FEUILLE D'EXERCICES 7 : SÉRIES, TESTS DE CONVERGENCE

Quelques compléments de cours

EXERCICE 1. [Compléments au test du quotient de D'Alembert] Soit (a_n) une suite strictement positive.

- (a) On suppose que $\lim \left(\frac{a_{n+1}}{a_n}\right) = \ell > 1$. Montrer qu'à partir d'un certain rang, la suite (a_n) est croissante. En déduire que la série $\sum_{n=0}^{\infty} a_n$ diverge.
- (b) On suppose que $\lim \left(\frac{a_{n+1}}{a_n}\right) = 1$, mais que le quotient $\left(\frac{a_{n+1}}{a_n}\right)$ est toujours ≥ 1 . Montrer que la série $\sum_{n=0}^{\infty} a_n$ diverge.
- (c) On suppose que $\lim \left(\frac{a_{n+1}}{a_n}\right) = 1$, mais que le quotient $\left(\frac{a_{n+1}}{a_n}\right)$ est toujours ≤ 1 . Montrer, avec des exemples, que dans ce cas on peut avoir convergence ou divergence de la série $\sum_{n=0}^{\infty} a_n$. [On pourra utiliser le résultat de l'exercice 4.]

EXERCICE 2. Soit $\sum_{n=0}^{\infty} a_n$ une série à termes positifs, notons (S_n) la suite de ses sommes partielles. Montrer que si (S_n) a une suite extraite qui a une limite finie, alors la série $\sum_{n=0}^{\infty} a_n$ converge.

Exercice 3. [Critère de condensation de Cauchy]

Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite positive et décroissante. Le but de cet exercice est de montrer que

$$\sum_{n=1}^{\infty} a_n \text{ converge} \Longleftrightarrow \sum_{n=0}^{\infty} 2^n a_{2^n} \text{ converge.}$$

(a) On note S_n la suite des sommes partielles de la série $\sum_{n=1}^{\infty} a_n$, et on pose, pour tout $k \in \mathbb{N}$,

$$u_k = a_{2^k} + a_{2^{k+1}} + \dots + a_{2^{k+1}-1}.$$

Montrer que $S_{2^{n+1}-1} = u_0 + u_1 + \dots + u_n$ et que pour $k \in \mathbb{N}$, $2^k a_{2^{k+1}} \le u_k \le 2^k a_{2^k}$.

(b) En déduire que pour tout $n \in \mathbb{N}^*$,

$$\frac{1}{2} \sum_{k=1}^{n+1} 2^k a_{2^k} \le S_{2^{n+1}-1} \le \sum_{k=0}^{n} 2^k a_{2^k}.$$

(c) Conclure sur l'équivalence demandée.

Exercice 4. [Séries de Riemann]

Soit α un réel quelconque. Cet exercice vise à démontrer le théorème du cours :

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \text{ converge} \Longleftrightarrow \alpha > 1.$$

- (a) Montrer, en utilisant une comparaison, que si $\alpha \leq 1$, alors $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ diverge.
- (b) On pose $a_n = \frac{1}{n^{\alpha}}$, et $b_n = 2^n a_{2^n}$. Montrer que si $\alpha > 1$, alors $\sum_{n=0}^{\infty} b_n$ converge.
- (c) Conclure en utilisant le critère de condensation de Cauchy vu dans l'exercice précédent.

EXERCICE 5. Soient $\sum_{n=0}^{\infty} a_n$ et $\sum_{n=0}^{\infty} b_n$ deux séries à termes strictement positifs. On suppose qu'il existe $N \in \mathbb{N}$ tel que, pour $n \geq N$, $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$.

- (a) Montrer que pour tout $p \ge 1$, $\frac{a_{N+p}}{a_N} \le \frac{b_{N+p}}{b_N}$. En déduire que pour tout n > N, $a_n \le \frac{a_N}{b_N}b_n$.
- (b) Montrer que si $\sum_{n=0}^{\infty} b_n$ converge, alors $\sum_{n=0}^{\infty} a_n$ converge, et que si $\sum_{n=0}^{\infty} a_n$ diverge, alors $\sum_{n=0}^{\infty} b_n$ diverge.
- (c) Soit (u_n) une suite telle que, à partir d'un certain rang, $\frac{u_{n+1}}{u_n} \leq \left(\frac{n}{n+1}\right)^{\alpha}$, avec $\alpha > 1$. Montrer que la série $\sum_{n=0}^{\infty} u_n$ converge.

Exercice 6. (*) [Transformation d'Abel]

Soit $\sum_{n=0}^{\infty} u_n$ une série quelconque, on note S_n sa suite de sommes partielles, et on suppose que S_n est bornée. Soit h_n une suite décroissante et tendant vers 0. Le but de cet exercice est de montrer qu'alors, la série $\sum_{n=0}^{\infty} u_n h_n$ converge.

(a) Montrer que pour tout $n \in \mathbb{N}$, pour tout $p \ge 1$,

$$u_{n+1}h_{n+1} + \dots + u_{n+p}h_{n+p} = h_{n+p}S_{n+p} - h_{n+1}S_n + \sum_{k=n+1}^{n+p-1} (h_k - h_{k+1})S_k.$$

[On pourra écrire, pour $k \in \{n+1,\ldots,n+p\},\, u_k = S_k - S_{k-1}.]$

- (b) On note M un réel tel que pour tout $n \in \mathbb{N}$, $|S_n| \leq M$. Montrer que pour tout $n \in \mathbb{N}$, pour tout $p \geq 1$, $|u_{n+1}h_{n+1} + \cdots + u_{n+p}h_{n+p}| \leq 2Mh_{n+1}$.
- (c) En déduire, en utilisant le critère de Cauchy, que la série $\sum_{n=0}^{\infty} u_n h_n$ converge.
- (d) Soit $\sum_{n=0}^{\infty} a_n$ une série convergente, et (b_n) une suite décroissante minorée. En utilisant le résultat précédent, montrer que $\sum_{n=0}^{\infty} a_n b_n$ converge.

Exercices d'application

EXERCICE 7. Déterminer la nature (convergente, divergente) de la série $\sum a_n$ pour chacun des cas suivants, et calculer la somme pour ceux marqués (\diamond).

cas suivants, et calculer la somme pour ceux marqués
$$(\diamond)$$
.

(a) $a_n = \sqrt{n+1} - \sqrt{n}$
(b) $a_n = \frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n}}$
(c) $a_n = \frac{2^{2n+1}}{5^n}$ (\diamond)

(d) $a_n = \frac{(\cos(n))^2}{3^n}$
(e) $a_n = \frac{(n!)^3}{(3n)!}$

(f) $a_n = \frac{(2n^2 - 1)^n}{n^{2n}}$
(g) $a_n = \frac{n^{2n}}{(n^3 + 1)^n}$
(h) $a_n = \frac{\sin(nx)}{n^2}$, pour $x \in \mathbb{R}$ fixé.

(i) $a_n = \frac{\sqrt{n + \cos(n)}}{n}$

EXERCICE 8. Soit $x \in \mathbb{R}^+$.

- (a) Déterminer pour quelles valeurs de x la série $\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} x^n$ converge.
- (b) Soient $p, q \in \mathbb{N}$. Déterminer, selon les valeurs de x, p et q, la nature de la série $\sum_{n=0}^{\infty} \frac{(n!)^p}{(qn)!} x^n$.

EXERCICE 9. Déterminer, en fonction de la valeur de $x \in \mathbb{R}^+$, la nature de la série

$$\sum_{n=0}^{\infty} \frac{1 \cdot 4 \cdot 7 \dots (3n+1)}{n!} x^{n}.$$

[On pourra utiliser le test du quotient, ainsi que les résultats de l'exercice 1.]

EXERCICE 10. Dans cet exercice on pourra utiliser le résultat suivant (prouvé dans l'exercice 9 feuille 8, voir aussi p.36 des Notes de cours) :

$$\lim \left(1 + \frac{1}{n}\right)^n = e \approx 2,718.$$

- (a) Montrer que la série $\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$ converge.
- (b) Soit $a \in \mathbb{N}$. Quelle est la nature de la série $\sum_{n=1}^{\infty} \frac{a^n n!}{n^n}$, selon la valeur de a?

EXERCICE 11. Soit (a_n) une suite décroissante positive. Montrer que s'il existe une infinité de n tels que $a_n \geq \frac{1}{n}$, alors la série $\sum_{n=0}^{\infty} a_n$ diverge. Est-ce encore vrai si on ne suppose pas la suite décroissante? [On pourra considérer la suite $a_n = \frac{1}{n}$ si n est une puisance de 2, 0 sinon.]

EXERCICE 12. Soit $\sum_{n=0}^{\infty} a_n$ une série à termes positifs.

- (a) Montrer que la série $\sum_{n=0}^{\infty} a_n$ converge si et seulement si les $\sum_{n=0}^{\infty} a_{2n}$ et $\sum_{n=0}^{\infty} a_{2n+1}$ convergent.
- (b) En déduire, en utilisant le test du quotient, que si (a_{n+2}/a_n) tend vers une limite $\ell < 1$, alors $\sum_{n=0}^{\infty} a_n$ converge, et que si (a_{n+2}/a_n) tend vers une limite $\ell > 1$, alors $\sum_{n=0}^{\infty} a_n$ diverge.

EXERCICE 13.

- (a) On pose $u_n = \frac{1}{2^n}$ si n pair, $u_n = \frac{3}{2^n}$ si n impair. Montrer que $\sum_{n=0}^{\infty} u_n$ converge, et calculer la valeur de u_{n+1}/u_n .
- (b) Etant donnée une série à termes positifs $\sum_{n=1}^{\infty} a_n$, est-il vrai que si $\frac{a_{n+1}}{a_n} \ge 1$ pour une infinité de n, alors $\sum_{n=1}^{\infty} a_n$ diverge?