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@ Consider the generating set R := {all reflections of W}.
@ Define the “absolute length” function /5.
@ Fix c a Coxeter element of W.

@ Note: the set of Coxeter elements forms a particular
conjugacy class of elements of length n := rk(W).

Definition (Block factorizations of c)

(wy,...,wp) € (W — {1})Pis a block factorization of c if
@ wi...wp,=cC.
® /p(wy)+ -+ lg(wp) = Lg(c) = n.

FACTp(c) := {block factorizations of ¢ in p factors}.

NC(W) = {w | {(w) + ¢(w~"¢c) = £(c)} = {"block factors” of ¢}
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Submaximal factorizations of a Coxeter element

Suppose W is irreducible. The number of reduced
decompositions of cis: | FACT,(c)| = n! h" / |W], where his
the order of c. [Deligne, Bessis-Corran] (case-by-case proof).
What about FACT,_1(c) ?

Theorem (R.)

Let \ be a conjugacy class of elements of length 2 in W. Call
submaximal factorizations of ¢ of type A the block factorizations
containing n — 2 reflections and one element (of length 2) in the
conjugacy class A. Then, their number is:

A _(n=1)r AT
‘ FACTn71 (C)| - | W| deg D/\ 3
where D, is a homogeneous polynomial constructed from the
geometry of the discriminant hypersurface of W.
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Intersection lattice and parabolic subgroups

A = {reflecting hyperplanes of W}.

Stratification of V with the “flats” (intersection lattice):

L:={NgegH|B<S A} = PSG(W) (parabolic subgps of W)
L — W, (pointwise stabilizer of L)
@ A parabolic subgroup is a reflection group [Steinberg].

@ lts Coxeter elements are called parabolic Coxeter
elements.

Loe L < WpePSG(W) <« ¢ parabolic Coxeter elt
codim(Ly) = rk(Wo) = ¢gr(cH)



W acts on the polynomial algebra C[V].

«40>» «Fr» «=)>» «

i
i
u
N)
¥l
?



The quotient-space V/W

W acts on the polynomial algebra C[V].

Chevalley-Shephard-Todd’s theorem

There exist invariant polynomials f;, ..
algebraically independent, s.t. C[V]W = C[f, ..., f,].

., >, homogeneous and




The quotient-space V/W

W acts on the polynomial algebra C[V].

Chevalley-Shephard-Todd’s theorem

There exist invariant polynomials f;, ..
algebraically independent, s.t. C[V]W = C[f, ..., f,].

., >, homogeneous and

~ isomorphism: V/W = C"
v o= (A(V), .. fa(V))



The quotient-space V/W

W acts on the polynomial algebra C[V].

Chevalley-Shephard-Todd’s theorem

There exist invariant polynomials f;, ..
algebraically independent, s.t. C[V]W = C[f, ..., f,].

., >, homogeneous and

~ isomorphism: V/W = C"
v o= (A(V), .. fa(V))

@ The degrees of fi, ..., f, (called invariant degrees) do not
depend on the choices of the fundamental invariants.



The quotient-space V/W

W acts on the polynomial algebra C[V].

Chevalley-Shephard-Todd’s theorem

There exist invariant polynomials f;, ..
algebraically independent, s.t. C[V]W = C[f, ..., f,].

., >, homogeneous and

~ isomorphism: V/W = C"
v o= (A(V), .. fa(V))

@ The degrees of fi, ..., f, (called invariant degrees) do not
depend on the choices of the fundamental invariants.
@ We will suppose that 7, is the invariant of highest degree.
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Discriminant hypersurface and strata
For H in A, denote by oy a linear form of kernel H.

Ay =[] av® € CIVI" =C[A,....f;] (discriminant of W)
HeA

equation of p(Uye 4 H) = H ,wherep: V — V/W.
Construct a stratification of V /W, image of the stratification £:
L=W\L=(p(L)er = (W L)iec.

Proposition

The set L is in canonical bijection with:
@ the set of conjugacy classes of parabolic subgroups of W ;
@ the set of conjugacy classes of parabolic Coxeter elts;

@ the set of conjugacy classes of elements of NC(W) (block
factors of the fixed c).
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Example W = As: discriminant (“swallowtail”

hypersurface # (discriminant) € W\ V ~ C3
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Bifurcation locus

Theorem (Orlik-Solomon, Bessis)

If W is a real (or complex well-generated) reflection group, then
the discriminant Ay is monic of degree n in the variable f,.

Soif we fix fy,..., f,_1, the polynomial Ay, as a polynomial in
fr, has generically n roots...
... except when (fi,...,f,_1) is a zero of

Dy = DISC(Aw(f1 ey fn) ; fn) S C[f1 ey fn—1]-

Definition
The bifurcation locus of Ay, (w.r.t. f,) is the hypersurface

of C"—1:
K :={Dw = 0}
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L, := {strata of £ of codimension 2}
< {conjugacy classes of elements of NC(W)}

Proposition
The o(N), for A € L, are the irreducible components of K. }

~ we can write Dy, = = D", where ry > 1 and the D, are
) ] NeLo &N
polynomials in fi,..., fh_1.

Theorem (R.)

For A\ € L5, the number of submaximal factorizations of ¢ of
type A (i.e. , whose unique length 2 element lies in the
conjugacy class \) is:

(n—1)! B

|FACT_,(c)| = Sy e9Dh-
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Submaximal factorizations of a Coxeter element

How to compute uniformly >,z deg Dy ?

@ Recall that Dy = [[rcz, Dp-
@ We found an interpretation of [ [, 7, D,r\A’1, as the
Jacobian J of an algebraic morphism.
@ We can compute deg J,
@ and then > deg Dy = deg Dy — deg J.
Corollary

The number of block factorisations of a Coxeter element c
in n— 1 factors is:

_ n—1 _
(FACT, 1(c)] = I |1|/)v!h <(” X h+2d>,

where dy, ..., d, = h are the invariant degrees of W.
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Chapoton’s formula for multichains in NC(W)

Suppose W irreducible of rank n, and let ¢ be a Coxeter
element.

The number of “broad” block factorisations of ¢ in p + 1 factors
is the FuB3-Catalan number of type W

n
cat®(w) =% Z,ph ,
=] !

where di, ..., d, = h are the invariant degrees of W.

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case.

@ Our corollary is also a consequence of Chapoton’s formula;

@ but the proof is geometric and more enlightening: we
travelled from the numerology of FACT,(c) to that of
FACT,_1(c), without adding any case-by-case analysis.



Some ingredients of the proof
[ n )

@ Lyashko-Looijenga morphism LL: CZEID
y € Y = SpecClfy,..., f,_1] — multiset of roots of Aw(y, fn).
@ Construction of topological factorisations: [Bessis, R.]
facto : Y — FACT(cC) .

@ Fundamental property that the product map:

y LL x facto
is injective, and its image is the set of “compatible” pairs.
In other words, the map facto induces a bijection between
any fiber LL~"(w) and the set of factorisations of same
“composition” as w.

@ Consequently, we can use some algebraic properties of LL
to obtain cardinalities of certain fibers, and deduce
enumeration of certain factorisations.

En x FACT(C)



Lyashko-Looijenga morphism and topological
factorisations
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