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Geometry and combinatorics of finite reflection groups

VR : real vector space of finite dimension.

W ⊆ GL(VR) : finite reflection group, i.e. finite subgroup
generated by reflections (structure of a finite Coxeter group).

We will consider W acting on the complex vector space
V := VR ⊗ C.
N.B.: results remain valid for more general groups (well-
generated complex reflection groups).

Invariant theory of
W (geometry of the
discriminant ∆W )

↔

Combinatorics of the
noncrossing partition lat-
tice of W (factorizations of a
Coxeter element)
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Combinatorics of (W ,R), block factorizations

Consider the generating set R := {all reflections of W}.

Define the “absolute length” function `R.
Fix c a Coxeter element of W .
Note: the set of Coxeter elements forms a particular
conjugacy class of elements of length n := rk(W ).

Definition (Block factorizations of c)

(w1, . . . ,wp) ∈ (W − {1})p is a block factorization of c if

w1 . . .wp = c.
`R(w1) + · · ·+ `R(wp) = `R(c) = n.

FACTp(c) := {block factorizations of c in p factors}.

NC(W ) = {w | `(w) + `(w−1c) = `(c)} = {”block factors” of c}
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Submaximal factorizations of a Coxeter element

Suppose W is irreducible.

The number of reduced
decompositions of c is: | FACTn(c)| = n! hn / |W |, where h is
the order of c. [Deligne, Bessis-Corran] (case-by-case proof).
What about FACTn−1(c) ?

Theorem (R.)
Let Λ be a conjugacy class of elements of length 2 in W. Call
submaximal factorizations of c of type Λ the block factorizations
containing n − 2 reflections and one element (of length 2) in the
conjugacy class Λ. Then, their number is:

| FACTΛ
n−1(c)| =

(n − 1)! hn−1

|W |
deg DΛ ,

where DΛ is a homogeneous polynomial constructed from the
geometry of the discriminant hypersurface of W.
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Intersection lattice and parabolic subgroups

A := {reflecting hyperplanes of W}.

Stratification of V with the “flats” (intersection lattice):

L :=
{⋂

H∈B H | B ⊆ A
}

∼−→ PSG(W ) (parabolic subgps of W )
L 7→ WL (pointwise stabilizer of L)

A parabolic subgroup is a reflection group [Steinberg].
Its Coxeter elements are called parabolic Coxeter
elements.

L0 ∈ L ↔ W0 ∈ PSG(W ) ← c0 parabolic Coxeter elt
codim(L0) = rk(W0) = `R(c0)
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The quotient-space V/W

W acts on the polynomial algebra C[V ].

Chevalley-Shephard-Todd’s theorem
There exist invariant polynomials f1, . . . , fn, homogeneous and
algebraically independent, s.t. C[V ]W = C[f1, . . . , fn].

 isomorphism: V/W ∼−→ Cn

v̄ 7→ (f1(v), . . . , fn(v)).

The degrees of f1, . . . , fn (called invariant degrees) do not
depend on the choices of the fundamental invariants.
We will suppose that fn is the invariant of highest degree.
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Discriminant hypersurface and strata

For H in A, denote by αH a linear form of kernel H.

∆W :=

∏
H∈A

αH

2

∈ C[V ]

W = C[f1, . . . , fn] (discriminant of W )

equation of
⋃

H∈AH.

where p : V � V/W .

Construct a stratification of V/W , image of the stratification L:
L̄ = W\L = (p(L))L∈L = (W · L)L∈L.

Proposition

The set L̄ is in canonical bijection with:

the set of conjugacy classes of parabolic subgroups of W;
the set of conjugacy classes of parabolic Coxeter elts;
the set of conjugacy classes of elements of NC(W ) (block
factors of the fixed c).
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Bifurcation locus

Theorem (Orlik-Solomon, Bessis)
If W is a real (or complex well-generated) reflection group, then
the discriminant ∆W is monic of degree n in the variable fn.

So if we fix f1, . . . , fn−1, the polynomial ∆W , as a polynomial in
fn, has generically n roots...
... except when (f1, . . . , fn−1) is a zero of

DW := Disc(∆W (f1, . . . , fn) ; fn) ∈ C[f1, . . . , fn−1].

Definition
The bifurcation locus of ∆W (w.r.t. fn) is the hypersurface
of Cn−1:

K := {DW = 0}
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Submaximal factorizations of type Λ

L̄2 := {strata of L̄ of codimension 2}
↔ {conjugacy classes of elements of NC(W )}

Proposition

The ϕ(Λ), for Λ ∈ L̄2, are the irreducible components of K.

 we can write DW =
∏

Λ∈L̄2
DrΛ

Λ , where rΛ ≥ 1 and the DΛ are
polynomials in f1, . . . , fn−1.

Theorem (R.)

For Λ ∈ L̄2, the number of submaximal factorizations of c of
type Λ (i.e. , whose unique length 2 element lies in the
conjugacy class Λ) is:

| FACTΛ
n−1(c)| =

(n − 1)! hn−1

|W |
deg DΛ .

Corollary Fuß-Catalan Proof End
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Submaximal factorizations of a Coxeter element

How to compute uniformly
∑

Λ∈L̄2
deg DΛ ?

Recall that DW =
∏

Λ∈L̄2
DrΛ

Λ .
We found an interpretation of

∏
Λ∈L̄2

DrΛ−1
Λ , as the

Jacobian J of an algebraic morphism.
We can compute deg J,
and then

∑
deg DΛ = deg DW − deg J.

Corollary

The number of block factorisations of a Coxeter element c
in n − 1 factors is:

| FACTn−1(c)| =
(n − 1)! hn−1

|W |

(
(n − 1)(n − 2)

2
h +

n−1∑
i=1

di

)
,

where d1, . . . ,dn = h are the invariant degrees of W.
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Conclusion

We discovered an new manifestation of the deep
connections between the geometry of W and the
combinatorics of NC(W ).

The proof is a bit more satisfactory than the usual ones.
We recover geometrically formulas for certain specific
factorisations, known in the real case with combinatorial
proofs [Krattenthaler].
To obtain more we should study further the morphism LL
and its ramification.

Thank you!

Reference: Lyashko-Looijenga morphisms and submaximal
factorisations of a Coxeter element, arXiv:1012.3825.
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Fuß-Catalan combinatorics

Chapoton’s formula for multichains in NC(W )

Suppose W irreducible of rank n, and let c be a Coxeter
element.
The number of “broad” block factorisations of c in p + 1 factors
is the Fuß-Catalan number of type W

Cat(p)(W ) =
n∏

i=1

di + ph
di

,

where d1, . . . ,dn = h are the invariant degrees of W .

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case.

Our corollary is also a consequence of Chapoton’s formula;
but the proof is geometric and more enlightening: we
travelled from the numerology of FACTn(c) to that of
FACTn−1(c), without adding any case-by-case analysis.
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Lyashko-Looijenga morphism LL: Picture

y ∈ Y = SpecC[f1, . . . , fn−1] 7→ multiset of roots of ∆W (y , fn).

Construction of topological factorisations: [Bessis, R.]

facto : Y → FACT(c) .

Fundamental property that the product map:

Y
LL× facto−−−−−−→ En × FACT(c)

is injective, and its image is the set of “compatible” pairs.
In other words, the map facto induces a bijection between
any fiber LL−1(ω) and the set of factorisations of same
“composition” as ω.
Consequently, we can use some algebraic properties of LL
to obtain cardinalities of certain fibers, and deduce
enumeration of certain factorisations.



Lyashko-Looijenga morphism and topological
factorisations Return to proof

LL

facto

{x1, . . . , xn} ∈ En

(w1, . . . ,wp) ∈ FACT(c)
ϕ

Y

fn

y y ∈ Y

ϕ−1(y) ' C
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