Lambda \in \overline{\mathcal{L}}_2$, the number of submaximal factorisations of c of type Λ (i.e. , whose unique length 2 element lies in the conjugacy class Λ) is:

$$|\operatorname{FACT}_{n-1}^{\Lambda}(c)| = rac{(n-1)! h^{n-1}}{|W|} \deg D_{\Lambda} \; .$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- $\overline{\mathcal{L}}_2 := \{ \text{strata of } \overline{\mathcal{L}} \text{ of codimension } 2 \}$
 - \leftrightarrow {conjugacy classes of elements of NC(W) of length 2}

Proposition

The $\varphi(\Lambda)$, for $\Lambda \in \overline{\mathcal{L}}_2$, are the irreducible components of \mathcal{K} .

 \rightsquigarrow we can write $D_W = \prod_{\Lambda \in \overline{\mathcal{L}}_2} D_{\Lambda}^{r_{\Lambda}}$, where $r_{\Lambda} \ge 1$ and the D_{Λ} are polynomials in f_1, \ldots, f_{n-1} .

Theorem (R.)

For $\Lambda \in \overline{\mathcal{L}}_2$, the number of submaximal factorisations of c of type Λ (i.e. , whose unique length 2 element lies in the conjugacy class Λ) is:

$$|\operatorname{FACT}_{n-1}^{\Lambda}(c)| = rac{(n-1)! h^{n-1}}{|W|} \deg D_{\Lambda} \; .$$

・ロト・日本・日本・日本・日本

- $\overline{\mathcal{L}}_2 := \{ \text{strata of } \overline{\mathcal{L}} \text{ of codimension } 2 \}$
 - \leftrightarrow {conjugacy classes of elements of NC(W) of length 2}

Proposition

The $\varphi(\Lambda)$, for $\Lambda \in \overline{\mathcal{L}}_2$, are the irreducible components of \mathcal{K} .

 \rightsquigarrow we can write $D_W = \prod_{\Lambda \in \overline{L}_2} D_{\Lambda}^{r_{\Lambda}}$, where $r_{\Lambda} \ge 1$ and the D_{Λ} are polynomials in f_1, \ldots, f_{n-1} .

Theorem (R.)

For $\Lambda \in \overline{\mathcal{L}}_2$, the number of submaximal factorisations of c of type Λ (i.e. , whose unique length 2 element lies in the conjugacy class Λ) is:

$$|\operatorname{FACT}_{n-1}^{\Lambda}(c)| = rac{(n-1)! \ h^{n-1}}{|W|} \deg D_{\Lambda} \; .$$

・ロト・日本・日本・日本・日本

- $\overline{\mathcal{L}}_2 := \{ \text{strata of } \overline{\mathcal{L}} \text{ of codimension } 2 \}$
 - \leftrightarrow {conjugacy classes of elements of NC(W) of length 2}

Proposition

The $\varphi(\Lambda)$, for $\Lambda \in \overline{\mathcal{L}}_2$, are the irreducible components of \mathcal{K} .

 \rightsquigarrow we can write $D_W = \prod_{\Lambda \in \overline{\mathcal{L}}_2} D_{\Lambda}^{r_{\Lambda}}$, where $r_{\Lambda} \ge 1$ and the D_{Λ} are polynomials in f_1, \ldots, f_{n-1} .

Theorem (R.)

For $\Lambda \in \overline{\mathcal{L}}_2$, the number of submaximal factorisations of c of type Λ (i.e., whose unique length 2 element lies in the conjugacy class Λ) is:

$$|\operatorname{FACT}_{n-1}^{\Lambda}(c)| = rac{(n-1)! h^{n-1}}{|W|} \deg D_{\Lambda} .$$

How to compute uniformly $\sum_{\Lambda \in \bar{\mathcal{L}}_2} \deg D_{\Lambda}$?

- Recall that $D_W = \prod_{\Lambda \in \bar{\mathcal{L}}_2} D_{\Lambda}^{r_{\Lambda}}$.
- We found an interpretation of ∏_{Λ∈Ē₂} D^{r_Λ-1}, as the Jacobian J of the morphism LL.
- Compute deg J, and then $\sum_{\Lambda} \deg D_{\Lambda} = \deg D_W \deg J$.

Corollary

$$|\operatorname{FACT}_{n-1}(c)| = \frac{(n-1)! h^{n-1}}{|W|} \left(\frac{(n-1)(n-2)}{2} h + \sum_{i=1}^{n-1} d_i \right) .$$

How to compute uniformly $\sum_{\Lambda \in \bar{\mathcal{L}}_2} \deg D_{\Lambda}$?

- Recall that $D_W = \prod_{\Lambda \in \bar{\mathcal{L}}_2} D_{\Lambda}^{r_{\Lambda}}$.
- We found an interpretation of $\prod_{\Lambda \in \overline{L}_2} D_{\Lambda}^{r_{\Lambda}-1}$, as the Jacobian *J* of the morphism LL.
- Compute deg *J*, and then $\sum_{\Lambda} \deg D_{\Lambda} = \deg D_W \deg J$.

Corollary

$$|\operatorname{FACT}_{n-1}(c)| = \frac{(n-1)! h^{n-1}}{|W|} \left(\frac{(n-1)(n-2)}{2} h + \sum_{i=1}^{n-1} d_i \right) .$$

How to compute uniformly $\sum_{\Lambda \in \overline{\mathcal{L}}_2} \deg D_{\Lambda}$?

- Recall that $D_W = \prod_{\Lambda \in \bar{\mathcal{L}}_2} D_{\Lambda}^{r_{\Lambda}}$.
- We found an interpretation of ∏_{∧∈*L*₂} D^{r_∧-1}, as the Jacobian *J* of the morphism LL.
- Compute deg *J*, and then $\sum_{\Lambda} \deg D_{\Lambda} = \deg D_W \deg J$.

Corollary

$$|\operatorname{FACT}_{n-1}(c)| = \frac{(n-1)! h^{n-1}}{|W|} \left(\frac{(n-1)(n-2)}{2} h + \sum_{i=1}^{n-1} d_i \right) .$$

How to compute uniformly $\sum_{\Lambda \in \overline{\mathcal{L}}_2} \deg D_{\Lambda}$?

- Recall that $D_W = \prod_{\Lambda \in \bar{\mathcal{L}}_2} D_{\Lambda}^{r_{\Lambda}}$.
- We found an interpretation of ∏_{∧∈ℓ̃} D^r_∧⁻¹, as the Jacobian J of the morphism LL.
- Compute deg *J*, and then $\sum_{\Lambda} \deg D_{\Lambda} = \deg D_W \deg J$.

Corollary

The number of **block factorisations of a Coxeter element** c **in** n - 1 **factors** is:

$$|\operatorname{FACT}_{n-1}(c)| = \frac{(n-1)! h^{n-1}}{|W|} \left(\frac{(n-1)(n-2)}{2} h + \sum_{i=1}^{n-1} d_i \right) .$$

(日) (日) (日) (日) (日) (日) (日)

How to compute uniformly $\sum_{\Lambda \in \overline{\mathcal{L}}_2} \deg D_{\Lambda}$?

- Recall that $D_W = \prod_{\Lambda \in \bar{\mathcal{L}}_2} D_{\Lambda}^{r_{\Lambda}}$.
- We found an interpretation of ∏_{∧∈Z₂} D^{r_∧-1}, as the Jacobian J of the morphism LL.
- Compute deg *J*, and then $\sum_{\Lambda} \deg D_{\Lambda} = \deg D_W \deg J$.

Corollary

$$|\operatorname{FACT}_{n-1}(c)| = \frac{(n-1)! h^{n-1}}{|W|} \left(\frac{(n-1)(n-2)}{2} h + \sum_{i=1}^{n-1} d_i \right) .$$

Danke schön!

References:

- D. Bessis, *Finite complex reflection arrangements are K*(π, 1), (2006).
- V. Ripoll, Orbites d'Hurwitz des factorisations primitives d'un élément de Coxeter, J. Alg. (2010).
- V. Ripoll, *Lyashko-Looijenga morphisms and submaximal factorisations of a Coxeter element*, J. Algebraic Combin. (2012).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの