Limit points of root systems of infinite Coxeter groups

Vivien RIPOLL

Workshop *Combin'à Tours* Tours, 3 juillet 2013

(ロ) (同) (三) (三) (三) (○) (○)

From joint works with

- Matthew Dyer (University of Notre Dame)
- Christophe Hohlweg (UQÀM)
- Jean-Philippe Labbé (FU Berlin)

- root system Φ : set of vectors encoding the reflections of a Coxeter group
- General property : $\Phi = \Phi^+ \sqcup (-\Phi^+),$ where $\Phi^+ \subseteq \text{cone}(\Delta),$ Δ simple roots.
- Get a projective version of Φ by constructing normalized roots in a cutting hyperplane H.
- draw examples, get amazing pictures, try to understand

・ロット (雪) (日) (日) (日)

- root system Φ : set of vectors encoding the reflections of a Coxeter group
- General property : $\Phi = \Phi^+ \sqcup (-\Phi^+),$ where $\Phi^+ \subseteq \text{cone}(\Delta),$ Δ simple roots.
- Get a projective version of Φ by constructing normalized roots in a cutting hyperplane H.
- draw examples, get amazing pictures, try to understand

・ロット (雪) (日) (日) (日)

- root system Φ : set of vectors encoding the reflections of a Coxeter group
- General property : $\Phi = \Phi^+ \sqcup (-\Phi^+),$ where $\Phi^+ \subseteq \text{cone}(\Delta),$ Δ simple roots.
- Get a projective version of Φ by constructing normalized roots in a cutting hyperplane *H*.

 draw examples, get amazing pictures, try to understand

(ロ) (同) (三) (三) (三) (○) (○)

- root system Φ : set of vectors encoding the reflections of a Coxeter group
- General property : $\Phi = \Phi^+ \sqcup (-\Phi^+),$ where $\Phi^+ \subseteq \text{cone}(\Delta),$ Δ simple roots.
- Get a projective version of Φ by constructing normalized roots in a cutting hyperplane H.

 draw examples, get amazing pictures, try to understand

(ロ) (同) (三) (三) (三) (○) (○)

- root system Φ : set of vectors encoding the reflections of a Coxeter group
- General property : $\Phi = \Phi^+ \sqcup (-\Phi^+),$ where $\Phi^+ \subseteq \text{cone}(\Delta),$ Δ simple roots.
- Get a projective version of Φ by constructing normalized roots in a cutting hyperplane H.
- draw examples, get amazing pictures, try to understand

・ コット (雪) (小田) (コット 日)

Outline

Action of W on the limit roots : faithfulness, density of the orbits

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Action of W on the limit roots : faithfulness, density of the orbits

3 Fractal description of the limit roots, and the hyperbolic case

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- V: a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B):

- 1. Start with a simple system Δ :
 - Δ is a basis for V;

•
$$\forall \alpha \in \Delta, B(\alpha, \alpha) = 1;$$

• $\forall \alpha \neq \beta \in \Delta$:

• either $B(\alpha, \beta) = -\cos\left(\frac{\pi}{m}\right)$ for some $m \in \mathbb{Z}_{\geq 2}$,

• or $B(\alpha, \beta) \leq -1$.

- V: a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B):

- 1. Start with a simple system Δ :
 - Δ is a basis for V;

•
$$\forall \alpha \in \Delta, B(\alpha, \alpha) = 1;$$

- $\forall \alpha \neq \beta \in \Delta$:
 - either $B(lpha,eta)=-\cos\left(rac{\pi}{m}
 ight)$ for some $m\in\mathbb{Z}_{\geq2}$,

(日) (日) (日) (日) (日) (日) (日)

• or $B(\alpha,\beta) \leq -1$.

2. For each $\alpha \in \Delta$, define the *B*-reflection s_{α} :

$$egin{array}{rcl} m{s}_lpha: & m{V} & o & m{V} \ & m{v} & \mapsto & m{v} - m{2B}(lpha,m{v}) \ lpha. \end{array}$$

Check: $s_{\alpha}(\alpha) = -\alpha$, and s_{α} fixes pointwise α^{\perp} . Notation: $S = \{s_{\alpha}, \alpha \in \Delta\}$.

3. Construct the *B*-reflection group $W := \langle S \rangle$.

4. Act by W on Δ to construct the based root system

 $\Phi := W(\Delta)$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Note: if $\rho = w(\alpha)$ (with $\alpha \in \Delta$), $ws_{\alpha}w^{-1}$ is the *B*-reflection associated to the root ρ .

2. For each $\alpha \in \Delta$, define the *B*-reflection s_{α} :

$$egin{array}{rcl} m{s}_lpha: & m{V} & o & m{V} \ & m{v} & \mapsto & m{v} - m{2B}(lpha,m{v}) \ lpha. \end{array}$$

Check: $s_{\alpha}(\alpha) = -\alpha$, and s_{α} fixes pointwise α^{\perp} . Notation: $S = \{s_{\alpha}, \alpha \in \Delta\}$.

3. Construct the *B*-reflection group $W := \langle S \rangle$.

4. Act by W on Δ to construct the based root system

 $\Phi := W(\Delta)$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Note: if $\rho = w(\alpha)$ (with $\alpha \in \Delta$), $ws_{\alpha}w^{-1}$ is the *B*-reflection associated to the root ρ .

2. For each $\alpha \in \Delta$, define the *B*-reflection s_{α} :

$$egin{array}{rcl} m{s}_lpha: & m{V} & o & m{V} \ & m{v} & \mapsto & m{v} - m{2B}(lpha,m{v}) \ lpha. \end{array}$$

Check: $s_{\alpha}(\alpha) = -\alpha$, and s_{α} fixes pointwise α^{\perp} . Notation: $S = \{s_{\alpha}, \alpha \in \Delta\}$.

- 3. Construct the *B*-reflection group $W := \langle S \rangle$.
- 4. Act by W on Δ to construct the based root system

 $\Phi := W(\Delta) .$

Note: if $\rho = w(\alpha)$ (with $\alpha \in \Delta$), $ws_{\alpha}w^{-1}$ is the *B*-reflection associated to the root ρ .

Proposition • (W, S) is a Coxeter system, with Coxeter presentation: $W = \left\langle S \mid s^2 = 1 \; (\forall s \in S); \; (st)^{m_{s,t}} = 1 \; (\forall s \neq t \in S) \right\rangle,$ where $m_{s_{\alpha},s_{\beta}} = \begin{cases} m & \text{if } B(\alpha,\beta) = -\cos(\pi/m), \\ \infty & \text{if } B(\alpha,\beta) \leq -1. \end{cases}$ • Let $\Phi^+ := \Phi \cap \operatorname{cone}(\Delta).$ Then: $\Phi = \Phi^+ \sqcup (-\Phi^+).$

Proposition

• (W, S) is a Coxeter system, with Coxeter presentation:

$$W = \left\langle S \mid s^2 = 1 \; (\forall s \in S); \; (st)^{m_{s,t}} = 1 \; (\forall s \neq t \in S) \right\rangle,$$

where
$$m_{\mathbf{s}_{\alpha},\mathbf{s}_{\beta}} = \begin{cases} m & \text{if } B(\alpha,\beta) = -\cos(\pi/m), \\ \infty & \text{if } B(\alpha,\beta) < -1. \end{cases}$$

• Let $\Phi^+ := \Phi \cap \operatorname{cone}(\Delta)$. Then: $\Phi = \Phi^+ \sqcup (-\Phi^+)$.

Proposition

• (W, S) is a Coxeter system, with Coxeter presentation:

$$W = \left\langle S \mid s^2 = 1 \; (\forall s \in S); \; (st)^{m_{s,t}} = 1 \; (\forall s \neq t \in S) \right\rangle,$$

where
$$m_{\mathbf{s}_{\alpha},\mathbf{s}_{\beta}} = \begin{cases} m & \text{if } B(\alpha,\beta) = -\cos(\pi/m), \\ \infty & \text{if } B(\alpha,\beta) < -1. \end{cases}$$

• Let $\Phi^+ := \Phi \cap \operatorname{cone}(\Delta)$. Then: $\Phi = \Phi^+ \sqcup (-\Phi^+)$.

Proposition

• (W, S) is a Coxeter system, with Coxeter presentation:

$$W = \left\langle S \mid s^2 = 1 \; (\forall s \in S); \; (st)^{m_{s,t}} = 1 \; (\forall s \neq t \in S) \right\rangle,$$

where
$$m_{\mathbf{s}_{\alpha},\mathbf{s}_{\beta}} = \begin{cases} m & \text{if } B(\alpha,\beta) = -\cos(\pi/m), \\ \infty & \text{if } B(\alpha,\beta) < -1. \end{cases}$$

• Let $\Phi^+ := \Phi \cap \operatorname{cone}(\Delta)$. Then: $\Phi = \Phi^+ \sqcup (-\Phi^+)$.

Infinite root systems

For finite root systems: Φ is finite \Leftrightarrow *W* is finite (\Leftrightarrow *B* is positive definite).

Example:
$$W = I_2(5)$$
,
 $|\Phi| = 10$, $\overbrace{s_{\alpha} \quad s_{\beta}}^{5}$

What does an infinite root system look like?

Simplest example, in rank 2:

$$\mathbf{S}_{\alpha} \mathbf{S}_{\beta}$$

Matrix of *B* in the basis
$$(\alpha, \beta)$$
: $\begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix}$

Infinite root systems

For finite root systems: Φ is finite \Leftrightarrow *W* is finite (\Leftrightarrow *B* is positive definite).

Example:
$$W = I_2(5)$$
,
 $|\Phi| = 10$, $\overbrace{s_{\alpha} \quad s_{\beta}}^{5}$

What does an infinite root system look like?

Simplest example, in rank 2:

$$\mathbf{s}_{\alpha} \mathbf{s}_{\beta}$$
 Mat

Matrix of *B* in the basis
$$(\alpha, \beta)$$
: $\begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix}$.

Infinite dihedral group, case $B(\alpha, \beta) = -1$

Observations

- The **norms** of the roots tend to ∞ ;
- The **directions** of the roots tend to the direction of the isotropic cone *Q* of *B*:

$$\boldsymbol{Q}:=\{\boldsymbol{v}\in\boldsymbol{V},\;\boldsymbol{B}(\boldsymbol{v},\boldsymbol{v})=\boldsymbol{0}\}.$$

(in the example the equation is $v_{\alpha}^2 + v_{\beta}^2 - 2v_{\alpha}v_{\beta} = 0$, and $Q = \text{span}(\alpha + \beta)$.)

What if $B(\alpha, \beta) < -1$?

• Matrix of B: $\begin{bmatrix} 1 & \kappa \\ \kappa & 1 \end{bmatrix}$ with $\kappa < -1$. We write $\mathbf{e}_{\mathbf{x}} \underbrace{\mathbf{e}_{\alpha}}_{\mathbf{x}} \mathbf{e}_{\beta}$

What if $B(\alpha, \beta) < -1$? • Matrix of $B: \begin{bmatrix} 1 & \kappa \\ \kappa & 1 \end{bmatrix}$ with $\kappa < -1$. We write $\begin{array}{c} \infty(\kappa) \\ \bullet \\ s_{\alpha} & \bullet \\ s_{\beta} \end{array}$

What if $B(\alpha, \beta) < -1$?

• Matrix of *B*:
$$\begin{bmatrix} 1 & \kappa \\ \kappa & 1 \end{bmatrix}$$
 with $\kappa < -1$. We write $\begin{array}{c} \bullet \\ \bullet \\ s_{\alpha} \\ s_{\beta} \end{array}$

What if $B(\alpha, \beta) < -1$?

• Matrix of *B*:
$$\begin{bmatrix} 1 & \kappa \\ \kappa & 1 \end{bmatrix}$$
 with $\kappa < -1$. We write $\begin{array}{c} \bullet \\ \bullet \\ s_{\alpha} \\ s_{\beta} \end{array}$

"Normalization" of the roots

Cut the directions of the roots with an affine hyperplane \rightsquigarrow get a picture for the projective version of Φ .

Normalized roots in rank 2

Limit roots and isotropic cone

Theorem (Hohlweg-Labbé-R. '11)

Let Φ be an infinite root system, Q its isotropic cone, and $(\rho_n)_{n \in \mathbb{N}}$ an injective sequence in Φ . Then:

- $||\rho_n||$ tends to ∞ (for any norm on V);
- if the sequence of normalized root (p̂_n)_{n∈ℕ} has a limit ℓ, then

 $\ell \in \widehat{Q} \cap \operatorname{conv}(\Delta).$

See also:

- [Kac 90] for Weyl groups of Kac-Moody algebras,
- generalized by [Dyer '12] (work on the imaginary cone of a Coxeter group).

 \rightsquigarrow **Problem:** understand the set of possible limits, i.e., the accumulation points of $\widehat{\Phi}$:

$$E(\Phi) := \operatorname{Acc}\left(\widehat{\Phi}\right) \qquad (\text{``limit roots''}).$$

Limit roots and isotropic cone

Theorem (Hohlweg-Labbé-R. '11)

Let Φ be an infinite root system, Q its isotropic cone, and $(\rho_n)_{n \in \mathbb{N}}$ an injective sequence in Φ . Then:

- $||\rho_n||$ tends to ∞ (for any norm on V);
- if the sequence of normalized root (p̂_n)_{n∈ℕ} has a limit ℓ, then

 $\ell \in \widehat{Q} \cap \operatorname{conv}(\Delta).$

See also:

- [Kac 90] for Weyl groups of Kac-Moody algebras,
- generalized by [Dyer '12] (work on the imaginary cone of a Coxeter group).

 \rightsquigarrow **Problem:** understand the set of possible limits, i.e., the accumulation points of $\widehat{\Phi}$:

$$E(\Phi) := \operatorname{Acc}\left(\widehat{\Phi}\right) \qquad (\text{``limit roots''}).$$

Limit roots and isotropic cone

Theorem (Hohlweg-Labbé-R. '11)

Let Φ be an infinite root system, Q its isotropic cone, and $(\rho_n)_{n \in \mathbb{N}}$ an injective sequence in Φ . Then:

- $||\rho_n||$ tends to ∞ (for any norm on V);
- if the sequence of normalized root (p̂_n)_{n∈ℕ} has a limit ℓ, then

 $\ell \in \widehat{Q} \cap \operatorname{conv}(\Delta).$

See also:

- [Kac 90] for Weyl groups of Kac-Moody algebras,
- generalized by [Dyer '12] (work on the imaginary cone of a Coxeter group).
- → **Problem:** understand the set of possible limits, i.e., the accumulation points of $\widehat{\Phi}$:

$$E(\Phi) := \operatorname{Acc}\left(\widehat{\Phi}\right)$$
 ("limit roots").

Zoology of root systems and limit roots

- Φ finite (*W* finite Coxeter group) : *B* positive definite, $\hat{Q} = \emptyset$, $E = \emptyset$.
- • of affine type :

B positive. Actually sgn B = (n - 1, 0) if Φ irreducible. \widehat{Q} is a singleton, $\underline{E} = \widehat{Q}$.

- otherwise: Φ of indefinite type
 - particular case : weakly hyperbolic type, sgn B = (n - 1, 1).
 Q is a sphere (if we choose well the cutting hyperplane). E is pretty and well understood.
 - other cases : still work to do!

Examples in rank 3: finite group, sgn B = (3, 0). (H_3)

Examples in rank 3: affine type, sgn B = (2,0) (\widetilde{G}_2)

Examples in rank 3: affine type, sgn B = (2,0) (\widetilde{G}_2)

Examples in rank 3: case sgn B = (2, 1)

Examples in rank 3: case sgn B = (2, 1)

Examples in rank 4

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Examples in rank 4

Dihedral limit roots

Fix 2 roots ρ_1, ρ_2 in $\Phi^+ \rightsquigarrow$ get a reflection subgroup of rank 2 of W, and a root subsystem Φ' .

- $\widehat{\Phi}'$ lives in the line $L(\widehat{\rho_1}, \widehat{\rho_2})$;
- the isotropic cone of Φ' is $Q \cap \text{Vect}(\rho_1, \rho_2)$;
- \rightsquigarrow we can construct limit roots of $\Phi' : E(\Phi') = Q \cap L(\hat{\rho_1}, \hat{\rho_2})$ (0,1 or 2 points).

Outline

Root system, limit roots and isotropic cone

Action of W on the limit roots : faithfulness, density of the orbits

3 Fractal description of the limit roots, and the hyperbolic case

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Geometric action of W on a part of $V_1: w \cdot v := w(v)$. Defined on $D = V_1 \cap \bigcap_{w \in W} w(V \setminus V_0)$, where $V_0 = V_1$.

Proposition

- $E(\Phi) \subseteq D$ and $E(\Phi)$ is stable under the action of W.
- For $\alpha \in \Phi$ and $x \in E$, $\widehat{Q} \cap L(\widehat{\alpha}, x) = \{x, s_{\alpha} \cdot x\}$.

Geometric action of W on a part of $V_1: w \cdot v := w(v)$. Defined on $D = V_1 \cap \bigcap_{w \in W} w(V \setminus V_0)$, where $V_0 = V_1$.

Proposition

- $E(\Phi) \subseteq D$ and $E(\Phi)$ is stable under the action of W.
- For $\alpha \in \Phi$ and $x \in E$, $\widehat{Q} \cap L(\widehat{\alpha}, x) = \{x, s_{\alpha} \cdot x\}$.

Theorem (Dyer-Hohlweg-R. '12)

If W is infinite, non-affine and irreducible, then the action of W on E is faithful.

- we prove that E is not contained in a finite union of affine subspaces of V₁.
- we use the link with the imaginary cone of Φ studied by Dyer.

(日) (日) (日) (日) (日) (日) (日)

Geometric action of W on a part of $V_1: w \cdot v := w(v)$. Defined on $D = V_1 \cap \bigcap_{w \in W} w(V \setminus V_0)$, where $V_0 = V_1$.

Proposition

- $E(\Phi) \subseteq D$ and $E(\Phi)$ is stable under the action of W.
- For $\alpha \in \Phi$ and $x \in E$, $\widehat{Q} \cap L(\widehat{\alpha}, x) = \{x, s_{\alpha} \cdot x\}$.

Theorem (Dyer-Hohlweg-R. '12)

If W is infinite, non-affine and irreducible, then the action of W on E is faithful.

- we prove that *E* is not contained in a finite union of affine subspaces of *V*₁.
- we use the link with the imaginary cone of Φ studied by Dyer.

(日) (日) (日) (日) (日) (日) (日)

Geometric action of W on a part of $V_1: w \cdot v := w(v)$. Defined on $D = V_1 \cap \bigcap_{w \in W} w(V \setminus V_0)$, where $V_0 = V_1$.

Proposition

- $E(\Phi) \subseteq D$ and $E(\Phi)$ is stable under the action of W.
- For $\alpha \in \Phi$ and $x \in E$, $\widehat{Q} \cap L(\widehat{\alpha}, x) = \{x, s_{\alpha} \cdot x\}$.

Theorem (Dyer-Hohlweg-R. '12)

If W is infinite, non-affine and irreducible, then the action of W on E is faithful.

- we prove that *E* is not contained in a finite union of affine subspaces of *V*₁.
- we use the link with the imaginary cone of Φ studied by Dyer.

Convex hull of E and imaginary cone

Definition (Kac, Hée, Dyer...)

•
$$\mathcal{K} := \{ \mathbf{v} \in \mathsf{cone}(\Delta) \mid \forall \alpha \in \Delta, \mathbf{B}(\alpha, \mathbf{v}) \leq \mathbf{0} \}$$

the imaginary cone Z of Φ is the W-orbit of K :
 Z := W(K).

Convex hull of E and imaginary cone

Definition (Kac, Hée, Dyer...)

•
$$\mathcal{K} := \{ \mathbf{v} \in \mathsf{cone}(\Delta) \mid \forall \alpha \in \Delta, \mathbf{B}(\alpha, \mathbf{v}) \leq \mathbf{0} \}$$

the imaginary cone Z of Φ is the W-orbit of K :
 Z := W(K).

Minimality of the action

Relation limit roots/imaginary cone, [Dyer]

Let *Z* be the normalized isotropic cone $\mathcal{Z} \cap V_1$. Then : $\overline{Z} = \operatorname{conv}(E)$.

Theorem (Dyer-Hohlweg-R. '12)

If W is irreducible infinite, then the action of W on E is minimal, i.e., for all $x \in E$, the orbit of x under the action of W is dense in E:

$\overline{W\cdot x}=E.$

The proof uses:

the properties of the action on Z = conv(E) [Dyer]:
 if W is irreducible infinite, then

$$\forall x \in \overline{Z}, \text{ conv}\left(\overline{W \cdot x}\right) = \overline{Z}.$$

 the fact that the set of extreme points of the convex set Z is dense in E [Dyer-Hohlweg-R.].

Minimality of the action

Relation limit roots/imaginary cone, [Dyer]

Let *Z* be the normalized isotropic cone $\mathcal{Z} \cap V_1$. Then : $\overline{Z} = \operatorname{conv}(E)$.

Theorem (Dyer-Hohlweg-R. '12)

If W is irreducible infinite, then the action of W on E is minimal, i.e., for all $x \in E$, the orbit of x under the action of W is dense in E:

$$\overline{W\cdot x}=E.$$

The proof uses:

the properties of the action on Z = conv(E) [Dyer]:
 if W is irreducible infinite, then

$$\forall x \in \overline{Z}, \text{ conv}\left(\overline{W \cdot x}\right) = \overline{Z}.$$

• the fact that the set of extreme points of the convex set \overline{Z} is dense in *E* [Dyer-Hohlweg-R.].

Minimality of the action

Relation limit roots/imaginary cone, [Dyer]

Let *Z* be the normalized isotropic cone $\mathcal{Z} \cap V_1$. Then : $\overline{Z} = \operatorname{conv}(E)$.

Theorem (Dyer-Hohlweg-R. '12)

If W is irreducible infinite, then the action of W on E is minimal, i.e., for all $x \in E$, the orbit of x under the action of W is dense in E:

$$\overline{W\cdot x}=E.$$

The proof uses:

the properties of the action on Z = conv(E) [Dyer]:
 if W is irreducible infinite, then

$$\forall x \in \overline{Z}, \text{ conv}\left(\overline{W \cdot x}\right) = \overline{Z}$$

 the fact that the set of extreme points of the convex set Z is dense in E [Dyer-Hohlweg-R.].

Outline

Root system, limit roots and isotropic cone

Action of W on the limit roots : faithfulness, density of the orbits

3 Fractal description of the limit roots, and the hyperbolic case

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The hyperbolic case

Φ is hyperbolic if:

Sign B = (n − 1, 1) and

• every proper parabolic subgroup of W is finite or affine

Theorem (Dyer-Hohlweg-R.)

Let Φ be irreducible of indefinite type. Then:

$$\Phi$$
 is hyperbolic $\iff \widehat{Q} \subseteq \operatorname{conv}(\widehat{\Delta}) \iff E(\Phi) = \widehat{Q}.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A hyperbolic example

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

"Fractal" description of a dense subset of E

Start with the intersections of *E* with the faces of $conv(\Delta)$, and act by *W*...

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

"Fractal" description of a dense subset of E

Start with the intersections of *E* with the faces of $conv(\Delta)$, and act by *W*...

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Fractal description from hyperbolic faces

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Fractal description from hyperbolic faces

・ロットは、マヨト 《ヨト 三日 うんぐ

Describe *E* directly?

Conjecture

If W is irreducible, then $E(\Phi) = \widehat{Q} \setminus all$ the images by W of the parts of \widehat{Q} which are outside $conv(\Delta)$, i.e. :

$$E(\Phi) = \widehat{Q} \cap \bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta).$$

Describe *E* directly?

Conjecture

If W is irreducible, then $E(\Phi) = \widehat{Q} \setminus all$ the images by W of the parts of \widehat{Q} which are outside $conv(\Delta)$, *i.e.* :

$$E(\Phi) = \widehat{Q} \cap \bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta).$$

• [Dyer]
$$\implies \bigcap_{w \in W} w(\operatorname{cone}(\Delta)) = \overline{\mathcal{Z}} = \operatorname{cone}(E)$$
, so :

conjecture $\iff E = \operatorname{conv}(E) \cap \widehat{Q}$.

• Conjecture proved for the weakly hyperbolic case, i.e., sgn B = (n - 1, 1) (because \widehat{Q} can be taken as a sphere).

Describe *E* directly?

Conjecture

If W is irreducible, then $E(\Phi) = \widehat{Q} \setminus all$ the images by W of the parts of \widehat{Q} which are outside $conv(\Delta)$, *i.e.* :

$$E(\Phi) = \widehat{Q} \cap \bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta).$$

• [Dyer]
$$\implies \bigcap_{w \in W} w(\operatorname{cone}(\Delta)) = \overline{\mathcal{Z}} = \operatorname{cone}(E)$$
, so :

conjecture
$$\iff E = \operatorname{conv}(E) \cap \widehat{Q}$$
.

• Conjecture proved for the weakly hyperbolic case, i.e., sgn B = (n - 1, 1) (because \widehat{Q} can be taken as a sphere).

Other questions

- How does *E* behave in regards to restriction to parabolic subgroups? Take *I* ⊆ Δ, *W_I* its associated parabolic subgroup, Φ_I = *W_I*(Δ_I), and *V_I* = Vect(*I*) ∩ *V*₁. Then *E*(Φ_I) ≠ *E*(Φ) ∩ *V_I* in general! (counterexample in rank 5). But this type of property of good restriction works for other "natural" subsets of *E*...
- Explicit construction of converging sequences, links with the dominance order on Φ.
- What can be said about the dynamics of the *projective* action of W on the whole space V (not only Φ, E and Z) ?

Other questions

- How does *E* behave in regards to restriction to parabolic subgroups? Take *I* ⊆ Δ, *W_I* its associated parabolic subgroup, Φ_I = *W_I*(Δ_I), and *V_I* = Vect(*I*) ∩ *V*₁. Then *E*(Φ_I) ≠ *E*(Φ) ∩ *V_I* in general! (counterexample in rank 5). But this type of property of good restriction works for other "natural" subsets of *E*...
- Explicit construction of converging sequences, links with the dominance order on Φ.
- What can be said about the dynamics of the *projective* action of W on the whole space V (not only Φ, E and Z) ?

Other questions

- How does *E* behave in regards to restriction to parabolic subgroups? Take *I* ⊆ Δ, *W_I* its associated parabolic subgroup, Φ_I = *W_I*(Δ_I), and *V_I* = Vect(*I*) ∩ *V*₁. Then *E*(Φ_I) ≠ *E*(Φ) ∩ *V_I* in general! (counterexample in rank 5). But this type of property of good restriction works for other "natural" subsets of *E*...
- Explicit construction of converging sequences, links with the dominance order on Φ.
- What can be said about the dynamics of the *projective* action of W on the whole space V (not only Φ, E and Z) ?

The normalized imaginary cone conv(E) (an artist's impression)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで