Factorizations of a Coxeter element and discriminant of a reflection group

Vivien Ripoll
LaCIM — UQÀM

Combinatorial Algebra meets Algebraic Combinatorics
Lakehead University, Thunder Bay
23rd January 2011

Geometry and combinatorics of finite reflection groups

$V_{\mathbb{R}}$: real vector space of finite dimension.

Geometry and combinatorics of finite reflection groups

$V_{\mathbb{R}}$: real vector space of finite dimension.
$W \subseteq \mathrm{GL}\left(V_{\mathbb{R}}\right)$: finite reflection group, i.e. finite subgroup generated by reflections (structure of a finite Coxeter group).

Geometry and combinatorics of finite reflection groups

$V_{\mathbb{R}}$: real vector space of finite dimension.
$W \subseteq \mathrm{GL}\left(V_{\mathbb{R}}\right)$: finite reflection group, i.e. finite subgroup generated by reflections (structure of a finite Coxeter group).

- We will consider W acting on the complex vector space $V:=V_{\mathbb{R}} \otimes \mathbb{C}$.

Geometry and combinatorics of finite reflection groups

$V_{\mathbb{R}}$: real vector space of finite dimension.
$W \subseteq \mathrm{GL}\left(V_{\mathbb{R}}\right)$: finite reflection group, i.e. finite subgroup generated by reflections (structure of a finite Coxeter group).

- We will consider W acting on the complex vector space $V:=V_{\mathbb{R}} \otimes \mathbb{C}$.
- N.B.: results remain valid for more general groups (wellgenerated complex reflection groups).

Geometry and combinatorics of finite reflection groups

$V_{\mathbb{R}}$: real vector space of finite dimension.
$W \subseteq \mathrm{GL}\left(V_{\mathbb{R}}\right)$: finite reflection group, i.e. finite subgroup generated by reflections (structure of a finite Coxeter group).

- We will consider W acting on the complex vector space $V:=V_{\mathbb{R}} \otimes \mathbb{C}$.
- N.B.: results remain valid for more general groups (wellgenerated complex reflection groups).

Invariant theory of
W (geometry of the
discriminant Δ_{W})

Geometry and combinatorics of finite reflection groups

$V_{\mathbb{R}}$: real vector space of finite dimension.
$W \subseteq G L\left(V_{\mathbb{R}}\right)$: finite reflection group, i.e. finite subgroup generated by reflections (structure of a finite Coxeter group).

- We will consider W acting on the complex vector space $V:=V_{\mathbb{R}} \otimes \mathbb{C}$.
- N.B.: results remain valid for more general groups (wellgenerated complex reflection groups).

Combinatorics of (W,R), block factorizations

- Consider the generating set $R:=\{$ all reflections of $W\}$.

Combinatorics of (W,R), block factorizations

- Consider the generating set $R:=\{$ all reflections of $W\}$.
- Define the "absolute length" function ℓ_{R}.

Combinatorics of (W,R), block factorizations

- Consider the generating set $R:=\{$ all reflections of $W\}$.
- Define the "absolute length" function ℓ_{R}.
- Fix c a Coxeter element of W.

Combinatorics of (W, R), block factorizations

- Consider the generating set $R:=\{$ all reflections of $W\}$.
- Define the "absolute length" function ℓ_{R}.
- Fix c a Coxeter element of W.
- Note: the set of Coxeter elements forms a particular conjugacy class of elements of length $n:=\mathrm{rk}(W)$.

Combinatorics of (W, R), block factorizations

- Consider the generating set $R:=\{$ all reflections of $W\}$.
- Define the "absolute length" function ℓ_{R}.
- Fix c a Coxeter element of W.
- Note: the set of Coxeter elements forms a particular conjugacy class of elements of length $n:=\mathrm{rk}(W)$.

Definition (Block factorizations of c)
$\left(w_{1}, \ldots, w_{p}\right) \in(W-\{1\})^{p}$ is a block factorization of c if

Combinatorics of (W, R), block factorizations

- Consider the generating set $R:=\{$ all reflections of $W\}$.
- Define the "absolute length" function ℓ_{R}.
- Fix c a Coxeter element of W.
- Note: the set of Coxeter elements forms a particular conjugacy class of elements of length $n:=\mathrm{rk}(W)$.

Definition (Block factorizations of c)
$\left(w_{1}, \ldots, w_{p}\right) \in(W-\{1\})^{p}$ is a block factorization of c if

- $W_{1} \ldots W_{p}=c$.

Combinatorics of (W, R), block factorizations

- Consider the generating set $R:=\{$ all reflections of $W\}$.
- Define the "absolute length" function ℓ_{R}.
- Fix c a Coxeter element of W.
- Note: the set of Coxeter elements forms a particular conjugacy class of elements of length $n:=\mathrm{rk}(W)$.

Definition (Block factorizations of c)
$\left(w_{1}, \ldots, w_{p}\right) \in(W-\{1\})^{p}$ is a block factorization of c if

- $w_{1} \ldots w_{p}=c$.
- $\ell_{R}\left(w_{1}\right)+\cdots+\ell_{R}\left(w_{p}\right)=\ell_{R}(c)=n$.

Combinatorics of (W, R), block factorizations

- Consider the generating set $R:=\{$ all reflections of $W\}$.
- Define the "absolute length" function ℓ_{R}.
- Fix c a Coxeter element of W.
- Note: the set of Coxeter elements forms a particular conjugacy class of elements of length $n:=\mathrm{rk}(W)$.

Definition (Block factorizations of c)
$\left(w_{1}, \ldots, w_{p}\right) \in(W-\{1\})^{p}$ is a block factorization of c if

- $w_{1} \ldots w_{p}=c$.
- $\ell_{R}\left(w_{1}\right)+\cdots+\ell_{R}\left(w_{p}\right)=\ell_{R}(c)=n$.

Combinatorics of (W, R), block factorizations

- Consider the generating set $R:=\{$ all reflections of $W\}$.
- Define the "absolute length" function ℓ_{R}.
- Fix c a Coxeter element of W.
- Note: the set of Coxeter elements forms a particular conjugacy class of elements of length $n:=\mathrm{rk}(W)$.

Definition (Block factorizations of c)
$\left(w_{1}, \ldots, w_{p}\right) \in(W-\{1\})^{p}$ is a block factorization of c if

- $w_{1} \ldots w_{p}=c$.
- $\ell_{R}\left(w_{1}\right)+\cdots+\ell_{R}\left(w_{p}\right)=\ell_{R}(c)=n$.

FACT $_{p}(c):=\{$ block factorizations of c in p factors $\}$.

Combinatorics of (W, R), block factorizations

- Consider the generating set $R:=\{$ all reflections of $W\}$.
- Define the "absolute length" function ℓ_{R}.
- Fix c a Coxeter element of W.
- Note: the set of Coxeter elements forms a particular conjugacy class of elements of length $n:=\operatorname{rk}(W)$.

Definition (Block factorizations of c)
$\left(w_{1}, \ldots, w_{p}\right) \in(W-\{1\})^{p}$ is a block factorization of c if

- $w_{1} \ldots w_{p}=c$.
- $\ell_{R}\left(w_{1}\right)+\cdots+\ell_{R}\left(w_{p}\right)=\ell_{R}(c)=n$.

FACT $_{p}(c):=\{$ block factorizations of c in p factors $\}$.
$\mathrm{NC}(W)=\left\{w \mid \ell(w)+\ell\left(w^{-1} c\right)=\ell(c)\right\}=\{$ "block factors" of $c\}$

Submaximal factorizations of a Coxeter element

Suppose W is irreducible.

Submaximal factorizations of a Coxeter element

Suppose W is irreducible. The number of reduced decompositions of c is: $\left|\operatorname{FACT}_{n}(c)\right|=n!h^{n} /|W|$, where h is the order of c.

Submaximal factorizations of a Coxeter element

Suppose W is irreducible. The number of reduced decompositions of c is: $\left|\operatorname{FACT}_{n}(c)\right|=n!h^{n} /|W|$, where h is the order of c. [Deligne, Bessis-Corran] (case-by-case proof).

Submaximal factorizations of a Coxeter element

Suppose W is irreducible. The number of reduced decompositions of c is: $\left|\operatorname{FACT}_{n}(c)\right|=n!h^{n} /|W|$, where h is the order of c. [Deligne, Bessis-Corran] (case-by-case proof). What about $\mathrm{FACT}_{n-1}(c)$?

Submaximal factorizations of a Coxeter element

Suppose W is irreducible. The number of reduced decompositions of c is: $\left|\operatorname{FACT}_{n}(c)\right|=n!h^{n} /|W|$, where h is the order of c. [Deligne, Bessis-Corran] (case-by-case proof). What about FACT ${ }_{n-1}(c)$?

Theorem (R.)

Let \wedge be a conjugacy class of elements of length 2 in W. Call submaximal factorizations of c of type \wedge the block factorizations containing $n-2$ reflections and one element (of length 2) in the conjugacy class \wedge. Then, their number is:

$$
\left|\operatorname{FACT}_{n-1}^{\wedge}(c)\right|=\frac{(n-1)!h^{n-1}}{|W|} \operatorname{deg} D_{\wedge},
$$

where D_{\wedge} is a homogeneous polynomial constructed from the geometry of the discriminant hypersurface of W.

Intersection lattice and parabolic subgroups

$\mathcal{A}:=\{$ reflecting hyperplanes of $W\}$.

Intersection lattice and parabolic subgroups

$\mathcal{A}:=\{$ reflecting hyperplanes of $W\}$.
Stratification of V with the "flats" (intersection lattice):

$$
\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\}
$$

Intersection lattice and parabolic subgroups

$\mathcal{A}:=\{$ reflecting hyperplanes of $W\}$.
Stratification of V with the "flats" (intersection lattice):
$\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} \quad \xrightarrow{\sim} \quad \operatorname{PSG}(W) \quad$ (parabolic subgps of W)

Intersection lattice and parabolic subgroups

$\mathcal{A}:=\{$ reflecting hyperplanes of $W\}$.
Stratification of V with the "flats" (intersection lattice):
$\begin{array}{clcl}\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} & \xrightarrow{\longrightarrow} & \operatorname{PSG}(W) & \text { (parabolic subgps of } W \text {) } \\ & \mapsto & W_{L} & \text { (pointwise stabilizer of } L \text {) }\end{array}$

Intersection lattice and parabolic subgroups

$\mathcal{A}:=\{$ reflecting hyperplanes of $W\}$.
Stratification of V with the "flats" (intersection lattice):

$$
\begin{array}{clcl}
\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} & \xrightarrow{\longrightarrow} & \mathrm{PSG}(W) & \text { (parabolic subgps of } W \text {) } \\
& \mapsto & W_{L} & \text { (pointwise stabilizer of } L \text {) }
\end{array}
$$

- A parabolic subgroup is a reflection group [Steinberg].

Intersection lattice and parabolic subgroups

$\mathcal{A}:=\{$ reflecting hyperplanes of $W\}$.
Stratification of V with the "flats" (intersection lattice):

$$
\begin{array}{cccc}
\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} & \xrightarrow{\sim} & \operatorname{PSG}(W) & \text { (parabolic subgps of } W \text {) } \\
& \mapsto & W_{L} & \text { (pointwise stabilizer of } L \text {) }
\end{array}
$$

- A parabolic subgroup is a reflection group [Steinberg].
- Its Coxeter elements are called parabolic Coxeter elements.

Intersection lattice and parabolic subgroups

$\mathcal{A}:=\{$ reflecting hyperplanes of $W\}$.
Stratification of V with the "flats" (intersection lattice):

$$
\begin{array}{clcl}
\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} & \xrightarrow{\sim} & \mathrm{PSG}(W) & \text { (parabolic subgps of } W \text {) } \\
& \mapsto & W_{L} & \text { (pointwise stabilizer of } L \text {) }
\end{array}
$$

- A parabolic subgroup is a reflection group [Steinberg].
- Its Coxeter elements are called parabolic Coxeter elements.

$$
L_{0} \in \mathcal{L} \quad \leftrightarrow \quad W_{0} \in \operatorname{PSG}(W)
$$

Intersection lattice and parabolic subgroups

$\mathcal{A}:=\{$ reflecting hyperplanes of $W\}$.
Stratification of V with the "flats" (intersection lattice):

$$
\begin{array}{clcl}
\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} & \xrightarrow{\longrightarrow} & \mathrm{PSG}(W) & \text { (parabolic subgps of } W \text {) } \\
& \mapsto & W_{L} & \text { (pointwise stabilizer of } L \text {) }
\end{array}
$$

- A parabolic subgroup is a reflection group [Steinberg].
- Its Coxeter elements are called parabolic Coxeter elements.

$$
L_{0} \in \mathcal{L} \quad \leftrightarrow \quad W_{0} \in \operatorname{PSG}(W) \quad \leftarrow c_{0} \text { parabolic Coxeter elt }
$$

Intersection lattice and parabolic subgroups

$\mathcal{A}:=\{$ reflecting hyperplanes of $W\}$.
Stratification of V with the "flats" (intersection lattice):
$\left.\begin{array}{clcl}\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H\right. & \mathcal{B} \subseteq \mathcal{A}\} & \xrightarrow{\longrightarrow} & \operatorname{PSG}(W)\end{array}\right)$

- A parabolic subgroup is a reflection group [Steinberg].
- Its Coxeter elements are called parabolic Coxeter elements.

$$
\begin{array}{ccccc}
L_{0} \in \mathcal{L} & \leftrightarrow & W_{0} \in \operatorname{PSG}(W) & \leftarrow & c_{0} \text { parabolic Coxeter elt } \\
\operatorname{codim}\left(L_{0}\right) & = & \operatorname{rk}\left(W_{0}\right) & = & \ell_{R}\left(c_{0}\right)
\end{array}
$$

The quotient-space V / W

W acts on the polynomial algebra $\mathbb{C}[V]$.

The quotient-space V / W

W acts on the polynomial algebra $\mathbb{C}[V]$.
Chevalley-Shephard-Todd's theorem
There exist invariant polynomials f_{1}, \ldots, f_{n}, homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]$.

The quotient-space V / W

W acts on the polynomial algebra $\mathbb{C}[V]$.

Chevalley-Shephard-Todd's theorem

There exist invariant polynomials f_{1}, \ldots, f_{n}, homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]$.
\rightsquigarrow isomorphism: $\quad V / W \xrightarrow{\sim} \mathbb{C}^{n}$

$$
\bar{v} \mapsto\left(f_{1}(v), \ldots, f_{n}(v)\right) .
$$

The quotient-space V / W

W acts on the polynomial algebra $\mathbb{C}[V]$.

Chevalley-Shephard-Todd's theorem

There exist invariant polynomials f_{1}, \ldots, f_{n}, homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]$.
\rightsquigarrow isomorphism: $\quad V / W \xrightarrow{\sim} \mathbb{C}^{n}$

$$
\bar{v} \mapsto\left(f_{1}(v), \ldots, f_{n}(v)\right) .
$$

- The degrees of f_{1}, \ldots, f_{n} (called invariant degrees) do not depend on the choices of the fundamental invariants.

The quotient-space V / W

W acts on the polynomial algebra $\mathbb{C}[V]$.

Chevalley-Shephard-Todd's theorem

There exist invariant polynomials f_{1}, \ldots, f_{n}, homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]$.
\rightsquigarrow isomorphism: $\quad V / W \xrightarrow{\sim} \mathbb{C}^{n}$

$$
\bar{v} \mapsto\left(f_{1}(v), \ldots, f_{n}(v)\right) .
$$

- The degrees of f_{1}, \ldots, f_{n} (called invariant degrees) do not depend on the choices of the fundamental invariants.
- We will suppose that f_{n} is the invariant of highest degree.

Discriminant hypersurface and strata

For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

Discriminant hypersurface and strata

For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

$$
\begin{aligned}
& \qquad \prod_{H \in \mathcal{A}} \alpha_{H} \in \mathbb{C}[V] \\
& \text { equation of } \bigcup_{H \in \mathcal{A}} H .
\end{aligned}
$$

Discriminant hypersurface and strata

For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

$$
\begin{aligned}
& \qquad \prod_{H \in \mathcal{A}} \alpha_{H}{ }^{2} \in \mathbb{C}[V] \\
& \text { equation of } \bigcup_{H \in \mathcal{A}} H .
\end{aligned}
$$

Discriminant hypersurface and strata

For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

$$
\begin{aligned}
& \qquad \prod_{H \in \mathcal{A}} \alpha_{H}^{2} \in \mathbb{C}[V]^{W} \\
& \text { equation of } \bigcup_{H \in \mathcal{A}} H .
\end{aligned}
$$

Discriminant hypersurface and strata

For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

$$
\prod_{H \in \mathcal{A}} \alpha_{H}^{2} \in \mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]
$$

equation of $\bigcup_{H \in \mathcal{A}} H$.

Discriminant hypersurface and strata

For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.
$\Delta_{W}:=\prod_{H \in \mathcal{A}} \alpha_{H}{ }^{2} \in \mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right] \quad$ (discriminant of W) equation of $\bigcup_{H \in \mathcal{A}} H$.

Discriminant hypersurface and strata

For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.
$\Delta_{W}:=\prod_{H \in \mathcal{A}} \alpha_{H}{ }^{2} \in \mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right] \quad$ (discriminant of W) equation of $\mathrm{p}\left(\cup_{H \in \mathcal{A}} H\right)=\mathcal{H}$, where $\mathrm{p}: V \rightarrow V / W$.

Discriminant hypersurface and strata

For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

$$
\Delta_{W}:=\prod_{H \in \mathcal{A}} \alpha_{H}^{2} \in \mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right] \quad \text { (discriminant of } W \text {) }
$$

equation of $p\left(\bigcup_{H \in \mathcal{A}} H\right)=\mathcal{H}$, where $p: V \rightarrow V / W$.
Construct a stratification of V / W, image of the stratification \mathcal{L} : $\overline{\mathcal{L}}=W \backslash \mathcal{L}=(p(L))_{L \in \mathcal{L}}=(W \cdot L)_{L \in \mathcal{L}}$.

Discriminant hypersurface and strata

For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

$$
\Delta_{W}:=\prod_{H \in \mathcal{A}} \alpha_{H}^{2} \in \mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right] \quad \text { (discriminant of } W \text {) }
$$

equation of $p\left(\bigcup_{H \in \mathcal{A}} H\right)=\mathcal{H}$, where $p: V \rightarrow V / W$.
Construct a stratification of V / W, image of the stratification \mathcal{L} :
$\overline{\mathcal{L}}=W \backslash \mathcal{L}=(\mathrm{p}(L))_{L \in \mathcal{L}}=(W \cdot L)_{L \in \mathcal{L}}$.

Proposition

The set $\overline{\mathcal{L}}$ is in canonical bijection with:

- the set of conjugacy classes of parabolic subgroups of W;

Discriminant hypersurface and strata

For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

$$
\Delta_{W}:=\prod_{H \in \mathcal{A}} \alpha_{H}^{2} \in \mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right] \quad \text { (discriminant of } W \text {) }
$$

$$
\text { equation of } p\left(\cup_{H \in \mathcal{A}} H\right)=\mathcal{H} \text {, where } p: V \rightarrow V / W \text {. }
$$

Construct a stratification of V / W, image of the stratification \mathcal{L} :
$\overline{\mathcal{L}}=W \backslash \mathcal{L}=(\mathrm{p}(L))_{L \in \mathcal{L}}=(W \cdot L)_{L \in \mathcal{L}}$.

Proposition

The set $\overline{\mathcal{L}}$ is in canonical bijection with:

- the set of conjugacy classes of parabolic subgroups of W;
- the set of conjugacy classes of parabolic Coxeter elts;

Discriminant hypersurface and strata

For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

$$
\Delta_{W}:=\prod_{H \in \mathcal{A}} \alpha_{H}^{2} \in \mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right] \quad \text { (discriminant of } W \text {) }
$$

equation of $p\left(\bigcup_{H \in \mathcal{A}} H\right)=\mathcal{H}$, where $p: V \rightarrow V / W$.
Construct a stratification of V / W, image of the stratification \mathcal{L} :
$\overline{\mathcal{L}}=W \backslash \mathcal{L}=(\mathrm{p}(L))_{L \in \mathcal{L}}=(W \cdot L)_{L \in \mathcal{L}}$.

Proposition

The set $\overline{\mathcal{L}}$ is in canonical bijection with:

- the set of conjugacy classes of parabolic subgroups of W;
- the set of conjugacy classes of parabolic Coxeter elts;
- the set of conjugacy classes of elements of $\mathrm{NC}(W)$ (block factors of the fixed c).

Example $W=A_{3}$: discriminant ("swallowtail")

$$
\bigcup_{H \in \mathcal{A}} H \subseteq V
$$

Example $W=A_{3}$: discriminant ("swallowtail")

$\bigcup H \subseteq V$
$H \in \mathcal{A}$
/W

Example $W=A_{3}$: discriminant ("swallowtail")

hypersurface \mathcal{H} (discriminant) $\subseteq W \backslash V \simeq \mathbb{C}^{3}$

Example of $W=A_{3}$: stratification of the discriminant

Example of $W=A_{3}$: stratification of the discriminant

Example of $W=A_{3}$: stratification of the discriminant

Example of $W=A_{3}$: stratification of the discriminant

Bifurcation locus

Theorem (Orlik-Solomon, Bessis)
If W is a real (or complex well-generated) reflection group, then the discriminant Δ_{W} is monic of degree n in the variable f_{n}.

Bifurcation locus

Theorem (Orlik-Solomon, Bessis)
If W is a real (or complex well-generated) reflection group, then the discriminant Δ_{W} is monic of degree n in the variable f_{n}.

So if we fix f_{1}, \ldots, f_{n-1}, the polynomial Δ_{W}, as a polynomial in f_{n}, has generically n roots...

Bifurcation locus

Theorem (Orlik-Solomon, Bessis)

If W is a real (or complex well-generated) reflection group, then the discriminant Δ_{W} is monic of degree n in the variable f_{n}.

So if we fix f_{1}, \ldots, f_{n-1}, the polynomial Δ_{W}, as a polynomial in f_{n}, has generically n roots...
... except when $\left(f_{1}, \ldots, f_{n-1}\right)$ is a zero of

$$
D_{W}:=\operatorname{Disc}\left(\Delta_{w}\left(f_{1}, \ldots, f_{n}\right) ; f_{n}\right) \in \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right] .
$$

Bifurcation locus

Theorem (Orlik-Solomon, Bessis)

If W is a real (or complex well-generated) reflection group, then the discriminant Δ_{W} is monic of degree n in the variable f_{n}.

So if we fix f_{1}, \ldots, f_{n-1}, the polynomial Δ_{W}, as a polynomial in f_{n}, has generically n roots...
... except when $\left(f_{1}, \ldots, f_{n-1}\right)$ is a zero of

$$
D_{W}:=\operatorname{Disc}\left(\Delta_{W}\left(f_{1}, \ldots, f_{n}\right) ; f_{n}\right) \in \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right] .
$$

Definition

The bifurcation locus of Δ_{W} (w.r.t. f_{n}) is the hypersurface of \mathbb{C}^{n-1} :

$$
\mathcal{K}:=\left\{D_{W}=0\right\}
$$

Example of A_{3} : bifurcation locus \mathcal{K}

$$
\mathcal{H} \subseteq W \backslash V \simeq \mathbb{C}^{3}
$$

Example of A_{3} : bifurcation locus \mathcal{K}

Submaximal factorizations of type \wedge

$\overline{\mathcal{L}}_{2}:=\{$ strata of $\overline{\mathcal{L}}$ of codimension 2$\}$
$\leftrightarrow \quad$ \{conjugacy classes of elements of $\mathrm{NC}(W)\}$

Submaximal factorizations of type \wedge

$\overline{\mathcal{L}}_{2}:=\{$ strata of $\overline{\mathcal{L}}$ of codimension 2$\}$
$\leftrightarrow \quad\{$ conjugacy classes of elements of $\mathrm{NC}(W)\}$

Proposition

The $\varphi(\Lambda)$, for $\Lambda \in \overline{\mathcal{L}}_{2}$, are the irreducible components of \mathcal{K}.

Submaximal factorizations of type \wedge

$\overline{\mathcal{L}}_{2}:=\{$ strata of $\overline{\mathcal{L}}$ of codimension 2$\}$
$\leftrightarrow \quad$ \{conjugacy classes of elements of $\mathrm{NC}(W)\}$

Proposition

The $\varphi(\Lambda)$, for $\Lambda \in \overline{\mathcal{L}}_{2}$, are the irreducible components of \mathcal{K}.
\rightsquigarrow we can write $D_{W}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$, where $r_{\Lambda} \geq 1$ and the D_{Λ} are polynomials in f_{1}, \ldots, f_{n-1}.

Submaximal factorizations of type \wedge

$\overline{\mathcal{L}}_{2}:=\{$ strata of $\overline{\mathcal{L}}$ of codimension 2$\}$
$\leftrightarrow \quad$ \{conjugacy classes of elements of $\mathrm{NC}(W)\}$

Proposition

The $\varphi(\Lambda)$, for $\Lambda \in \overline{\mathcal{L}}_{2}$, are the irreducible components of \mathcal{K}.
\rightsquigarrow we can write $D_{W}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$, where $r_{\Lambda} \geq 1$ and the D_{Λ} are polynomials in f_{1}, \ldots, f_{n-1}.

Theorem (R.)

For $\Lambda \in \overline{\mathcal{L}}_{2}$, the number of submaximal factorizations of c of type \wedge (i.e., whose unique length 2 element lies in the conjugacy class Λ) is:

$$
\left|\operatorname{FACT}_{n-1}^{\wedge}(c)\right|=\frac{(n-1)!h^{n-1}}{|W|} \operatorname{deg} D_{\wedge} .
$$

Submaximal factorizations of type \wedge

$\overline{\mathcal{L}}_{2}:=\{$ strata of $\overline{\mathcal{L}}$ of codimension 2$\}$
$\leftrightarrow \quad$ \{conjugacy classes of elements of $\mathrm{NC}(W)\}$

Proposition

The $\varphi(\Lambda)$, for $\Lambda \in \overline{\mathcal{L}}_{2}$, are the irreducible components of \mathcal{K}.
\rightsquigarrow we can write $D_{W}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$, where $r_{\Lambda} \geq 1$ and the D_{Λ} are polynomials in f_{1}, \ldots, f_{n-1}.

Theorem (R.)

For $\Lambda \in \overline{\mathcal{L}}_{2}$, the number of submaximal factorizations of c of type \wedge (i.e. , whose unique length 2 element lies in the conjugacy class Λ) is:

$$
\left|\operatorname{FACT}_{n-1}^{\wedge}(c)\right|=\frac{(n-1)!h^{n-1}}{|W|} \operatorname{deg} D_{\wedge} .
$$

\square - Fuß-Catalan - Proof - End $\square>$

Submaximal factorizations of a Coxeter element

How to compute uniformly $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}}$ deg D_{Λ} ?

Submaximal factorizations of a Coxeter element

How to compute uniformly $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}}$ deg D_{Λ} ?

- Recall that $D_{W}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.

Submaximal factorizations of a Coxeter element

How to compute uniformly $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}}$ deg D_{Λ} ?

- Recall that $D_{W}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.
- We found an interpretation of $\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}-1}$, as the Jacobian J of an algebraic morphism.

Submaximal factorizations of a Coxeter element

How to compute uniformly $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}}$ deg D_{Λ} ?

- Recall that $D_{W}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.
- We found an interpretation of $\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}-1}$, as the Jacobian J of an algebraic morphism.
- We can compute deg J,

Submaximal factorizations of a Coxeter element

How to compute uniformly $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}}$ deg D_{Λ} ?

- Recall that $D_{W}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.
- We found an interpretation of $\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}-1}$, as the Jacobian J of an algebraic morphism.
- We can compute deg J,
- and then $\sum \operatorname{deg} D_{\Lambda}=\operatorname{deg} D_{W}-\operatorname{deg} J$.

Submaximal factorizations of a Coxeter element

```
~
```

How to compute uniformly $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}}$ deg D_{Λ} ?

- Recall that $D_{W}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.
- We found an interpretation of $\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}-1}$, as the Jacobian J of an algebraic morphism.
- We can compute deg J,
- and then $\sum \operatorname{deg} D_{\Lambda}=\operatorname{deg} D_{W}-\operatorname{deg} J$.

Corollary

The number of block factorisations of a Coxeter element c in $n-1$ factors is:

$$
\left|\operatorname{FACT}_{n-1}(c)\right|=\frac{(n-1)!h^{n-1}}{|W|}\left(\frac{(n-1)(n-2)}{2} h+\sum_{i=1}^{n-1} d_{i}\right)
$$

where $d_{1}, \ldots, d_{n}=h$ are the invariant degrees of W.

Conclusion

- We discovered an new manifestation of the deep connections between the geometry of W and the combinatorics of $\mathrm{NC}(W)$.

Conclusion

- We discovered an new manifestation of the deep connections between the geometry of W and the combinatorics of $\mathrm{NC}(W)$.
- The proof is a bit more satisfactory than the usual ones.

Conclusion

- We discovered an new manifestation of the deep connections between the geometry of W and the combinatorics of $\mathrm{NC}(W)$.
- The proof is a bit more satisfactory than the usual ones.
- We recover geometrically formulas for certain specific factorisations, known in the real case with combinatorial proofs [Krattenthaler].

Conclusion

- We discovered an new manifestation of the deep connections between the geometry of W and the combinatorics of $\mathrm{NC}(W)$.
- The proof is a bit more satisfactory than the usual ones.
- We recover geometrically formulas for certain specific factorisations, known in the real case with combinatorial proofs [Krattenthaler].
- To obtain more we should study further the morphism LL and its ramification.

Conclusion

- We discovered an new manifestation of the deep connections between the geometry of W and the combinatorics of $\mathrm{NC}(W)$.
- The proof is a bit more satisfactory than the usual ones.
- We recover geometrically formulas for certain specific factorisations, known in the real case with combinatorial proofs [Krattenthaler].
- To obtain more we should study further the morphism LL and its ramification.

Conclusion

- We discovered an new manifestation of the deep connections between the geometry of W and the combinatorics of $\mathrm{NC}(W)$.
- The proof is a bit more satisfactory than the usual ones.
- We recover geometrically formulas for certain specific factorisations, known in the real case with combinatorial proofs [Krattenthaler].
- To obtain more we should study further the morphism LL and its ramification.

Thank you!

Reference: Lyashko-Looijenga morphisms and submaximal factorisations of a Coxeter element, arXiv:1012.3825.

Conclusion

- We discovered an new manifestation of the deep connections between the geometry of W and the combinatorics of $\mathrm{NC}(W)$.
- The proof is a bit more satisfactory than the usual ones.
- We recover geometrically formulas for certain specific factorisations, known in the real case with combinatorial proofs [Krattenthaler].
- To obtain more we should study further the morphism LL and its ramification.

Thank you!

Reference: Lyashko-Looijenga morphisms and submaximal factorisations of a Coxeter element, arXiv:1012.3825.

Conclusion

- We discovered an new manifestation of the deep connections between the geometry of W and the combinatorics of $\mathrm{NC}(W)$.
- The proof is a bit more satisfactory than the usual ones.
- We recover geometrically formulas for certain specific factorisations, known in the real case with combinatorial proofs [Krattenthaler].
- To obtain more we should study further the morphism LL and its ramification.

Thank you!

Reference: Lyashko-Looijenga morphisms and submaximal factorisations of a Coxeter element, arXiv:1012.3825.

Fuß-Catalan combinatorics

Chapoton's formula for multichains in $\mathrm{NC}(W)$
Suppose W irreducible of rank n, and let c be a Coxeter element.
The number of "broad" block factorisations of c in $p+1$ factors is the Fuß-Catalan number of type W

$$
\operatorname{Cat}^{(p)}(W)=\prod_{i=1}^{n} \frac{d_{i}+p h}{d_{i}},
$$

where $d_{1}, \ldots, d_{n}=h$ are the invariant degrees of W.

Fuß-Catalan combinatorics

Chapoton's formula for multichains in $\mathrm{NC}(W)$
Suppose W irreducible of rank n, and let c be a Coxeter element.
The number of "broad" block factorisations of c in $p+1$ factors is the Fuß-Catalan number of type W

$$
\operatorname{Cat}^{(p)}(W)=\prod_{i=1}^{n} \frac{d_{i}+p h}{d_{i}},
$$

where $d_{1}, \ldots, d_{n}=h$ are the invariant degrees of W.
Proof: [Athanasiadis, Reiner, Bessis...] case-by-case.

Fuß-Catalan combinatorics

Chapoton's formula for multichains in $\mathrm{NC}(W)$
Suppose W irreducible of rank n, and let c be a Coxeter element.
The number of "broad" block factorisations of c in $p+1$ factors is the Fuß-Catalan number of type W

$$
\operatorname{Cat}^{(p)}(W)=\prod_{i=1}^{n} \frac{d_{i}+p h}{d_{i}},
$$

where $d_{1}, \ldots, d_{n}=h$ are the invariant degrees of W.
Proof: [Athanasiadis, Reiner, Bessis...] case-by-case.

- Our corollary is also a consequence of Chapoton's formula;

Fuß-Catalan combinatorics

Chapoton's formula for multichains in NC(W)
Suppose W irreducible of rank n, and let c be a Coxeter element.
The number of "broad" block factorisations of c in $p+1$ factors is the Fuß-Catalan number of type W

$$
\operatorname{Cat}^{(p)}(W)=\prod_{i=1}^{n} \frac{d_{i}+p h}{d_{i}}
$$

where $d_{1}, \ldots, d_{n}=h$ are the invariant degrees of W.
Proof: [Athanasiadis, Reiner, Bessis...] case-by-case.

- Our corollary is also a consequence of Chapoton's formula;
- but the proof is geometric and more enlightening: we travelled from the numerology of $\mathrm{FACT}_{n}(c)$ to that of $\mathrm{FACT}_{n-1}(c)$, without adding any case-by-case analysis.

Some ingredients of the proof

- Lyashko-Looijenga morphism LL:

$$
y \in Y=\operatorname{Spec} \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right] \mapsto \text { multiset of roots of } \Delta_{w}\left(y, f_{n}\right)
$$

- Construction of topological factorisations: [Bessis, R.]

$$
\text { facto }: Y \rightarrow \operatorname{FACT}(c) .
$$

- Fundamental property that the product map:

$$
Y \xrightarrow{\mathrm{LL} \times \text { facto }} E_{n} \times \mathrm{FACT}(c)
$$

is injective, and its image is the set of "compatible" pairs. In other words, the map facto induces a bijection between any fiber $L L L^{-1}(\omega)$ and the set of factorisations of same "composition" as ω.

- Consequently, we can use some algebraic properties of LL to obtain cardinalities of certain fibers, and deduce enumeration of certain factorisations.

Lyashko-Looijenga morphism and topological factorisations crasm topeon

