Limit points of root systems of infinite Coxeter groups

Vivien Ripoll

Workshop Combin'à Tours
Tours, 3 juillet 2013

From joint works with

- Matthew Dyer (University of Notre Dame)
- Christophe Hohlweg (UQÀM)
- Jean-Philippe Labbé (FU Berlin)

Overview

- root system Φ : set of vectors encoding the reflections of a Coxeter group
- General property : $\Phi=\Phi^{+} \sqcup\left(-\Phi^{+}\right)$, where $\Phi^{+} \subseteq$ cone (Δ), Δ simple roots.
- Get a projective version of Φ by constructing
normalized roots in a cutting hyperplane H.

Overview

- root system Φ : set of vectors encoding the reflections of a Coxeter group
- General property : $\Phi=\Phi^{+} \sqcup\left(-\Phi^{+}\right)$, where $\Phi^{+} \subseteq$ cone (Δ), Δ simple roots.
- Get a projective version of Φ by constructing
normalized roots in a cutting hyperplane H.

Overview

- root system Φ : set of vectors encoding the reflections of a Coxeter group
- General property : $\Phi=\Phi^{+} \sqcup\left(-\Phi^{+}\right)$, where $\Phi^{+} \subseteq$ cone (Δ),
Δ simple roots.
- Get a projective version of Φ by constructing normalized roots in a cutting hyperplane H.

Overview

- root system Φ : set of vectors encoding the reflections of a Coxeter group
- General property : $\Phi=\Phi^{+} \sqcup\left(-\Phi^{+}\right)$, where $\Phi^{+} \subseteq$ cone (Δ), Δ simple roots.
- Get a projective version of Φ by constructing normalized roots in a cutting hyperplane H.

Overview

- root system Φ : set of vectors encoding the reflections of a Coxeter group
- General property : $\Phi=\Phi^{+} \sqcup\left(-\Phi^{+}\right)$, where $\Phi^{+} \subseteq$ cone (Δ), Δ simple roots.
- Get a projective version of Φ by constructing normalized roots in a cutting hyperplane H.
- draw examples, get amazing pictures, try to understand

Outline

(1) Root system, limit roots and isotropic cone
(2) Action of W on the limit roots : faithfulness, density of the orbits
(3) Fractal description of the limit roots, and the hyperbolic case

Outline

(1) Root system, limit roots and isotropic cone
(2) Action of W on the limit roots: faithfulness, density of the orbits
(3) Fractal description of the limit roots, and the hyperbolic case

A "dynamical" construction of a root system

- V : a real vector space, of finite dimension n
- B : a symmetric bilinear form on V

Construction of a root system in (V, B):

1. Start with a simple system Δ :

- Δ is a basis for V;
- $\forall \alpha \in \Delta, B(\alpha, \alpha)=1$;
- $\forall \alpha \neq \beta \in \Delta$:
- either $B(\alpha, \beta)=-\cos \left(\frac{\pi}{m}\right)$ for some $m \in \mathbb{Z} \geq 2$,
- or $B(\alpha, \beta) \leq-1$.

A "dynamical" construction of a root system

- V : a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B) :

1. Start with a simple system Δ :

- Δ is a basis for V;
- $\forall \alpha \in \Delta, B(\alpha, \alpha)=1$;
- $\forall \alpha \neq \beta \in \Delta$:
- either $B(\alpha, \beta)=-\cos \left(\frac{\pi}{m}\right)$ for some $m \in \mathbb{Z}_{\geq 2}$,
- or $B(\alpha, \beta) \leq-1$.

A "dynamical" construction of a root system

2. For each $\alpha \in \Delta$, define the B-reflection \boldsymbol{s}_{α} :

$$
\begin{aligned}
\boldsymbol{s}_{\alpha}: \quad V & \rightarrow V \\
& \boldsymbol{v}
\end{aligned} \mapsto \quad \boldsymbol{v}-2 B(\alpha, v) \alpha .
$$

Check: $s_{\alpha}(\alpha)=-\alpha$, and s_{α} fixes pointwise α^{\perp}.
Notation: $S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$.
3. Construct the B-reflection group $W:=\langle S\rangle$.
4. Act by W on Δ to construct the based root system

Note: if $\rho=w(\alpha)$ (with $\alpha \in \Delta$), $w s_{\alpha} w^{-1}$ is the B-reflection associated to the root ρ.

A "dynamical" construction of a root system

2. For each $\alpha \in \Delta$, define the B-reflection \boldsymbol{s}_{α} :

$$
\begin{aligned}
\boldsymbol{s}_{\alpha}: \quad V & \rightarrow V \\
& \boldsymbol{v}
\end{aligned} \mapsto \quad \boldsymbol{v}-2 B(\alpha, v) \alpha .
$$

Check: $\boldsymbol{s}_{\alpha}(\alpha)=-\alpha$, and \boldsymbol{s}_{α} fixes pointwise α^{\perp}.
Notation: $S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$.
3. Construct the B-reflection group $W:=\langle S\rangle$.
4. Act by W on Δ to construct the based root system $\Phi:=W(\Delta)$

Note: if $\rho=w(\alpha)$ (with $\alpha \in \Delta), w s_{\alpha} w^{-1}$ is the B-reflection associated to the root ρ.

A "dynamical" construction of a root system

2. For each $\alpha \in \Delta$, define the B-reflection \boldsymbol{s}_{α} :

$$
\begin{aligned}
s_{\alpha}: \quad V & \rightarrow V \\
& \boldsymbol{v}
\end{aligned} \mapsto \quad \boldsymbol{v}-2 B(\alpha, v) \alpha .
$$

Check: $\boldsymbol{s}_{\alpha}(\alpha)=-\alpha$, and \boldsymbol{s}_{α} fixes pointwise α^{\perp}.
Notation: $S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$.
3. Construct the B-reflection group $W:=\langle S\rangle$.
4. Act by W on Δ to construct the based root system

$$
\Phi:=W(\Delta) .
$$

Note: if $\rho=w(\alpha)$ (with $\alpha \in \Delta$), $w s_{\alpha} w^{-1}$ is the B-reflection associated to the root ρ.

Coxeter group and root system

Proposition

- (W, S) is a Coxeter system, with Coxeter presentation:

$$
\begin{aligned}
& W=\left\langle s \mid s^{2}=1(\forall s \in S) ;(s t)^{m_{s, t}}=1(\forall s \neq t \in S)\right\rangle, \\
& \text { where } m_{s_{\alpha}, s_{\beta}}= \begin{cases}m & \text { if } B(\alpha, \beta)=-\cos (\pi / m), \\
\infty & \text { if } B(\alpha, \beta) \leq-1 .\end{cases} \\
& \text { - Let } \phi^{+}:=\phi \cap \operatorname{cone}(\Delta) \text {. Then: } \phi=\phi^{+} \sqcup\left(-\phi^{+}\right) \text {. }
\end{aligned}
$$

Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation of a Coxeter group [Tits].

Coxeter group and root system

Proposition

- (W, S) is a Coxeter system, with Coxeter presentation:

$$
\begin{gathered}
W=\left\langle s \mid s^{2}=1(\forall s \in S) ;(s t)^{m_{s, t}}=1(\forall s \neq t \in S)\right\rangle, \\
\text { where } m_{s_{\alpha}, s_{\beta}}= \begin{cases}m & \text { if } B(\alpha, \beta)=-\cos (\pi / m), \\
\infty & \text { if } B(\alpha, \beta) \leq-1 .\end{cases} \\
\text { Let } \Phi^{+}:=\Phi \cap \operatorname{cone}(\Delta) . \text { Then: } \Phi=\Phi^{+} \sqcup\left(-\Phi^{+}\right) .
\end{gathered}
$$

> Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation of a Coxeter group [Tits].

Coxeter group and root system

Proposition

- (W, S) is a Coxeter system, with Coxeter presentation:

$$
\begin{gathered}
W=\left\langle s \mid s^{2}=1(\forall s \in S) ;(s t)^{m_{s, t}}=1(\forall s \neq t \in S)\right\rangle, \\
\text { where } m_{s_{\alpha}, s_{\beta}}= \begin{cases}m & \text { if } B(\alpha, \beta)=-\cos (\pi / m), \\
\infty & \text { if } B(\alpha, \beta) \leq-1 .\end{cases} \\
\text { Let } \Phi^{+}:=\Phi \cap \operatorname{cone}(\Delta) . \text { Then: } \Phi=\Phi^{+} \sqcup\left(-\Phi^{+}\right) .
\end{gathered}
$$

> Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation of a Coxeter group [Tits].

Coxeter group and root system

Proposition

- (W, S) is a Coxeter system, with Coxeter presentation:

$$
\begin{aligned}
& W=\left\langle S \mid s^{2}=1(\forall s \in S) ;(s t)^{m_{s, t}}=1(\forall s \neq t \in S)\right\rangle, \\
& \text { where } m_{s_{\alpha}, s_{\beta}}= \begin{cases}m & \text { if } B(\alpha, \beta)=-\cos (\pi / m), \\
\infty & \text { if } B(\alpha, \beta) \leq-1 .\end{cases} \\
& \text { Let } \Phi^{+}:=\Phi \cap \operatorname{cone}(\Delta) . \text { Then: } \Phi=\Phi^{+} \sqcup\left(-\Phi^{+}\right) .
\end{aligned}
$$

Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation of a Coxeter group [Tits].

Infinite root systems

For finite root systems: ϕ is finite $\Leftrightarrow W$ is finite ($\Leftrightarrow B$ is positive definite).

Example: $W=I_{2}(5)$,

$$
|\Phi|=10, \stackrel{5}{\stackrel{s}{\alpha}^{\stackrel{5}{s_{\beta}}}}
$$

What does an infinite root system look like?
Simplest example, in rank 2 :

Infinite root systems

For finite root systems: Φ is finite $\Leftrightarrow W$ is finite ($\Leftrightarrow B$ is positive definite).

Example: $W=I_{2}(5)$,

$$
|\Phi|=10, \stackrel{5}{\stackrel{S}{\alpha}^{\stackrel{5}{s_{\beta}}}}
$$

What does an infinite root system look like?
Simplest example, in rank 2 :

Matrix of B in the basis (α, β) : $\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$.

Infinite dihedral group, case $B(\alpha, \beta)=-1$
Q

Observations

- The norms of the roots tend to ∞;
- The directions of the roots tend to the direction of the isotropic cone Q of B :

$$
Q:=\{v \in V, B(v, v)=0\} .
$$

(in the example the equation is $v_{\alpha}^{2}+v_{\beta}^{2}-2 v_{\alpha} v_{\beta}=0$, and $Q=\operatorname{span}(\alpha+\beta)$.)

What if $\boldsymbol{B}(\alpha, \beta)<-1$?

What if $B(\alpha, \beta)<-1$?

- Matrix of B : $\left[\begin{array}{cc}1 & \kappa \\ \kappa & 1\end{array}\right]$ with $\kappa<-1$. We write $\underset{s_{\alpha}}{\stackrel{\infty}{\bullet}} \stackrel{s_{\beta}}{\bullet}$

- Then Q is the union of 2 lines.

What if $B(\alpha, \beta)<-1$?

- Matrix of B : $\left[\begin{array}{cc}1 & \kappa \\ \kappa & 1\end{array}\right]$ with $\kappa<-1$. We write $\underset{s_{\alpha}}{\stackrel{\infty}{\bullet}} \stackrel{s_{\beta}}{\bullet}$
- Then Q is the union of 2 lines.

What if $B(\alpha, \beta)<-1$?

- Matrix of B : $\left[\begin{array}{cc}1 & \kappa \\ \kappa & 1\end{array}\right]$ with $\kappa<-1$. We write $\underset{s_{\alpha}}{\stackrel{\infty}{\bullet}} \stackrel{s_{\beta}}{\bullet}$
- Then Q is the union of 2 lines.

"Normalization" of the roots

Cut the directions of the roots with an affine hyperplane \rightsquigarrow get a picture for the projective version of ϕ.

Normalized roots in rank 2

case $B(\alpha, \beta)=-1$

$$
s_{\alpha}^{\infty} \bullet-s_{\beta}
$$

$$
\beta=\rho_{1}^{\prime} \quad \widehat{\rho}_{2}^{\prime} \ldots \widehat{\rho}_{2} \quad \alpha=\rho_{1}
$$

Q $\quad V_{1}$
case $B(\alpha, \beta)=-1.01<-1$

Limit roots and isotropic cone

Theorem (Hohlweg-Labbé-R. '11)

Let Φ be an infinite root system, Q its isotropic cone, and $\left(\rho_{n}\right)_{n \in \mathbb{N}}$ an injective sequence in Φ. Then:

- \| $\rho_{n} \|$ tends to ∞ (for any norm on V);
- if the sequence of normalized root $\left(\widehat{\rho}_{n}\right)_{n \in \mathbb{N}}$ has a limit ℓ, then

$$
\ell \in \widehat{Q} \cap \operatorname{conv}(\Delta) .
$$

See also:

- [Kac 90] for Weyl groups of Kac-Moody algebras,
- generalized by [Dyer '12] (work on the imaginary cone of a Coxeter group).
\rightsquigarrow Problem: understand the set of possible limits, i.e., the accumulation points of Φ :

$$
E(\Phi):=\operatorname{Acc}(\widehat{\Phi}) \quad \text { ("limit roots"). }
$$

Limit roots and isotropic cone

Theorem (Hohlweg-Labbé-R. '11)

Let Φ be an infinite root system, Q its isotropic cone, and $\left(\rho_{n}\right)_{n \in \mathbb{N}}$ an injective sequence in Φ. Then:

- \| $\rho_{n} \|$ tends to ∞ (for any norm on V);
- if the sequence of normalized root $\left(\hat{\rho}_{n}\right)_{n \in \mathbb{N}}$ has a limit ℓ, then

$$
\ell \in \widehat{Q} \cap \operatorname{conv}(\Delta) .
$$

See also:

- [Kac 90] for Weyl groups of Kac-Moody algebras,
- generalized by [Dyer '12] (work on the imaginary cone of a Coxeter group).
\rightsquigarrow Problem: understand the set of possible limits, i.e., the accumulation points of Φ :

$$
E(\phi):=\operatorname{Acc}(\hat{\phi})
$$

Limit roots and isotropic cone

Theorem (Hohlweg-Labbé-R. '11)

Let Φ be an infinite root system, Q its isotropic cone, and $\left(\rho_{n}\right)_{n \in \mathbb{N}}$ an injective sequence in Φ. Then:

- \|| $\rho_{n} \|$ tends to ∞ (for any norm on V);
- if the sequence of normalized root $\left(\widehat{\rho}_{n}\right)_{n \in \mathbb{N}}$ has a limit ℓ, then

$$
\ell \in \widehat{Q} \cap \operatorname{conv}(\Delta) .
$$

See also:

- [Kac 90] for Weyl groups of Kac-Moody algebras,
- generalized by [Dyer '12] (work on the imaginary cone of a Coxeter group).
\rightsquigarrow Problem: understand the set of possible limits, i.e., the accumulation points of $\widehat{\phi}$:

$$
E(\Phi):=\operatorname{Acc}(\widehat{\Phi}) \quad \text { ("limit roots"). }
$$

Zoology of root systems and limit roots

- Φ finite (W finite Coxeter group) :
B positive definite, $\widehat{Q}=\varnothing, E=\varnothing$.
- Φ of affine type :
B positive. Actually sgn $B=(n-1,0)$ if Φ irreducible.
\widehat{Q} is a singleton, $E=\widehat{Q}$.
- otherwise: Φ of indefinite type
- particular case : weakly hyperbolic type, $\operatorname{sgn} B=(n-1,1)$.
\widehat{Q} is a sphere (if we choose well the cutting hyperplane). E is pretty and well understood.
- other cases : still work to do!

Examples in rank 3: finite group, sgn $B=(3,0) .\left(H_{3}\right)$

Examples in rank 3: affine type, $\operatorname{sgn} B=(2,0)\left(\widetilde{G_{2}}\right)$

Examples in rank 3: affine type, $\operatorname{sgn} B=(2,0)\left(\widetilde{G_{2}}\right)$

Examples in rank 3: case sgn $B=(2,1)$

Examples in rank 3: case sgn $B=(2,1)$

Examples in rank 3: case sgn $B=(2,1)$

Examples in rank 3: case sgn $B=(2,1)$

Examples in rank 3: case sgn $B=(2,1)$

Examples in rank 3: case sgn $B=(2,1)$

Examples in rank 4

Examples in rank 4

Dihedral limit roots

Fix 2 roots ρ_{1}, ρ_{2} in $\Phi^{+} \rightsquigarrow$ get a reflection subgroup of rank 2 of W, and a root subsystem Φ^{\prime}.

- $\widehat{\phi^{\prime}}$ lives in the line $L\left(\widehat{\rho_{1}}, \widehat{\rho_{2}}\right)$;
- the isotropic cone of Φ^{\prime} is $Q \cap \operatorname{Vect}\left(\rho_{1}, \rho_{2}\right)$;
- \rightsquigarrow we can construct limit roots of $\Phi^{\prime}: E\left(\Phi^{\prime}\right)=Q \cap L\left(\widehat{\rho_{1}}, \widehat{\rho_{2}}\right)$ (0,1 or 2 points).

Outline

(1) Root system, limit roots and isotropic cone
(2) Action of W on the limit roots: faithfulness, density of the orbits
(3) Fractal description of the limit roots, and the hyperbolic case

A natural group action of W on E

Geometric action of W on a part of $V_{1}: w \cdot v:=\widehat{w(v)}$. Defined on $D=V_{1} \cap \bigcap w\left(V \backslash V_{0}\right)$, where $V_{0}=\vec{V}_{1}$. $w \in W$

Proposition

- $E(\Phi) \subseteq D$ and $E(\Phi)$ is stable under the action of W.
- For $\alpha \in \Phi$ and $x \in E, \widehat{Q} \cap L(\widehat{\alpha}, x)=\left\{x, s_{\alpha} \cdot x\right\}$.

A natural group action of W on E

Geometric action of W on a part of $V_{1}: w \cdot v:=\widehat{w(v)}$.
Defined on $D=V_{1} \cap \bigcap_{w \in W} w\left(V \backslash V_{0}\right)$, where $V_{0}=\vec{V}_{1}$.

Proposition

- $E(\Phi) \subseteq D$ and $E(\Phi)$ is stable under the action of W.
- For $\alpha \in \Phi$ and $x \in E, \widehat{Q} \cap L(\widehat{\alpha}, x)=\left\{x, s_{\alpha} \cdot x\right\}$.

Theorem (Dyer-Hohlweg-R. '12)

If W is infinite, non-affine and irreducible, then the action of W on E is faithful.

A natural group action of W on E

Geometric action of W on a part of $V_{1}: w \cdot v:=\widehat{w(v)}$.
Defined on $D=V_{1} \cap \bigcap_{w \in W} w\left(V \backslash V_{0}\right)$, where $V_{0}=\vec{V}_{1}$.

Proposition

- $E(\Phi) \subseteq D$ and $E(\Phi)$ is stable under the action of W.
- For $\alpha \in \Phi$ and $x \in E, \widehat{Q} \cap L(\widehat{\alpha}, x)=\left\{x, s_{\alpha} \cdot x\right\}$.

Theorem (Dyer-Hohlweg-R. '12)

If W is infinite, non-affine and irreducible, then the action of W on E is faithful.

- we prove that E is not contained in a finite union of affine subspaces of V_{1}.
- we use the link with the imaginary cone of Φ studied by Dyer.

A natural group action of W on E

Geometric action of W on a part of $V_{1}: w \cdot v:=\widehat{w(v)}$.
Defined on $D=V_{1} \cap \bigcap_{w \in W} w\left(V \backslash V_{0}\right)$, where $V_{0}=\vec{V}_{1}$.

Proposition

- $E(\Phi) \subseteq D$ and $E(\Phi)$ is stable under the action of W.
- For $\alpha \in \Phi$ and $x \in E, \widehat{Q} \cap L(\widehat{\alpha}, x)=\left\{x, s_{\alpha} \cdot x\right\}$.

Theorem (Dyer-Hohlweg-R. '12)

If W is infinite, non-affine and irreducible, then the action of W on E is faithful.

- we prove that E is not contained in a finite union of affine subspaces of V_{1}.
- we use the link with the imaginary cone of Φ studied by Dyer.

Convex hull of E and imaginary cone

Definition (Kac, Hée, Dyer...)

- $\mathcal{K}:=\{v \in \operatorname{cone}(\Delta) \mid \forall \alpha \in \Delta, B(\alpha, v) \leq 0\}$
- the imaginary cone \mathcal{Z} of Φ is the W-orbit of \mathcal{K} :
$\mathcal{Z}:=W(\mathcal{K})$.

Convex hull of E and imaginary cone

Definition (Kac, Hée, Dyer...)

- $\mathcal{K}:=\{\boldsymbol{v} \in \operatorname{cone}(\Delta) \mid \forall \alpha \in \Delta, B(\alpha, v) \leq 0\}$
- the imaginary cone \mathcal{Z} of Φ is the W-orbit of \mathcal{K} :
$\mathcal{Z}:=W(\mathcal{K})$.

Minimality of the action

Relation limit roots/imaginary cone, [Dyer] Let Z be the normalized isotropic cone $\mathcal{Z} \cap V_{1}$. Then : $\bar{Z}=\operatorname{conv}(E)$.

Theorem (Dyer-Hohlweg-R. '12) If W is irreducible infinite, then the action of W on E is minimal, i.e., for all $x \in E$, the orbit of x under the action of W is dense in E :

$$
\overline{W \cdot x}=E .
$$

Minimality of the action

Relation limit roots/imaginary cone, [Dyer]
Let Z be the normalized isotropic cone $\mathcal{Z} \cap V_{1}$. Then : $\bar{Z}=\operatorname{conv}(E)$.

Theorem (Dyer-Hohlweg-R. '12)
If W is irreducible infinite, then the action of W on E is minimal, i.e., for all $x \in E$, the orbit of x under the action of W is dense in E :

$$
\overline{W \cdot x}=E .
$$

The proof uses:

- the properties of the action on $\bar{Z}=\operatorname{conv}(E)$ [Dyer]: if W is irreducible infinite, then

$$
\forall x \in \bar{Z}, \operatorname{conv}(\overline{W \cdot x})=\bar{Z}
$$

- the fact that the set of extreme points of the convex set \bar{Z} is dense in E [Dyer-Hohlweg-R.].

Minimality of the action

Relation limit roots/imaginary cone, [Dyer]
Let Z be the normalized isotropic cone $\mathcal{Z} \cap V_{1}$. Then : $\bar{Z}=\operatorname{conv}(E)$.

Theorem (Dyer-Hohlweg-R. '12)
If W is irreducible infinite, then the action of W on E is minimal, i.e., for all $x \in E$, the orbit of x under the action of W is dense in E :

$$
\overline{W \cdot x}=E .
$$

The proof uses:

- the properties of the action on $\bar{Z}=\operatorname{conv}(E)$ [Dyer]: if W is irreducible infinite, then

$$
\forall x \in \bar{Z}, \operatorname{conv}(\overline{W \cdot x})=\bar{Z}
$$

- the fact that the set of extreme points of the convex set \bar{Z} is dense in E [Dyer-Hohlweg-R.].

Outline

(1) Root system, limit roots and isotropic cone

(2) Action of W on the limit roots: faithfulness, density of the orbits

(3) Fractal description of the limit roots, and the hyperbolic case

The hyperbolic case

Φ is hyperbolic if:

- $\operatorname{sgn} B=(n-1,1)$ and
- every proper parabolic subgroup of W is finite or affine

Theorem (Dyer-Hohlweg-R.)

Let Φ be irreducible of indefinite type. Then:

$$
\text { Фis hyperbolic } \Longleftrightarrow \widehat{Q} \subseteq \operatorname{conv}(\widehat{\Delta}) \Longleftrightarrow E(\Phi)=\widehat{Q}
$$

A hyperbolic example

"Fractal" description of a dense subset of E

Start with the intersections of E with the faces of $\operatorname{conv}(\Delta)$, and act by W...

"Fractal" description of a dense subset of E

Start with the intersections of E with the faces of $\operatorname{conv}(\Delta)$, and act by W...

Fractal description from hyperbolic faces

Fractal description from hyperbolic faces
S_{δ}

Describe E directly?

Conjecture

If W is irreducible, then $E(\Phi)=\widehat{Q} \backslash$ all the images by W of the parts of \widehat{Q} which are outside $\operatorname{conv}(\Delta)$, i.e. :

$$
E(\Phi)=\widehat{Q} \cap \bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta) .
$$

Describe E directly?

Conjecture

If W is irreducible, then $E(\Phi)=\widehat{Q} \backslash$ all the images by W of the parts of \widehat{Q} which are outside $\operatorname{conv}(\Delta)$, i.e. :

$$
E(\Phi)=\widehat{Q} \cap \bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta)
$$

- [Dyer] $\Longrightarrow \bigcap_{w \in W} w(\operatorname{cone}(\Delta))=\overline{\mathcal{Z}}=\operatorname{cone}(E)$, so:

$$
\text { conjecture } \Longleftrightarrow E=\operatorname{conv}(E) \cap \widehat{Q}
$$

- Conjecture proved for the weakly hyperbolic case, i.e., $\operatorname{sgn} B=(n-1,1)$ (because \widehat{Q} can be taken as a sphere).

Describe E directly?

Conjecture

If W is irreducible, then $E(\Phi)=\widehat{Q} \backslash$ all the images by W of the parts of \widehat{Q} which are outside $\operatorname{conv}(\Delta)$, i.e. :

$$
E(\Phi)=\hat{Q} \cap \bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta) .
$$

- $[$ Dyer $] \Longrightarrow \bigcap_{w \in W} w(\operatorname{cone}(\Delta))=\overline{\mathcal{Z}}=\operatorname{cone}(E)$, so :

$$
\text { conjecture } \Longleftrightarrow E=\operatorname{conv}(E) \cap \widehat{Q}
$$

- Conjecture proved for the weakly hyperbolic case, i.e., $\operatorname{sgn} B=(n-1,1)$ (because \widehat{Q} can be taken as a sphere).

Other questions

- How does E behave in regards to restriction to parabolic subgroups? Take $I \subseteq \Delta, W_{l}$ its associated parabolic subgroup, $\Phi_{I}=W_{l}\left(\Delta_{I}\right)$, and $V_{I}=\operatorname{Vect}(I) \cap V_{1}$. Then $E\left(\Phi_{l}\right) \neq E(\Phi) \cap V_{l}$ in general! (counterexample in rank 5). But this type of property of good restriction works for other "natural" subsets of E...
- Explicit construction of converging sequences, links with the dominance order on Φ.
- What can be said about the dynamics of the projective action of W on the whole space $V($ not only Φ, E and $Z)$?

Other questions

- How does E behave in regards to restriction to parabolic subgroups? Take $I \subseteq \Delta, W_{l}$ its associated parabolic subgroup, $\Phi_{I}=W_{l}\left(\Delta_{I}\right)$, and $V_{I}=\operatorname{Vect}(I) \cap V_{1}$. Then $E\left(\Phi_{l}\right) \neq E(\Phi) \cap V_{l}$ in general! (counterexample in rank 5). But this type of property of good restriction works for other "natural" subsets of E...
- Explicit construction of converging sequences, links with the dominance order on Φ.
- What can be said about the dynamics of the projective action of W on the whole space $V($ not only Φ, E and $Z)$?

Other questions

- How does E behave in regards to restriction to parabolic subgroups? Take $I \subseteq \Delta$, W_{l} its associated parabolic subgroup, $\Phi_{I}=W_{l}\left(\Delta_{I}\right)$, and $V_{I}=\operatorname{Vect}(I) \cap V_{1}$. Then $E\left(\Phi_{l}\right) \neq E(\Phi) \cap V_{l}$ in general! (counterexample in rank 5). But this type of property of good restriction works for other "natural" subsets of E...
- Explicit construction of converging sequences, links with the dominance order on Φ.
- What can be said about the dynamics of the projective action of W on the whole space $V($ not only Φ, E and $Z)$?

The normalized imaginary cone conv (E) (an artist's impression)

