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A “dynamical” construction of a root system

V : a real vector space, of finite dimension n
B: a symmetric bilinear form on V

Construction of a root system in (V ,B):

1. Start with a simple system ∆:
∆ is a basis for V ;
∀α ∈ ∆,B(α, α) = 1;
∀α 6= β ∈ ∆:

either B(α, β) = − cos
( π

m

)
for some m ∈ Z≥2,

or B(α, β) ≤ −1.
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A “dynamical” construction of a root system

2. For each α ∈ ∆, define the B-reflection sα:

sα : V → V
v 7→ v − 2B(α, v) α.

Check: sα(α) = −α, and sα fixes pointwise α⊥.

Notation: S = {sα, α ∈ ∆}.

3. Construct the B-reflection group W := 〈S〉.

4. Act by W on ∆ to construct the based root system

Φ := W (∆) .

Note: if ρ = w(α) (with α ∈ ∆), wsαw−1 is the B-reflection
associated to the root ρ.
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Coxeter group and root system

Proposition
(W ,S) is a Coxeter system, with Coxeter presentation:

W =
〈

S
∣∣∣ s2 = 1 (∀s ∈ S); (st)ms,t = 1 (∀s 6= t ∈ S)

〉
,

where msα,sβ =

{
m if B(α, β) = − cos(π/m),

∞ if B(α, β) ≤ −1.

Let Φ+ := Φ ∩ cone(∆). Then: Φ = Φ+ t (−Φ+).

Note: Conversely, from any Coxeter system it is possible to
construct a root system, using the classical geometric
representation of a Coxeter group [Tits].



Coxeter group and root system

Proposition
(W ,S) is a Coxeter system, with Coxeter presentation:

W =
〈

S
∣∣∣ s2 = 1 (∀s ∈ S); (st)ms,t = 1 (∀s 6= t ∈ S)

〉
,

where msα,sβ =

{
m if B(α, β) = − cos(π/m),

∞ if B(α, β) ≤ −1.

Let Φ+ := Φ ∩ cone(∆). Then: Φ = Φ+ t (−Φ+).

Note: Conversely, from any Coxeter system it is possible to
construct a root system, using the classical geometric
representation of a Coxeter group [Tits].



Coxeter group and root system

Proposition
(W ,S) is a Coxeter system, with Coxeter presentation:

W =
〈

S
∣∣∣ s2 = 1 (∀s ∈ S); (st)ms,t = 1 (∀s 6= t ∈ S)

〉
,

where msα,sβ =

{
m if B(α, β) = − cos(π/m),

∞ if B(α, β) ≤ −1.

Let Φ+ := Φ ∩ cone(∆). Then: Φ = Φ+ t (−Φ+).

Note: Conversely, from any Coxeter system it is possible to
construct a root system, using the classical geometric
representation of a Coxeter group [Tits].



Coxeter group and root system

Proposition
(W ,S) is a Coxeter system, with Coxeter presentation:

W =
〈

S
∣∣∣ s2 = 1 (∀s ∈ S); (st)ms,t = 1 (∀s 6= t ∈ S)

〉
,

where msα,sβ =

{
m if B(α, β) = − cos(π/m),

∞ if B(α, β) ≤ −1.

Let Φ+ := Φ ∩ cone(∆). Then: Φ = Φ+ t (−Φ+).

Note: Conversely, from any Coxeter system it is possible to
construct a root system, using the classical geometric
representation of a Coxeter group [Tits].



Infinite root systems

For finite root systems:
Φ is finite⇔W is finite
(⇔ B is positive definite).

Example: W = I2(5),

|Φ| = 10,
sα sβ

5

α

β
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s t

What does an infinite root system look like?

Simplest example, in rank 2:

sα sβ

∞
Matrix of B in the basis (α, β):

[
1 −1
−1 1

]
.
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Infinite dihedral group, case B(α, β) = −1

α = ρ1β = ρ′1

ρ2 = sα(β) = β − 2B(α, β)α = β + 2αρ′2

ρ3ρ′3

ρ4ρ′4

Q

ρ′n = nα + (n + 1)β ; ρn = (n + 1)α + nβ



Observations

The norms of the roots tend to∞;
The directions of the roots tend to the direction of the
isotropic cone Q of B:

Q := {v ∈ V , B(v , v) = 0}.

(in the example the equation is v2
α + v2

β − 2vαvβ = 0, and
Q = span(α + β).)



What if B(α, β) < −1?

Matrix of B:
[
1 κ
κ 1

]
with κ < −1. We write

sα sβ

∞(κ)

Then Q is the union of 2 lines.

Q

α = ρ1β = ρ′1

ρ2ρ′2

ρ3ρ′3

ρ4ρ′4

s t

∞(−1.01)
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“Normalization” of the roots
Cut the directions of the roots with an affine hyperplane
 get a picture for the projective version of Φ.

α = ρ1β = ρ′1

ρ2ρ′2

ρ3ρ′3

ρ4ρ′4

Q

V1 = {v ∈ V |
∑
α∈∆

vα = 1}



Normalized roots in rank 2

α = ρ1β = ρ′1

ρ2ρ′2

ρ3ρ′3

ρ4ρ′4

Q

V1

Q

α = ρ1β = ρ′1

ρ2ρ′2

ρ3ρ′3

ρ4ρ′4

V1

V1Q̂

α = ρ1β = ρ′1 ρ̂2ρ̂′2 · · ·
sα sβ

∞

V1

α = ρ1β = ρ′1 ρ̂2ρ̂′2 · · ·

Q̂

sα sβ
∞(−1.01)

case B(α, β) = −1 case B(α, β) = −1.01 < −1



Limit roots and isotropic cone
Theorem (Hohlweg-Labbé-R. ’11)
Let Φ be an infinite root system, Q its isotropic cone, and
(ρn)n∈N an injective sequence in Φ. Then:

||ρn|| tends to∞ (for any norm on V);
if the sequence of normalized root (ρ̂n)n∈N has a limit `,
then

` ∈ Q̂ ∩ conv(∆).

See also:
[Kac 90] for Weyl groups of Kac-Moody algebras,
generalized by [Dyer ’12] (work on the imaginary cone of a
Coxeter group).

 Problem: understand the set of possible limits, i.e., the
accumulation points of Φ̂:

E(Φ) := Acc
(

Φ̂
)

(“limit roots”).
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Zoology of root systems and limit roots

Φ finite (W finite Coxeter group) :
B positive definite, Q̂ = ∅, E = ∅.

Φ of affine type :
B positive. Actually sgn B = (n − 1,0) if Φ irreducible.
Q̂ is a singleton, E = Q̂.

otherwise: Φ of indefinite type
particular case : weakly hyperbolic type,
sgn B = (n − 1,1).
Q̂ is a sphere (if we choose well the cutting hyperplane).
E is pretty and well understood.

other cases : still work to do!



Examples in rank 3: finite group, sgn B = (3,0). (H3)
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Examples in rank 3: affine type, sgn B = (2,0) (G̃2)
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Examples in rank 3: case sgn B = (2,1)

sγ

sβ

7

sα

α β

γ



Examples in rank 3: case sgn B = (2,1)

sγ

sβ

7

sα

α β

γ



Examples in rank 3: case sgn B = (2,1)

sγ

sβ

∞

sα

α β

γ



Examples in rank 3: case sgn B = (2,1)

sγ

sβ

∞

sα

α β

γ



Examples in rank 3: case sgn B = (2,1)

sγ

sβ

∞ (−1.03)

sα

α β

γ



Examples in rank 3: case sgn B = (2,1)

sγ

sβ

∞ (−1.03)

sα

α β

γ



Examples in rank 3: case sgn B = (2,1)

sγ

sβ

4

sα 4

4

α β

γ



Examples in rank 3: case sgn B = (2,1)

sγ

sβ

∞

sα ∞

∞

α β

γ



Examples in rank 3: case sgn B = (2,1)

sγ

sβ

∞(−1.5)

sα ∞

4

α β

γ



Examples in rank 4
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Examples in rank 4

sα sβ
∞

sδ

∞ ∞

sγ
∞ ∞

∞



Dihedral limit roots
Fix 2 roots ρ1, ρ2 in Φ+  get a reflection subgroup of rank 2 of
W , and a root subsystem Φ′.

Φ̂′ lives in the line L(ρ̂1, ρ̂2) ;
the isotropic cone of Φ′ is Q ∩ Vect(ρ1, ρ2) ;
 we can construct limit roots of Φ′ : E(Φ′) = Q ∩ L(ρ̂1, ρ̂2)
(0,1 or 2 points).

α β

γ = ρ̂1

ρ̂2

sα sβ5

sγ



Outline

1 Root system, limit roots and isotropic cone

2 Action of W on the limit roots : faithfulness, density of the
orbits

3 Fractal description of the limit roots, and the hyperbolic case



A natural group action of W on E
Geometric action of W on a part of V1: w · v := ŵ(v).
Defined on D = V1 ∩

⋂
w∈W

w(V \ V0), where V0 =
−→
V1.

Proposition
E(Φ) ⊆ D and E(Φ) is stable under the action of W.

For α ∈ Φ and x ∈ E, Q̂ ∩ L(α̂, x) = {x , sα · x}.

α β

γ

sα sβ∞

sγ
4 ∞(−1.5)

y

x

sα · y

sα · x

Theorem (Dyer-Hohlweg-R. ’12)
If W is infinite, non-affine and irreducible, then the action of W
on E is faithful.

we prove that E is not contained in a finite union of affine
subspaces of V1.
we use the link with the imaginary cone of Φ studied by
Dyer.



A natural group action of W on E
Geometric action of W on a part of V1: w · v := ŵ(v).
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Convex hull of E and imaginary cone
Definition (Kac, Hée, Dyer...)

K := {v ∈ cone(∆) | ∀α ∈ ∆,B(α, v) ≤ 0}
the imaginary cone Z of Φ is the W -orbit of K :
Z := W (K).

α β

γ

sα sβ4

sγ
4 4

K
sα · K



Convex hull of E and imaginary cone
Definition (Kac, Hée, Dyer...)

K := {v ∈ cone(∆) | ∀α ∈ ∆,B(α, v) ≤ 0}
the imaginary cone Z of Φ is the W -orbit of K :
Z := W (K).

α β

γ

sα sβ-1.2

sγ
-1.2 -1.2

K
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Minimality of the action
Relation limit roots/imaginary cone, [Dyer]
Let Z be the normalized isotropic cone Z ∩ V1.
Then : Z = conv(E).

Theorem (Dyer-Hohlweg-R. ’12)
If W is irreducible infinite, then the action of W on E is minimal,
i.e., for all x ∈ E, the orbit of x under the action of W is dense
in E:

W · x = E .

The proof uses:
the properties of the action on Z = conv(E) [Dyer]:
if W is irreducible infinite, then

∀x ∈ Z , conv
(

W · x
)

= Z .

the fact that the set of extreme points of the convex set Z is
dense in E [Dyer-Hohlweg-R.].
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The hyperbolic case

Φ is hyperbolic if:
sgn B = (n − 1,1) and
every proper parabolic subgroup of W is finite or affine

Theorem (Dyer-Hohlweg-R.)
Let Φ be irreducible of indefinite type. Then:

Φis hyperbolic ⇐⇒ Q̂ ⊆ conv(∆̂) ⇐⇒ E(Φ) = Q̂.



A hyperbolic example

sα sβ

sδ

sγ



“Fractal” description of a dense subset of E
Start with the intersections of E with the faces of conv(∆), and
act by W ...

α β
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sα · β

sα · γ
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sγ
4 ∞(−1.5)

y
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sα · y

sα · x
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Fractal description from hyperbolic faces

sα sβ
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∞ ∞
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Fractal description from hyperbolic faces

sα sβ

sδ
4 4

sγ

4



Describe E directly?
Conjecture

If W is irreducible, then E(Φ) = Q̂ \ all the images by W of the
parts of Q̂ which are outside conv(∆), i.e. :

E(Φ) = Q̂ ∩
⋂

w∈W

w · conv(∆).

α β

γ

sα · β

sα · γ

sα sβ∞

sγ
4 ∞(−1.5)

y

x

sα · y

sα · x

[Dyer] =⇒
⋂

w∈W

w(cone(∆)) = Z = cone(E), so :

conjecture ⇐⇒ E = conv(E) ∩ Q̂.

Conjecture proved for the weakly hyperbolic case, i.e.,
sgn B = (n − 1,1) (because Q̂ can be taken as a sphere).
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Other questions

How does E behave in regards to restriction to parabolic
subgroups? Take I ⊆ ∆, WI its associated parabolic
subgroup, ΦI = WI(∆I), and VI = Vect(I) ∩ V1. Then
E(ΦI) 6= E(Φ) ∩ VI in general! (counterexample in rank 5).
But this type of property of good restriction works for other
“natural” subsets of E ...

Explicit construction of converging sequences, links with
the dominance order on Φ.

What can be said about the dynamics of the projective
action of W on the whole space V (not only Φ, E and Z ) ?
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The normalized imaginary cone conv(E) (an artist’s impression)
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