Chains in the noncrossing partition lattice of a reflection group

Ketten im Kreuzungsfreipartitionsverband einer Spiegelungsgruppe (?)

Vivien Ripoll

Universität Wien
Arbeitsgemeinschaft Diskrete Mathematik
Wien, 19. November 2013

Introduction

- V : real vector space of finite dimension.
- $W \leq \mathrm{GL}(V)$: a finite reflection group, i.e. finite subgroup of $\mathrm{GL}(V)$ generated by reflections (\rightsquigarrow structure of a finite Coxeter group).

Note: results remain valid for a more general class of groups (well-generated complex reflection groups).

Combinatorics
noncrossing partition lattice of W (via factorisations of a Coxeter element)

Invariant theory of W

Introduction

- V : real vector space of finite dimension.
- $W \leq \mathrm{GL}(V)$: a finite reflection group, i.e. finite subgroup of $\mathrm{GL}(V)$ generated by reflections (\rightsquigarrow structure of a finite Coxeter group).

Note: results remain valid for a more general class of groups (well-generated complex reflection groups).

Combinatorics
noncrossing partition lattice
of W (via factorisations of a Coxeter element)

Invariant theory of W
(via geometry of the

Introduction

- V : real vector space of finite dimension.
- $W \leq \mathrm{GL}(V)$: a finite reflection group, i.e. finite subgroup of $\mathrm{GL}(V)$ generated by reflections (\rightsquigarrow structure of a finite Coxeter group).

Note: results remain valid for a more general class of groups (well-generated complex reflection groups).

Combinatorics of the noncrossing partition lattice of W (via factorisations of a Coxeter element)

Outline

(1) Combinatorics of the noncrossing partition lattice

- The noncrossing partition lattice of a reflection group
- Chains and Fuß-Catalan numbers
- Factorisations of a Coxeter element
(2) Geometry of the hyperplane arrangement and of the discriminant
- Discriminant and braid group
- Geometric factorisations
- Stratification and parabolic Coxeter elements
(3) Lyashko-Looijenga covering and geometric factorisations
- The Lyashko-Looijenga covering
- Enumeration of maximal factorisations
- Enumeration of submaximal factorisations

Outline

(1) Combinatorics of the noncrossing partition lattice

- The noncrossing partition lattice of a reflection group
- Chains and Fuß-Catalan numbers
- Factorisations of a Coxeter element

(2)
Geometry of the hyperplane arrangement and of the discriminant

- Discriminant and braid group
- Geometric factorisations
- Stratification and parabolic Coxeter elements
(3)

Lyashko-Looijenga covering and geometric factorisations

- The Lyashko-Looijenga covering
- Enumeration of maximal factorisations
- Enumeration of submaximal factorisations

The noncrossing partition lattice of type W

- Define $R:=\{$ all reflections of $W\}$.
- \rightsquigarrow reflection length (or absolute length) ℓ_{R}. (forget about the usual Coxeter length ℓ_{S} !)
- Absolute order \preccurlyeq_{R} :

$$
u \preccurlyeq_{R} v \text { if and only if } \ell_{R}(u)+\ell_{R}\left(u^{-1} v\right)=\ell_{R}(v) .
$$

- Fix c : a Coxeter element in W (particular conjugacy class of elements of length $n=\mathrm{rk}(W))$.

> Note: the structure doesn't depend on the choice of the Coxeter element (conjugacy) \rightsquigarrow write NC (W)

The noncrossing partition lattice of type W

- Define $R:=\{$ all reflections of $W\}$.
- \rightsquigarrow reflection length (or absolute length) ℓ_{R}. (forget about the usual Coxeter length ℓ_{S} !)
- Absolute order \preccurlyeq_{R} :

$$
u \preccurlyeq_{R} v \text { if and only if } \ell_{R}(u)+\ell_{R}\left(u^{-1} v\right)=\ell_{R}(v) .
$$

- Fix c : a Coxeter element in W (particular conjugacy class of elements of length $n=\mathrm{rk}(W)$).

Definition (Noncrossing partition lattice of type W)

$$
\mathrm{NC}(W, c):=\{w \in W \mid w \preccurlyeq c\}
$$

Note: the structure doesn't depend on the choice of the Coxeter element (conjugacy) \rightsquigarrow write $\mathrm{NC}(W)$.

Prototype: noncrossing partitions of an n-gon

- $W:=\mathfrak{S}_{n}$, with generating set $R:=\{$ all transpositions $\}$
- $c:=n$-cycle (1 23
- $\mathrm{NC}(W, c) \longleftrightarrow$ \{noncrossing partitions of an n-gon $\}$

Prototype: noncrossing partitions of an n-gon

- $W:=\mathfrak{S}_{n}$, with generating set $R:=\{$ all transpositions $\}$
- $c:=n$-cycle (1 $23 \ldots$ n)
- NC($W, c) \longleftrightarrow$ \{noncrossing partitions of an n-gon $\}$

Prototype: noncrossing partitions of an n-gon

- $W:=\mathfrak{S}_{n}$, with generating set $R:=\{$ all transpositions $\}$
- $c:=n$-cycle (1 $23 \ldots$)
- NC $(W, c) \longleftrightarrow$ \{noncrossing partitions of an n-gon $\}$

Prototype: noncrossing partitions of an n-gon

- $W:=\mathfrak{S}_{n}$, with generating set $R:=\{$ all transpositions $\}$
- $c:=n$-cycle (1 $23 \ldots$)
- NC $(W, c) \longleftrightarrow\{$ noncrossing partitions of an n-gon $\}$

Prototype: noncrossing partitions of an n-gon

- $W:=\mathfrak{S}_{n}$, with generating set $R:=\{$ all transpositions $\}$
- $c:=n$-cycle (12 $3 \ldots n$)
- $\mathrm{NC}(W, c) \longleftrightarrow\{$ noncrossing partitions of an n-gon $\}$

Prototype: noncrossing partitions of an n-gon

- $W:=\mathfrak{S}_{n}$, with generating set $R:=\{$ all transpositions $\}$
- $c:=n$-cycle (12 $3 \ldots n$)
- $\mathrm{NC}(W, c) \longleftrightarrow\{$ noncrossing partitions of an n-gon $\}$

Fuß-Catalan numbers

Kreweras's formula for multichains of noncrossing partitions

- $W:=\mathfrak{S}_{n}$;
- c: an n-cycle.

The number of multichains $w_{1} \preccurlyeq w_{2} \preccurlyeq \ldots \preccurlyeq w_{p} \preccurlyeq c$ in $\mathrm{NC}(W, c)$ is the Fuß-Catalan number

$$
\operatorname{Cat}^{(p)}(n)=\prod_{i=2}^{n} \frac{i+p n}{i}=\frac{1}{p n+1}\binom{(p+1) n}{n}
$$

Fuß-Catalan numbers of type W

Chapoton's formula for multichains in $\mathrm{NC}(W)$

- $W:=\mathfrak{S}_{n}$;
- c: an n-cycle.

The number of multichains $w_{1} \preccurlyeq w_{2} \preccurlyeq \ldots \preccurlyeq w_{p} \preccurlyeq c$ in $\mathrm{NC}(W, c)$ is the Fuß-Catalan number

$$
\operatorname{Cat}^{(p)}(n)=\prod_{i=2}^{n} \frac{i+p n}{i}=\frac{1}{p n+1}\binom{(p+1) n}{n}
$$

Fuß-Catalan numbers of type W

Chapoton's formula for multichains in $\mathrm{NC}(W)$

- $W:=$ an irreducible reflection group of rank n;
- c: an n-cycle.

The number of multichains $w_{1} \preccurlyeq w_{2} \preccurlyeq \ldots \preccurlyeq w_{p} \preccurlyeq c$ in $\mathrm{NC}(W, c)$ is the Fuß-Catalan number

$$
\operatorname{Cat}^{(p)}(n)=\prod_{i=2}^{n} \frac{i+p n}{i}=\frac{1}{p n+1}\binom{(p+1) n}{n}
$$

Fuß-Catalan numbers of type W

Chapoton's formula for multichains in NC(W)

- $W:=$ an irreducible reflection group of rank n;
- c: a Coxeter element.

The number of multichains $w_{1} \preccurlyeq w_{2} \preccurlyeq \ldots \preccurlyeq w_{p} \preccurlyeq c$ in $\mathrm{NC}(W, c)$ is the Fuß-Catalan number

$$
\operatorname{Cat}^{(p)}(n)=\prod_{i=2}^{n} \frac{i+p n}{i}=\frac{1}{p n+1}\binom{(p+1) n}{n}
$$

Fuß-Catalan numbers of type W

Chapoton's formula for multichains in NC(W)

- $W:=$ an irreducible reflection group of rank n;
- c: a Coxeter element.

The number of multichains $w_{1} \preccurlyeq w_{2} \preccurlyeq \ldots \preccurlyeq w_{p} \preccurlyeq c$ in $\mathrm{NC}(W, c)$ is the Fuß-Catalan number of type W

$$
\operatorname{Cat}^{(p)}(n)=\prod_{i=2}^{n} \frac{i+p n}{i}=\frac{1}{p n+1}\binom{(p+1) n}{n}
$$

Fuß-Catalan numbers of type W

Chapoton's formula for multichains in NC(W)

- $W:=$ an irreducible reflection group of rank n;
- c: a Coxeter element.

The number of multichains $w_{1} \preccurlyeq w_{2} \preccurlyeq \ldots \preccurlyeq w_{p} \preccurlyeq c$ in $\mathrm{NC}(W, c)$ is the Fuß-Catalan number of type W

$$
\operatorname{Cat}^{(p)}(W)=\prod_{i=1}^{n} \frac{d_{i}+p h}{d_{i}}=\frac{1}{|W|} \prod_{i=1}^{n}\left(d_{i}+p h\right)
$$

Fuß-Catalan numbers of type W

Chapoton's formula for multichains in NC(W)

- $W:=$ an irreducible reflection group of rank n;
- c: a Coxeter element.

The number of multichains $w_{1} \preccurlyeq w_{2} \preccurlyeq \ldots \preccurlyeq w_{p} \preccurlyeq c$ in $\mathrm{NC}(W, c)$ is the Fuß-Catalan number of type W

$$
\operatorname{Cat}^{(p)}(W)=\prod_{i=1}^{n} \frac{d_{i}+p h}{d_{i}}=\frac{1}{|W|} \prod_{i=1}^{n}\left(d_{i}+p h\right)
$$

$\left(d_{1} \leq \cdots \leq d_{n}=h\right.$: invariant degrees of W)

Fuß-Catalan numbers of type W

Chapoton's formula for multichains in NC(W)

- W := an irreducible reflection group of rank n;
- c : a Coxeter element.

The number of multichains $w_{1} \preccurlyeq w_{2} \preccurlyeq \ldots \preccurlyeq w_{p} \preccurlyeq c$ in $\mathrm{NC}(W, c)$ is the Fuß-Catalan number of type W

$$
\operatorname{Cat}^{(p)}(W)=\prod_{i=1}^{n} \frac{d_{i}+p h}{d_{i}}=\frac{1}{|W|} \prod_{i=1}^{n}\left(d_{i}+p h\right)
$$

($d_{1} \leq \cdots \leq d_{n}=h$: invariant degrees of W)
Proof: [Athanasiadis, Reiner, Bessis...] case-by-case! Remark: $\mathrm{Cat}^{(1)}(W)$ (and $\operatorname{Cat}^{(p)}(W)$) appear in other contexts:
Fomin-Zelevinsky cluster algebras, nonnesting partitions...

Factorisations of a Coxeter element

Definition (Block factorisations of c)
$\left(w_{1}, \ldots, w_{p}\right) \in(W-\{1\})^{p}$ is a block factorisation of c if

- $w_{1} \ldots w_{p}=c$.
- $\ell_{R}\left(w_{1}\right)+\cdots+\ell_{R}\left(w_{p}\right)=\ell_{R}(c)=n$. FACT $n(c):=\{$ block factorisations of c in n factors $\}$.

Factorisations of a Coxeter element

Definition (Block factorisations of c)
$\left(w_{1}, \ldots, w_{p}\right) \in(W-\{1\})^{p}$ is a block factorisation of c if

- $w_{1} \ldots w_{p}=c$.
- $\ell_{R}\left(w_{1}\right)+\cdots+\ell_{R}\left(w_{p}\right)=\ell_{R}(c)=n$.

FACT $_{p}(c):=\{$ block factorisations of c in p factors $\}$.

Factorisations of a Coxeter element

Definition (Block factorisations of c)
$\left(w_{1}, \ldots, w_{p}\right) \in(W-\{1\})^{p}$ is a block factorisation of c if

- $w_{1} \ldots w_{p}=c$.
- $\ell_{R}\left(w_{1}\right)+\cdots+\ell_{R}\left(w_{p}\right)=\ell_{R}(c)=n$.

FACT $_{p}(c):=\{$ block factorisations of c in p factors $\}$.

- "Factorisations \leftrightarrow chains".
- Problem : $\preccurlyeq v s \prec$? Use conversion formulas:
- Bad news : we obtain much more complicated formulas.
- Good news : we can interpret some of them geometrically (and even refine them); in particular for $p=n$ or $n-1$.

Factorisations of a Coxeter element

Definition (Block factorisations of c)
$\left(w_{1}, \ldots, w_{p}\right) \in(W-\{1\})^{p}$ is a block factorisation of c if

- $w_{1} \ldots w_{p}=c$.
- $\ell_{R}\left(w_{1}\right)+\cdots+\ell_{R}\left(w_{p}\right)=\ell_{R}(c)=n$.

FACT $_{p}(c):=\{$ block factorisations of c in p factors $\}$.

- "Factorisations \leftrightarrow chains".
- Problem : $\preccurlyeq v s \prec$? Use conversion formulas:

$$
\#\left\{w_{1} \preccurlyeq \ldots \preccurlyeq w_{p} \preccurlyeq c\right\}=\sum_{k=1}^{p+1}\binom{p+1}{k} \# \mathrm{FACT}_{k}(c)
$$

- Bad news : we obtain much more complicated formulas.
- Good news : we can interpret some of them geometrically (and even refine them); in particular for $p=n$ or $n-1$

Factorisations of a Coxeter element

Definition (Block factorisations of c)
$\left(w_{1}, \ldots, w_{p}\right) \in(W-\{1\})^{p}$ is a block factorisation of c if

- $w_{1} \ldots w_{p}=c$.
- $\ell_{R}\left(w_{1}\right)+\cdots+\ell_{R}\left(w_{p}\right)=\ell_{R}(c)=n$.

FACT $_{p}(c):=\{$ block factorisations of c in p factors $\}$.

- "Factorisations \leftrightarrow chains".
- Problem : $\preccurlyeq v s \prec$? Use conversion formulas:

$$
\#\left\{w_{1} \preccurlyeq \ldots \preccurlyeq w_{p} \preccurlyeq c\right\}=\sum_{k=1}^{p+1}\binom{p+1}{k} \# \mathrm{FACT}_{k}(c)
$$

- Bad news : we obtain much more complicated formulas.
- Good news : we can interpret some of them geometrically (and even refine them); in particular for $p=n$ or $n-1$

Factorisations of a Coxeter element

Definition (Block factorisations of c)

$\left(w_{1}, \ldots, w_{p}\right) \in(W-\{1\})^{p}$ is a block factorisation of c if

- $w_{1} \ldots w_{p}=c$.
- $\ell_{R}\left(w_{1}\right)+\cdots+\ell_{R}\left(w_{p}\right)=\ell_{R}(c)=n$.
$\operatorname{FACT}_{p}(c):=\{$ block factorisations of c in p factors $\}$.
- "Factorisations \leftrightarrow chains".
- Problem : $\preccurlyeq v s \prec$? Use conversion formulas:

$$
\#\left\{w_{1} \preccurlyeq \ldots \preccurlyeq w_{p} \preccurlyeq c\right\}=\sum_{k=1}^{p+1}\binom{p+1}{k} \# \mathrm{FACT}_{k}(c)
$$

- Bad news : we obtain much more complicated formulas.
- Good news : we can interpret some of them geometrically (and even refine them); in particular for $p=n$ or $n-1$.

Outline

Combinatorics of the noncrossing partition lattice

- The noncrossing partition lattice of a reflection group
- Chains and Fuß-Catalan numbers
- Factorisations of a Coxeter element
(2) Geometry of the hyperplane arrangement and of the discriminant
- Discriminant and braid group
- Geometric factorisations
- Stratification and parabolic Coxeter elements

```
(3) Lyashko-Looijenga covering and geometric factorisations
- The Lyashko-Looijenga covering
- Enumeration of maximal factorisations
- Enumeration of submaximal factorisations
```


Hyperplane arrangement

$\mathcal{A}:=\{$ reflecting hyperplanes of $W\}$ (Coxeter arrangement).
It's too simple, now make the ambient space V complex! (replace V with $V \otimes \mathbb{C}$)

What does it look like?

Hyperplane arrangement

$\mathcal{A}:=\{$ reflecting hyperplanes of $W\}$ (Coxeter arrangement).
It's too simple, now make the ambient space V complex! (replace V with $V \otimes \mathbb{C}$)

What does it look like?

Hyperplane arrangement

$\mathcal{A}:=\{$ reflecting hyperplanes of $W\}$ (Coxeter arrangement).
It's too simple, now make the ambient space V complex! (replace V with $V \otimes \mathbb{C}$)

$$
\begin{array}{ccc}
V & \supset & \bigcup_{H \in \mathcal{A}} H \\
\downarrow & & \downarrow \\
V / W & \supset & \left(\bigcup_{H \in \mathcal{A}} H\right) / W
\end{array}
$$

What does it look like?

Hyperplane arrangement

$\mathcal{A}:=\{$ reflecting hyperplanes of $W\}$ (Coxeter arrangement). It's too simple, now make the ambient space V complex! (replace V with $V \otimes \mathbb{C}$)

$$
\begin{array}{ccc}
V & \supset & \bigcup_{H \in \mathcal{A}} H \\
\downarrow & & \downarrow \\
V / W & \supset & \left(\bigcup_{H \in \mathcal{A}} H\right) / W
\end{array}
$$

What does it look like?

The quotient-space V / W

W acts on the polynomial algebra $\mathbb{C}[V]$.
Chevalley-Shephard-Todd's theorem
There exist invariant polynomials f_{1}, \ldots, f_{n}, homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]$.

The degrees $d_{1} \leq \cdots \leq d_{n}=h$ of f_{1}, \ldots, f_{n} (called invariant degrees) do not depend on the choices of the fundamental invariants.
\rightsquigarrow isomorphism:

$$
\left(f_{1}(v), \ldots, f_{n}(v)\right) .
$$

The quotient-space V / W

W acts on the polynomial algebra $\mathbb{C}[V]$.

Chevalley-Shephard-Todd's theorem

There exist invariant polynomials f_{1}, \ldots, f_{n}, homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]$.

The degrees $d_{1} \leq \cdots \leq d_{n}=h$ of f_{1}, \ldots, f_{n} (called invariant degrees) do not depend on the choices of the fundamental invariants.

The quotient-space V / W

W acts on the polynomial algebra $\mathbb{C}[V]$.

Chevalley-Shephard-Todd's theorem

There exist invariant polynomials f_{1}, \ldots, f_{n}, homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]$.

The degrees $d_{1} \leq \cdots \leq d_{n}=h$ of f_{1}, \ldots, f_{n} (called invariant degrees) do not depend on the choices of the fundamental invariants.

The quotient-space V / W

W acts on the polynomial algebra $\mathbb{C}[V]$.

Chevalley-Shephard-Todd's theorem

There exist invariant polynomials f_{1}, \ldots, f_{n}, homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]$.
The degrees $d_{1} \leq \cdots \leq d_{n}=h$ of f_{1}, \ldots, f_{n} (called invariant degrees) do not depend on the choices of the fundamental invariants.
\rightsquigarrow isomorphism: $\quad V / W \xrightarrow{\sim} \mathbb{C}^{n}$

$$
\bar{v} \mapsto\left(f_{1}(v), \ldots, f_{n}(v)\right) .
$$

Discriminant of W

For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

Discriminant of W

For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

$$
\prod_{H \in \mathcal{A}} \alpha_{H} \in \mathbb{C}[V]
$$

equation of $\bigcup_{H \in \mathcal{A}} H$.

Discriminant of W

For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

$$
\prod_{H \in \mathcal{A}} \alpha_{H}{ }^{2} \in \mathbb{C}[V]
$$

equation of $\bigcup_{H \in \mathcal{A}} H$.

Discriminant of W

For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

$$
\prod_{H \in \mathcal{A}} \alpha_{H}{ }^{2} \in \mathbb{C}[V]^{W}
$$ equation of $\bigcup_{H \in \mathcal{A}} H$.

Discriminant of W

For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

$$
\prod_{H \in \mathcal{A}} \alpha_{H}{ }^{2} \in \mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]
$$

$$
\text { equation of } \bigcup_{H \in \mathcal{A}} H \text {. }
$$

Discriminant of W

For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

$$
\Delta_{W}:=\prod_{H \in \mathcal{A}} \alpha_{H}{ }^{2} \in \mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right] \quad \text { (discriminant of } W \text {) }
$$ equation of $\bigcup_{H \in \mathcal{A}} H$.

Discriminant of W

For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

$$
\Delta_{W}:=\prod_{H \in \mathcal{A}} \alpha_{H^{2}} \in \mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right] \quad \text { (discriminant of } W \text {) }
$$ equation of $p\left(\cup_{H \in \mathcal{A}} H\right)=\mathcal{H}$, where $\mathrm{p}: V \rightarrow V / W$.

Example $W=A_{3}$: discriminant ("swallowtail")
$\bigcup_{H \in \mathcal{A}} H \subseteq V$
$H \in \mathcal{A}$

Example $W=A_{3}$: discriminant ("swallowtail")
$\bigcup H \subseteq V$
$H \in \mathcal{A}$
/ W

Example $W=A_{3}$: discriminant ("swallowtail")

$\bigcup H \subseteq V$

hypersurface \mathcal{H} (discriminant) $\subseteq W \backslash V \simeq \mathbb{C}^{3}$

Braid group

- $V^{\text {reg }}:=V-U_{H \in \mathcal{A}} H$
- W acts on $V^{\text {reg }}$ (freely)
- Braid group of W :

$$
B(W):=\pi_{1}\left(V^{\text {reg }} / W\right)=\pi_{1}\left(\mathbb{C}^{n}-\mathcal{H}\right)
$$

Unramified covering $V^{\text {reg }} \rightarrow V^{\text {reg }} / W$
\rightsquigarrow fibration exact sequence

$$
1 \rightarrow \pi_{1}\left(V^{\text {reg }}\right) \hookrightarrow \pi_{1}\left(V^{\text {reg }} / W\right) \rightarrow W \rightarrow 1
$$

$\pi: B(W) \rightarrow W \quad$ "canonical" surjection.

Braid group

- $V^{\text {reg }}:=V-\bigcup_{H \in \mathcal{A}} H$
- W acts on $V^{\text {reg }}$ (freely)
- Braid group of W:

$$
B(W):=\pi_{1}\left(V^{\text {reg }} / W\right)=\pi_{1}\left(\mathbb{C}^{n}-\mathcal{H}\right)
$$

Unramified covering $V^{\text {reg }} \rightarrow V^{\text {reg }} / W$

\leadsto fibration exact sequence

$\pi: B(W) \rightarrow W \quad$ "canonical" surjection.

Braid group

- $V^{\text {reg }}:=V-\bigcup_{H \in \mathcal{A}} H$
- W acts on $V^{\text {reg }}$ (freely)
- Braid group of W :

$$
B(W):=\pi_{1}\left(V^{\mathrm{reg}} / W\right)=\pi_{1}\left(\mathbb{C}^{n}-\mathcal{H}\right)
$$

Unramified covering $V^{\text {reg }} \rightarrow V^{\text {reg }} / W$

\leadsto fibration exact sequence

$\pi: B(W) \rightarrow W \quad$ "canonical" surjection.

Braid group

- $V^{\text {reg }}:=V-U_{H \in \mathcal{A}} H$
- W acts on $V^{\text {reg }}$ (freely)
- Braid group of W :

$$
B(W):=\pi_{1}\left(V^{\mathrm{reg}} / W\right)=\pi_{1}\left(\mathbb{C}^{n}-\mathcal{H}\right)
$$

Unramified covering $V^{\text {reg }} \rightarrow V^{\text {reg }} / W$
\rightsquigarrow fibration exact sequence

$$
1 \rightarrow \pi_{1}\left(V^{\mathrm{reg}}\right) \hookrightarrow \pi_{1}\left(V^{\mathrm{reg}} / W\right) \rightarrow W \rightarrow 1
$$

$\pi: B(W) \rightarrow W$

Braid group

- $V^{\text {reg }}:=V-\bigcup_{H \in \mathcal{A}} H$
- W acts on $V^{\text {reg }}$ (freely)
- Braid group of W :

$$
B(W):=\pi_{1}\left(V^{\mathrm{reg}} / W\right)=\pi_{1}\left(\mathbb{C}^{n}-\mathcal{H}\right)
$$

Unramified covering $V^{\text {reg }} \rightarrow V^{\text {reg }} / W$
\rightsquigarrow fibration exact sequence

$$
1 \rightarrow \pi_{1}\left(V^{\mathrm{reg}}\right) \hookrightarrow \pi_{1}\left(V^{\mathrm{reg}} / W\right) \rightarrow W \rightarrow 1
$$

$\pi: B(W) \rightarrow W \quad$ "canonical" surjection.

"Vertical loops"

An element of $B(W)=$ a loop around \mathcal{H}, up to homotopy.
Consider "vertical loops", i.e. for which f_{1}, \ldots, f_{n-1} remain constant. They are just loops in a punctured complex plane.

Call $\delta \in B(W)$ the simplest (clock-wise) vertical loop around $(0,0, \ldots, 0)$.

Facts:
\rightsquigarrow we can break up δ into smaller parts, using the homotopy. \rightsquigarrow factorisations of $\pi(\delta)=c$!

"Vertical loops"

An element of $B(W)=$ a loop around \mathcal{H}, up to homotopy.
Consider "vertical loops", i.e. for which f_{1}, \ldots, f_{n-1} remain constant. They are just loops in a punctured complex plane.

Call $\delta \in B(W)$ the simplest (clock-wise) vertical loop around $(0,0, \ldots, 0)$.

Facts:
\rightsquigarrow we can break up δ into smaller parts, using the homotopy. \rightsquigarrow factorisations of $\pi(\delta)=c$!

"Vertical loops"

An element of $B(W)=$ a loop around \mathcal{H}, up to homotopy.
Consider "vertical loops", i.e. for which f_{1}, \ldots, f_{n-1} remain constant. They are just loops in a punctured complex plane.

Call $\delta \in B(W)$ the simplest (clock-wise) vertical loop around ($0,0, \ldots, 0$).

Facts:

- up to homotopy, this is also the simple vertical loop "around all \mathcal{H} ".
- its image $\pi(\delta)$ in W is a Coxeter element!
\rightsquigarrow we can break up δ into smaller parts, using the homotopy. \rightsquigarrow factorisations of $\pi(\delta)=c$!

"Vertical loops"

An element of $B(W)=$ a loop around \mathcal{H}, up to homotopy.
Consider "vertical loops", i.e. for which f_{1}, \ldots, f_{n-1} remain constant. They are just loops in a punctured complex plane.

Call $\delta \in B(W)$ the simplest (clock-wise) vertical loop around ($0,0, \ldots, 0$).

Facts:

- up to homotopy, this is also the simple vertical loop "around all \mathcal{H} ".
- its image $\pi(\delta)$ in W is a Coxeter element!
\rightsquigarrow we can break up δ into smaller parts, using the homotopy. \rightsquigarrow factorisations of $\pi(\delta)=c$!

"Vertical loops"

An element of $B(W)=$ a loop around \mathcal{H}, up to homotopy.
Consider "vertical loops", i.e. for which f_{1}, \ldots, f_{n-1} remain constant. They are just loops in a punctured complex plane.

Call $\delta \in B(W)$ the simplest (clock-wise) vertical loop around ($0,0, \ldots, 0$).

Facts:

- up to homotopy, this is also the simple vertical loop "around all \mathcal{H} ".
- its image $\pi(\delta)$ in W is a Coxeter element!
\rightsquigarrow we can break up δ into smaller parts, using the homotopy. \rightsquigarrow factorisations of $\pi(\delta)=c$!

"Vertical loops"

An element of $B(W)=$ a loop around \mathcal{H}, up to homotopy.
Consider "vertical loops", i.e. for which f_{1}, \ldots, f_{n-1} remain constant. They are just loops in a punctured complex plane.

Call $\delta \in B(W)$ the simplest (clock-wise) vertical loop around $(0,0, \ldots, 0)$.

Facts:

- up to homotopy, this is also the simple vertical loop "around all \mathcal{H} ".
- its image $\pi(\delta)$ in W is a Coxeter element!
\rightsquigarrow we can break up δ into smaller parts, using the homotopy.
\rightsquigarrow factorisations of $\pi(\delta)=c$!

Bifurcation locus

Theorem (Orlik-Solomon)

If W is a real (or complex well-generated) reflection group, then the discriminant Δ_{W} is monic of degree n in the variable f_{n}.

So if we fix f_{1}, \ldots, f_{n-1}, the polynomial Δ_{W}, viewed as a
polynomial in f_{n}, has generically n distinct roots...
\ldots it has multiple roots whenever $\left(f_{1}, \ldots, f_{n-1}\right)$ is a zero of

Bifurcation locus

Theorem (Orlik-Solomon)

If W is a real (or complex well-generated) reflection group, then the discriminant Δ_{W} is monic of degree n in the variable f_{n}.

So if we fix f_{1}, \ldots, f_{n-1}, the polynomial Δ_{W}, viewed as a polynomial in f_{n}, has generically n distinct roots...
\ldots it has multiple roots whenever $\left(f_{1}, \ldots, f_{n-1}\right)$ is a zero of

Bifurcation locus

Theorem (Orlik-Solomon)

If W is a real (or complex well-generated) reflection group, then the discriminant Δ_{W} is monic of degree n in the variable f_{n}.

So if we fix f_{1}, \ldots, f_{n-1}, the polynomial Δ_{W}, viewed as a polynomial in f_{n}, has generically n distinct roots...
\ldots it has multiple roots whenever $\left(f_{1}, \ldots, f_{n-1}\right)$ is a zero of

$$
D_{W}:=\operatorname{Disc}\left(\Delta_{W}\left(f_{1}, \ldots, f_{n}\right) ; f_{n}\right) \in \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right]
$$

Bifurcation locus

Theorem (Orlik-Solomon)

If W is a real (or complex well-generated) reflection group, then the discriminant Δ_{W} is monic of degree n in the variable f_{n}.

So if we fix f_{1}, \ldots, f_{n-1}, the polynomial Δ_{W}, viewed as a polynomial in f_{n}, has generically n distinct roots...
\ldots it has multiple roots whenever $\left(f_{1}, \ldots, f_{n-1}\right)$ is a zero of

$$
D_{W}:=\operatorname{Disc}\left(\Delta_{W}\left(f_{1}, \ldots, f_{n}\right) ; f_{n}\right) \in \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right]
$$

Definition

The bifurcation locus of Δ_{W} (w.r.t. $\left.f_{n}\right)$ is the hypersurface of \mathbb{C}^{n-1} :

$$
\mathcal{K}:=\left\{D_{W}=0\right\}
$$

Bifurcation locus and geometric factorisations

$$
\mathcal{H} \subseteq W \backslash V \simeq \mathbb{C}^{3}
$$

Bifurcation locus and geometric factorisations

Geometric factorisations

$Y \simeq \mathbb{C}^{n-1}$ (with coordinates f_{1}, \ldots, f_{n-1}).
facto : $y \in Y \mapsto\left(\gamma_{1}, \ldots, \gamma_{p}\right) \in B(W)^{p} \mapsto\left(w_{1}, \ldots, w_{p}\right) \in W^{p}$
(where $\left.w_{i}=\pi\left(\gamma_{i}\right)\right)$
Facts:

Geometric factorisations

$Y \simeq \mathbb{C}^{n-1}$ (with coordinates $\left.f_{1}, \ldots, f_{n-1}\right)$.
facto : $y \in Y \mapsto\left(\gamma_{1}, \ldots, \gamma_{p}\right) \in B(W)^{p} \mapsto\left(w_{1}, \ldots, w_{p}\right) \in W^{p}$ (where $\left.w_{i}=\pi\left(\gamma_{i}\right)\right)$

Facts:

- $\gamma_{1} \ldots \gamma_{p}=\delta$ and $w_{1} \ldots w_{p}=\pi(\delta)=c$.
- If $y \in Y-\mathcal{K}$, then $p=n$ and w_{1}, \ldots, w_{n} are reflections.
- In general, $\ell_{R}\left(w_{i}\right)$ equals the multiplicity of the correponding point $\left(y, x_{i}\right)$ in the discriminant.
- $\sum_{i} \ell_{R}\left(w_{i}\right)=n$, i.e., facto (y) is always a block factorisation
- Better: the conjugacy class of w_{i} is also dictated by the geometry...

Geometric factorisations

$Y \simeq \mathbb{C}^{n-1}$ (with coordinates $\left.f_{1}, \ldots, f_{n-1}\right)$.
facto : $y \in Y \mapsto\left(\gamma_{1}, \ldots, \gamma_{p}\right) \in B(W)^{p} \mapsto\left(w_{1}, \ldots, w_{p}\right) \in W^{p}$
(where $w_{i}=\pi\left(\gamma_{i}\right)$)
Facts:

- $\gamma_{1} \ldots \gamma_{p}=\delta$ and $w_{1} \ldots w_{p}=\pi(\delta)=c$.
- If $y \in Y-\mathcal{K}$, then $p=n$ and w_{1}, \ldots, w_{n} are reflections.
- In general, $\ell_{R}\left(w_{i}\right)$ equals the multiplicity of the correponding point $\left(y, x_{i}\right)$ in the discriminant.
- $\sum_{i} \ell_{R}\left(w_{i}\right)=n$, i.e., facto (y) is always a block factorisation
- Better: the conjugacy class of w_{i} is also dictated by the geometry...

Geometric factorisations

$Y \simeq \mathbb{C}^{n-1}$ (with coordinates $\left.f_{1}, \ldots, f_{n-1}\right)$.
facto : $y \in Y \mapsto\left(\gamma_{1}, \ldots, \gamma_{p}\right) \in B(W)^{p} \mapsto\left(w_{1}, \ldots, w_{p}\right) \in W^{p}$
(where $w_{i}=\pi\left(\gamma_{i}\right)$)
Facts:

- $\gamma_{1} \ldots \gamma_{p}=\delta$ and $w_{1} \ldots w_{p}=\pi(\delta)=c$.
- If $y \in Y-\mathcal{K}$, then $p=n$ and w_{1}, \ldots, w_{n} are reflections.
- In general, $\ell_{R}\left(w_{i}\right)$ equals the multiplicity of the correponding point $\left(y, x_{i}\right)$ in the discriminant.
- Better: the conjugacy class of w_{i} is also dictated by the geometry...

Geometric factorisations

$Y \simeq \mathbb{C}^{n-1}\left(\right.$ with coordinates $\left.f_{1}, \ldots, f_{n-1}\right)$.
facto $: y \in Y \mapsto\left(\gamma_{1}, \ldots, \gamma_{p}\right) \in B(W)^{p} \mapsto\left(w_{1}, \ldots, w_{p}\right) \in W^{p}$
(where $\left.w_{i}=\pi\left(\gamma_{i}\right)\right)$
Facts:

- $\gamma_{1} \ldots \gamma_{p}=\delta$ and $w_{1} \ldots w_{p}=\pi(\delta)=c$.
- If $y \in Y-\mathcal{K}$, then $p=n$ and w_{1}, \ldots, w_{n} are reflections.
- In general, $\ell_{R}\left(w_{i}\right)$ equals the multiplicity of the correponding point $\left(y, x_{i}\right)$ in the discriminant.
- $\sum_{i} \ell_{R}\left(w_{i}\right)=n$, i.e., facto (y) is always a block factorisation of c.
- Better: the conjugacy class of w_{i} is also dictated by the geometry...

Geometric factorisations

$Y \simeq \mathbb{C}^{n-1}\left(\right.$ with coordinates $\left.f_{1}, \ldots, f_{n-1}\right)$.
facto $: y \in Y \mapsto\left(\gamma_{1}, \ldots, \gamma_{p}\right) \in B(W)^{p} \mapsto\left(w_{1}, \ldots, w_{p}\right) \in W^{p}$
(where $\left.w_{i}=\pi\left(\gamma_{i}\right)\right)$
Facts:

- $\gamma_{1} \ldots \gamma_{p}=\delta$ and $w_{1} \ldots w_{p}=\pi(\delta)=c$.
- If $y \in Y-\mathcal{K}$, then $p=n$ and w_{1}, \ldots, w_{n} are reflections.
- In general, $\ell_{R}\left(w_{i}\right)$ equals the multiplicity of the correponding point $\left(y, x_{i}\right)$ in the discriminant.
- $\sum_{i} \ell_{R}\left(w_{i}\right)=n$, i.e., facto (y) is always a block factorisation of c.
- Better: the conjugacy class of w_{i} is also dictated by the geometry...

Intersection lattice and parabolic subgroups

Stratification of V with the "flats" (intersection lattice):

$$
\begin{equation*}
\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} \tag{W}
\end{equation*}
$$

(parabolic subgps of W) (pointwise stabilizer of L)

Intersection lattice and parabolic subgroups

Stratification of V with the "flats" (intersection lattice):
$\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} \quad \xrightarrow{\sim} \quad \mathrm{PSG}(W) \quad$ (parabolic subgps of W)

Intersection lattice and parabolic subgroups

Stratification of V with the "flats" (intersection lattice):

$$
\begin{array}{clcl}
\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} & \xrightarrow{\sim} & \mathrm{PSG}(W) & \text { (parabolic subgps of } W \text {) } \\
& \mapsto & W_{L} & \text { (pointwise stabilizer of } L \text {) }
\end{array}
$$

Intersection lattice and parabolic subgroups

Stratification of V with the "flats" (intersection lattice):

$$
\begin{array}{cccc}
\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} & \xrightarrow{\sim} & \mathrm{PSG}(W) & \text { (parabolic subgps of } W \text {) } \\
& \mapsto & W_{L} & \text { (pointwise stabilizer of } L \text {) }
\end{array}
$$

- A parabolic subgroup is a reflection group [Steinberg].
- Its Coxeter elements are called parabolic Coxeter elements.

Intersection lattice and parabolic subgroups

Stratification of V with the "flats" (intersection lattice):

$$
\begin{array}{cccc}
\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} & \xrightarrow{\sim} & \mathrm{PSG}(W) & \text { (parabolic subgps of } W \text {) } \\
& \mapsto & W_{L} & \text { (pointwise stabilizer of } L \text {) }
\end{array}
$$

- A parabolic subgroup is a reflection group [Steinberg].
- Its Coxeter elements are called parabolic Coxeter elements.

Intersection lattice and parabolic subgroups

Stratification of V with the "flats" (intersection lattice):

$$
\begin{array}{cccc}
\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} & \xrightarrow{\sim} & \mathrm{PSG}(W) & \text { (parabolic subgps of } W \text {) } \\
& \mapsto & W_{L} & \text { (pointwise stabilizer of } L \text {) }
\end{array}
$$

- A parabolic subgroup is a reflection group [Steinberg].
- Its Coxeter elements are called parabolic Coxeter elements.

Intersection lattice and parabolic subgroups

Stratification of V with the "flats" (intersection lattice):

$$
\begin{array}{cccc}
\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} & \xrightarrow{\sim} & \mathrm{PSG}(W) & \text { (parabolic subgps of } W \text {) } \\
& \mapsto & W_{L} & \text { (pointwise stabilizer of } L \text {) }
\end{array}
$$

- A parabolic subgroup is a reflection group [Steinberg].
- Its Coxeter elements are called parabolic Coxeter elements.

$$
L_{0} \in \mathcal{L} \quad \leftrightarrow \quad W_{0} \in \operatorname{PSG}(W)
$$

Intersection lattice and parabolic subgroups

Stratification of V with the "flats" (intersection lattice):

$$
\begin{array}{cccc}
\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} & \xrightarrow{\sim} & \mathrm{PSG}(W) & \text { (parabolic subgps of } W \text {) } \\
& \mapsto & W_{L} & \text { (pointwise stabilizer of } L \text {) }
\end{array}
$$

- A parabolic subgroup is a reflection group [Steinberg].
- Its Coxeter elements are called parabolic Coxeter elements.
$L_{0} \in \mathcal{L} \quad \leftrightarrow \quad W_{0} \in \operatorname{PSG}(W) \quad \leftarrow \quad c_{0}$ parabolic Coxeter elt

Intersection lattice and parabolic subgroups

Stratification of V with the "flats" (intersection lattice):

$$
\begin{array}{cccc}
\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} & \xrightarrow{\sim} & \mathrm{PSG}(W) & \text { (parabolic subgps of } W \text {) } \\
& \mapsto & W_{L} & \text { (pointwise stabilizer of } L \text {) }
\end{array}
$$

- A parabolic subgroup is a reflection group [Steinberg].
- Its Coxeter elements are called parabolic Coxeter elements.

$$
\begin{array}{ccccc}
L_{0} \in \mathcal{L} & \leftrightarrow & W_{0} \in \mathrm{PSG}(W) & \leftarrow & c_{0} \text { parabolic Coxeter elt } \\
\operatorname{codim}\left(L_{0}\right) & = & \operatorname{rk}\left(W_{0}\right) & = & \ell_{R}\left(c_{0}\right)
\end{array}
$$

Strata in \mathcal{H}

Construct a stratification of V / W, image of the stratification \mathcal{L} : $\overline{\mathcal{L}}=\mathcal{L} / W=(\mathrm{p}(L))_{L \in \mathcal{L}}=(W \cdot L)_{L \in \mathcal{L}}$.

The set \bar{C} is in canonical bijection with:

Strata in \mathcal{H}

Construct a stratification of V / W, image of the stratification \mathcal{L} : $\overline{\mathcal{L}}=\mathcal{L} / W=(\mathrm{p}(L))_{L \in \mathcal{L}}=(W \cdot L)_{L \in \mathcal{L}}$.
$\mathcal{L} \quad \leftrightarrow \quad\{$ parabolic subgroups of $W\}$

Strata in \mathcal{H}

Construct a stratification of V / W, image of the stratification \mathcal{L} :

$$
\begin{aligned}
\overline{\mathcal{L}}=\mathcal{L} / W= & (\mathrm{p}(L))_{L \in \mathcal{L}}=(W \cdot L)_{L \in \mathcal{L}} . \\
\overline{\mathcal{L}} & \leftrightarrow \operatorname{PSG}(W) / \text { conj. }
\end{aligned}
$$

\square

Strata in \mathcal{H}

Construct a stratification of V / W, image of the stratification \mathcal{L} :

$$
\overline{\mathcal{L}}=\mathcal{L} / W=(\mathrm{p}(L))_{L \in \mathcal{L}}=(W \cdot L)_{L \in \mathcal{L}} .
$$

$\overline{\mathcal{L}} \quad \leftrightarrow \quad \mathrm{PSG}(W) /$ conj. $\leftrightarrow \quad$ \{parab. Coxeter elts $\} /$ conj.

Proposition
The set $\overline{\mathcal{C}}$ is in canonical bijection with:

Strata in \mathcal{H}

Construct a stratification of V / W, image of the stratification \mathcal{L} :

$$
\overline{\mathcal{L}}=\mathcal{L} / W=(\mathrm{p}(L))_{L \in \mathcal{L}}=(W \cdot L)_{L \in \mathcal{L}} .
$$

$\overline{\mathcal{L}} \quad \leftrightarrow \quad \mathrm{PSG}(W) /$ conj. $\leftrightarrow \quad$ \{parab. Coxeter elts $\} /$ conj.

$$
\operatorname{codim}(\Lambda)=\operatorname{rank}\left(W_{\Lambda}\right) \quad=\quad \ell_{R}\left(w_{\Lambda}\right)
$$

The set $\overline{\mathcal{L}}$ is in canonical bijection with:

Strata in \mathcal{H}

Construct a stratification of V / W, image of the stratification \mathcal{L} :

$$
\overline{\mathcal{L}}=\mathcal{L} / W=(p(L))_{L \in \mathcal{L}}=(W \cdot L)_{L \in \mathcal{L}} .
$$

$\overline{\mathcal{L}} \quad \leftrightarrow \quad \operatorname{PSG}(W) /$ conj. $\quad \leftrightarrow \quad$ \{parab. Coxeter elts $\} /$ conj.
$\operatorname{codim}(\Lambda)=\operatorname{rank}\left(W_{\Lambda}\right)=\ell_{R}\left(w_{\Lambda}\right)$

Proposition

The set $\overline{\mathcal{L}}$ is in canonical bijection with:

- the set of conjugacy classes of parabolic subgroups of W;
- the set of conjugacy classes of parabolic Coxeter
- the set of conjugacy classes of elements of NC(W).

Strata in \mathcal{H}

Construct a stratification of V / W, image of the stratification \mathcal{L} :

$$
\overline{\mathcal{L}}=\mathcal{L} / W=(p(L))_{L \in \mathcal{L}}=(W \cdot L)_{L \in \mathcal{L}} .
$$

$\overline{\mathcal{L}} \quad \leftrightarrow \quad \operatorname{PSG}(W) /$ conj. $\quad \leftrightarrow \quad$ \{parab. Coxeter elts $\} /$ conj.
$\operatorname{codim}(\Lambda)=\operatorname{rank}\left(W_{\Lambda}\right)=\ell_{R}\left(w_{\Lambda}\right)$

Proposition

The set $\overline{\mathcal{L}}$ is in canonical bijection with:

- the set of conjugacy classes of parabolic subgroups of W;
- the set of conjugacy classes of parabolic Coxeter elements;

Strata in \mathcal{H}

Construct a stratification of V / W, image of the stratification \mathcal{L} :

$$
\overline{\mathcal{L}}=\mathcal{L} / W=(p(L))_{L \in \mathcal{L}}=(W \cdot L)_{L \in \mathcal{L}} .
$$

$\overline{\mathcal{L}} \quad \leftrightarrow \quad \operatorname{PSG}(W) /$ conj. $\quad \leftrightarrow \quad$ \{parab. Coxeter elts $\} /$ conj.
$\operatorname{codim}(\Lambda)=\operatorname{rank}\left(W_{\Lambda}\right)=\ell_{R}\left(w_{\Lambda}\right)$

Proposition

The set $\overline{\mathcal{L}}$ is in canonical bijection with:

- the set of conjugacy classes of parabolic subgroups of W;
- the set of conjugacy classes of parabolic Coxeter elements;
- the set of conjugacy classes of elements of $\mathrm{NC}(W)$.

Example of $W=A_{3}$: stratification of the discriminant

 $\bigcup H \subseteq V$$H \in \mathcal{A}$

Example of $W=A_{3}$: stratification of the discriminant

 $\bigcup H \subseteq V$$H \in \mathcal{A}$

Example of $W=A_{3}$: stratification of the discriminant

 $\bigcup H \subseteq V$ ${ }^{H \in \mathcal{A}} / / W$
Example of $W=A_{3}$: stratification of the discriminant

Conjugacy classes of factors

For any factor w_{i} in some facto (y) :

- w_{i} is a parabolic Coxeter element;
- its conjugacy class corresponds (via bijection above) to the minimal stratum of $\overline{\mathcal{L}}$ in which lies the corresponding point $\left(y, x_{i}\right)$.

Outline

```
(1) Combinatorics of the noncrossing partition lattice
- The noncrossing partition lattice of a reflection group
- Chains and Fuß-Catalan numbers
- Factorisations of a Coxeter element
(2) Geometry of the hyperplane arrangement and of the
discriminant
- Discriminant and braid group
- Geometric factorisations
- Stratification and parabolic Coxeter elements
```

(3) Lyashko-Looijenga covering and geometric factorisations

- The Lyashko-Looijenga covering
- Enumeration of maximal factorisations
- Enumeration of submaximal factorisations

Lyashko-Looijenga morphism

Lyashko-Looijenga morphism

Properties of the Lyashko-Looijenga morphism

Definition
LL: $Y \rightarrow E_{n}:=\{$ multisets of n points in $\mathbb{C}\}$
$y \mapsto$ \{roots, with multiplicities, of $\Delta_{W}\left(y, f_{n}\right)$ in $\left.f_{n}\right\}$
$\Delta_{W}=f_{n}^{n}+a_{2} f_{n}^{n-2}+a_{3} f_{n}^{n-3}+\cdots+a_{n-1} f_{n}+a_{n}$.

Properties of the Lyashko-Looijenga morphism

Definition
LL: $Y \rightarrow E_{n}:=\{$ multisets of n points in $\mathbb{C}\}$
$y \mapsto$ \{roots, with multiplicities, of $\Delta_{W}\left(y, f_{n}\right)$ in $\left.f_{n}\right\}$
$\Delta_{W}=f_{n}^{n}+a_{2} f_{n}^{n-2}+a_{3} f_{n}^{n-3}+\cdots+a_{n-1} f_{n}+a_{n}$.
Definition (LL as an algebraic (homogeneous) morphism)

$$
\begin{aligned}
& \text { LL: } \quad \mathbb{C}^{n-1} \quad \rightarrow \quad \mathbb{C}^{n-1} \\
& \left(f_{1}, \ldots, f_{n-1}\right) \mapsto\left(a_{2}, \ldots, a_{n}\right)
\end{aligned}
$$

Proposition (Bessis)
$\mathrm{LL}: Y-\mathcal{K} \rightarrow E_{n}^{\text {reg }}$ is a topological covering, of degree

Properties of the Lyashko-Looijenga morphism

Definition

LL: $Y \rightarrow E_{n}:=\{$ multisets of n points in $\mathbb{C}\}$
$y \mapsto$ \{roots, with multiplicities, of $\Delta_{W}\left(y, f_{n}\right)$ in $\left.f_{n}\right\}$
$\Delta_{W}=f_{n}^{n}+a_{2} f_{n}^{n-2}+a_{3} f_{n}^{f-3}+\cdots+a_{n-1} f_{n}+a_{n}$.
Definition (LL as an algebraic (homogeneous) morphism)

$$
\begin{aligned}
& \text { LL: } \quad \mathbb{C}^{n-1} \quad \rightarrow \quad \mathbb{C}^{n-1} \\
& \left(f_{1}, \ldots, f_{n-1}\right) \mapsto\left(a_{2}, \ldots, a_{n}\right)
\end{aligned}
$$

Proposition (Bessis)

$\mathrm{LL}: Y-\mathcal{K} \rightarrow E_{n}^{\text {reg }}$ is a topological covering, of degree

$$
\frac{2 h \cdot 3 h \ldots n h}{d_{1} \ldots d_{n-1}}=\frac{n!h^{n}}{|W|}
$$

Properties of the Lyashko-Looijenga morphism

Definition

LL: $Y \rightarrow E_{n}:=\{$ multisets of n points in $\mathbb{C}\}$
$y \mapsto$ \{roots, with multiplicities, of $\Delta_{W}\left(y, f_{n}\right)$ in $\left.f_{n}\right\}$
$\Delta_{W}=f_{n}^{n}+a_{2} f_{n}^{n-2}+a_{3} f_{n}^{f-3}+\cdots+a_{n-1} f_{n}+a_{n}$.
Definition (LL as an algebraic (homogeneous) morphism)

$$
\begin{aligned}
& \text { LL: } \quad \mathbb{C}^{n-1} \quad \rightarrow \quad \mathbb{C}^{n-1} \\
& \left(f_{1}, \ldots, f_{n-1}\right) \mapsto\left(a_{2}, \ldots, a_{n}\right)
\end{aligned}
$$

Proposition (Bessis)

$\mathrm{LL}: Y-\mathcal{K} \rightarrow E_{n}^{\text {reg }}$ is a topological covering, of degree

$$
\frac{2 h \cdot 3 h \ldots n h}{d_{1} \ldots d_{n-1}}=\frac{n!h^{n}}{|W|}
$$

Fibers of LL and block factorisations of c

Note: for $y \in Y, \operatorname{LL}(y)$ and facto (y) have necessarily the same associated composition of n.

Theorem (Bessis '07)
The product map:

is injective, and is a bijection onto the set of "compatible" pairs.
Equivalently, for $\omega \in E_{n}$, the map facto induces a bijection between the fiber $L^{-1}(\omega)$ and the set of block factorisations of same "composition" as ω.
\rightsquigarrow a way to compute cardinalities of sets of factorisations using algebraic properties of LL.

Fibers of LL and block factorisations of c

Note: for $y \in Y, \operatorname{LL}(y)$ and facto (y) have necessarily the same associated composition of n.

Theorem (Bessis '07)
The product map:

$$
Y \xrightarrow{\mathrm{LL} \times \text { facto }} E_{n} \times \mathrm{FACT}(c)
$$

is injective, and is a bijection onto the set of "compatible" pairs.
\square
\rightsquigarrow a way to compute cardinalities of sets of factorisations using algebraic properties of LL.

Fibers of LL and block factorisations of c

Note: for $y \in Y, \operatorname{LL}(y)$ and facto (y) have necessarily the same associated composition of n.

Theorem (Bessis '07)
The product map:

$$
Y \xrightarrow{\mathrm{LL} \times \text { facto }} E_{n} \times \mathrm{FACT}(c)
$$

is injective, and is a bijection onto the set of "compatible" pairs.
Equivalently, for $\omega \in E_{n}$, the map facto induces a bijection between the fiber $\mathrm{LL}^{-1}(\omega)$ and the set of block factorisations of same "composition" as ω.

Fibers of LL and block factorisations of c

Note: for $y \in Y, \operatorname{LL}(y)$ and facto (y) have necessarily the same associated composition of n.

Theorem (Bessis '07)
The product map:

$$
Y \xrightarrow{\mathrm{LL} \times \text { facto }} E_{n} \times \mathrm{FACT}(c)
$$

is injective, and is a bijection onto the set of "compatible" pairs.
Equivalently, for $\omega \in E_{n}$, the map facto induces a bijection between the fiber $\mathrm{LL}^{-1}(\omega)$ and the set of block factorisations of same "composition" as ω.
\rightsquigarrow a way to compute cardinalities of sets of factorisations using algebraic properties of LL.

Maximal factorisations of a Coxeter element

(a.k.a reduced decompositions of c)

Corollary

| $\mathrm{FACT}_{n}(\mathrm{c}) \mid$ equals the cardinality of a generic (regular) fiber of LL, i.e.,

$$
\left|\operatorname{FACT}_{n}(c)\right|=\frac{n!h^{n}}{|W|}
$$

Strata of codimension 2

Strata of codimension 2

Strata of codimension 2

Submaximal factorisations of type \wedge

$$
\begin{aligned}
\overline{\mathcal{L}}_{2} & :=\{\text { strata of } \overline{\mathcal{L}} \text { of codimension } 2\} \\
& \leftrightarrow \text { \{conjugacy classes of elements of } \mathrm{NC}(W) \text { of length } 2\}
\end{aligned}
$$

Submaximal factorisations of type \wedge

$\overline{\mathcal{L}}_{2}:=\{$ strata of $\overline{\mathcal{L}}$ of codimension 2$\}$
$\leftrightarrow \quad$ \{conjugacy classes of elements of $\mathrm{NC}(W)$ of length 2$\}$

Proposition

The $\varphi(\Lambda)$, for $\Lambda \in \overline{\mathcal{L}}_{2}$, are the irreducible components of \mathcal{K}.

Submaximal factorisations of type \wedge

$\overline{\mathcal{L}}_{2}:=\{$ strata of $\overline{\mathcal{L}}$ of codimension 2$\}$
$\leftrightarrow \quad$ \{conjugacy classes of elements of $N C(W)$ of length 2$\}$

Proposition

The $\varphi(\Lambda)$, for $\Lambda \in \overline{\mathcal{L}}_{2}$, are the irreducible components of \mathcal{K}.
\rightsquigarrow we can write $D_{W}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$, where $r_{\Lambda} \geq 1$ and the D_{Λ} are polynomials in f_{1}, \ldots, f_{n-1}.

For $\Lambda \in \overline{\mathcal{L}}_{2}$, the number of submaximal factorisations of c of type \wedge (i.e. , whose unique length 2 element lies in the conjugacy class Λ) is:

Submaximal factorisations of type \wedge

$$
\begin{aligned}
\overline{\mathcal{L}}_{2} & :=\{\text { strata of } \overline{\mathcal{L}} \text { of codimension } 2\} \\
& \leftrightarrow \text { \{conjugacy classes of elements of } \mathrm{NC}(W) \text { of length } 2\}
\end{aligned}
$$

Proposition

The $\varphi(\Lambda)$, for $\Lambda \in \overline{\mathcal{L}}_{2}$, are the irreducible components of \mathcal{K}.
\rightsquigarrow we can write $D_{W}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$, where $r_{\Lambda} \geq 1$ and the D_{Λ} are polynomials in f_{1}, \ldots, f_{n-1}.

Theorem (R.)

For $\Lambda \in \overline{\mathcal{L}}_{2}$, the number of submaximal factorisations of c of type \wedge (i.e. , whose unique length 2 element lies in the conjugacy class Λ) is:

$$
\left|\operatorname{FACT}_{n-1}^{\wedge}(c)\right|=\frac{(n-1)!h^{n-1}}{|W|} \operatorname{deg} D_{\wedge} .
$$

Submaximal factorisations of a Coxeter element

How to compute uniformly $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}} \operatorname{deg} D_{\Lambda}$?

Corollary
The number of block factorisations of a Coxeter element c in $n-1$ factors is:

Submaximal factorisations of a Coxeter element

How to compute uniformly $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}} \operatorname{deg} D_{\Lambda}$?

- Recall that $D_{W}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.
- We found an interpretation of $\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}-1}$, as the Jacobian J of the morphism LL.
- Compute dea J, and then $\sum_{\wedge} \operatorname{deg} D_{\wedge}=\operatorname{deg} D_{W}-\operatorname{deg} J$.

The number of block factorisations of a Coxeter element c in $n-1$ factors is:

Submaximal factorisations of a Coxeter element

How to compute uniformly $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}} \operatorname{deg} D_{\Lambda}$?

- Recall that $D_{W}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.
- We found an interpretation of $\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}-1}$, as the Jacobian J of the morphism LL.

The number of block factorisations of a Coxeter element c in $n-1$ factors is:

Submaximal factorisations of a Coxeter element

How to compute uniformly $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}} \operatorname{deg} D_{\Lambda}$?

- Recall that $D_{W}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.
- We found an interpretation of $\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}-1}$, as the Jacobian J of the morphism LL.
- Compute $\operatorname{deg} J$, and then $\sum_{\Lambda} \operatorname{deg} D_{\Lambda}=\operatorname{deg} D_{W}-\operatorname{deg} J$.

The number of block factorisations of a Coxeter element c in $n-1$ factors is:

Submaximal factorisations of a Coxeter element

How to compute uniformly $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}} \operatorname{deg} D_{\Lambda}$?

- Recall that $D_{W}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.
- We found an interpretation of $\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r-1}$, as the Jacobian J of the morphism LL.
- Compute $\operatorname{deg} J$, and then $\sum_{\wedge} \operatorname{deg} D_{\wedge}=\operatorname{deg} D_{W}-\operatorname{deg} J$.

Corollary

The number of block factorisations of a Coxeter element c in $n-1$ factors is:

$$
\left|\operatorname{FACT}_{n-1}(c)\right|=\frac{(n-1)!h^{n-1}}{|W|}\left(\frac{(n-1)(n-2)}{2} h+\sum_{i=1}^{n-1} d_{i}\right) .
$$

Danke schön!

References:

- D. Bessis, Finite complex reflection arrangements are $K(\pi, 1)$, (2006).
- V. Ripoll, Orbites d'Hurwitz des factorisations primitives d'un élément de Coxeter, J. Alg. (2010).
- V. Ripoll, Lyashko-Looijenga morphisms and submaximal factorisations of a Coxeter element, J. Algebraic Combin. (2012).

