Factorizations of a Coxeter element and discriminant of a reflection group

Vivien Ripoll
LaCIM — UQÀM

Combinatorics Seminar University of Minnesota April 22nd 2011

Introduction

$V_{\mathbb{R}}$: real vector space of finite dimension.

Introduction

$V_{\mathbb{R}}$: real vector space of finite dimension.
W : a finite reflection group of $\mathrm{GL}\left(V_{\mathbb{R}}\right)$, i.e. finite subgroup generated by reflections (\rightsquigarrow structure of a finite Coxeter group).

Introduction

$V_{\mathbb{R}}$: real vector space of finite dimension.
W : a finite reflection group of $G L\left(V_{\mathbb{R}}\right)$, i.e. finite subgroup generated by reflections (\rightsquigarrow structure of a finite Coxeter group).

- We will consider W acting on the complex vector space $V:=V_{\mathbb{R}} \otimes \mathbb{C}$.

Introduction

$V_{\mathbb{R}}$: real vector space of finite dimension.
W : a finite reflection group of $G L\left(V_{\mathbb{R}}\right)$, i.e. finite subgroup generated by reflections (\rightsquigarrow structure of a finite Coxeter group).

- We will consider W acting on the complex vector space $V:=V_{\mathbb{R}} \otimes \mathbb{C}$.
- Results remain valid for more general groups (wellgenerated complex reflection groups).

Introduction

$V_{\mathbb{R}}$: real vector space of finite dimension.
W : a finite reflection group of $G L\left(V_{\mathbb{R}}\right)$, i.e. finite subgroup generated by reflections (\rightsquigarrow structure of a finite Coxeter group).

- We will consider W acting on the complex vector space $V:=V_{\mathbb{R}} \otimes \mathbb{C}$.
- Results remain valid for more general groups (wellgenerated complex reflection groups).

Invariant theory of
W (geometry of the discriminant Δ_{W})

Introduction

$V_{\mathbb{R}}$: real vector space of finite dimension.
W : a finite reflection group of $G L\left(V_{\mathbb{R}}\right)$, i.e. finite subgroup generated by reflections (\rightsquigarrow structure of a finite Coxeter group).

- We will consider W acting on the complex vector space $V:=V_{\mathbb{R}} \otimes \mathbb{C}$.
- Results remain valid for more general groups (wellgenerated complex reflection groups).

Invariant theory of Combinatorics of the noncrossing W (geometry of the \leftrightarrow partition lattice of W (factorizations discriminant $\left.\Delta_{W}\right) \quad$ of a Coxeter element)

Outline

(1) Noncrossing partition lattice and factorizations

- The noncrossing partition lattice of type W
- Factorizations of a Coxeter element
(2) Geometry of the discriminant
- Strata in the discriminant hypersurface
- Bifurcation locus of the discriminant

Outline

(1) Noncrossing partition lattice and factorizations

- The noncrossing partition lattice of type W
- Factorizations of a Coxeter element
(2) Geometry of the discriminant
- Strata in the discriminant hypersurface
- Bifurcation locus of the discriminant

The noncrossing partition lattice of type W

- Define $R:=\{$ all reflections of $W\}$.

The noncrossing partition lattice of type W

- Define $R:=\{$ all reflections of $W\}$.
- \rightsquigarrow reflection length (or absolute length) ℓ_{R}. (not the usual Coxeter length ℓ_{S} !)

The noncrossing partition lattice of type W

- Define $R:=\{$ all reflections of $W\}$.
- \rightsquigarrow reflection length (or absolute length) ℓ_{R}. (not the usual Coxeter length ℓ_{S} !)
- Absolute order \preccurlyeq_{R} :

$$
u \preccurlyeq_{R} v \text { if and only if } \ell_{R}(u)+\ell_{R}\left(u^{-1} v\right)=\ell_{R}(v) .
$$

The noncrossing partition lattice of type W

- Define $R:=\{$ all reflections of $W\}$.
- \rightsquigarrow reflection length (or absolute length) ℓ_{R}. (not the usual Coxeter length ℓ_{S} !)
- Absolute order \preccurlyeq_{R} :

$$
u \preccurlyeq_{R} v \text { if and only if } \ell_{R}(u)+\ell_{R}\left(u^{-1} v\right)=\ell_{R}(v) .
$$

- Fix c : a Coxeter element in W (particular conjugacy class of elements of length $n=\mathrm{rk}(W)$).

The noncrossing partition lattice of type W

- Define $R:=\{$ all reflections of $W\}$.
- \rightsquigarrow reflection length (or absolute length) ℓ_{R}. (not the usual Coxeter length ℓ_{S} !)
- Absolute order \preccurlyeq_{R} :

$$
u \preccurlyeq_{R} v \text { if and only if } \ell_{R}(u)+\ell_{R}\left(u^{-1} v\right)=\ell_{R}(v) .
$$

- Fix c : a Coxeter element in W (particular conjugacy class of elements of length $n=\mathrm{rk}(W)$).

The noncrossing partition lattice of type W

- Define $R:=\{$ all reflections of $W\}$.
- \rightsquigarrow reflection length (or absolute length) ℓ_{R}. (not the usual Coxeter length ℓ_{S} !)
- Absolute order \preccurlyeq_{R} :

$$
u \preccurlyeq_{R} v \text { if and only if } \ell_{R}(u)+\ell_{R}\left(u^{-1} v\right)=\ell_{R}(v) .
$$

- Fix c : a Coxeter element in W (particular conjugacy class of elements of length $n=\mathrm{rk}(W)$).

Definition (Noncrossing partition lattice of type W)

$$
\mathrm{NC}(W, c):=\left\{w \in W \mid w \preccurlyeq_{R} c\right\}
$$

The noncrossing partition lattice of type W

- Define $R:=\{$ all reflections of $W\}$.
- \rightsquigarrow reflection length (or absolute length) ℓ_{R}. (not the usual Coxeter length ℓ_{S} !)
- Absolute order \preccurlyeq_{R} :

$$
u \preccurlyeq_{R} v \text { if and only if } \ell_{R}(u)+\ell_{R}\left(u^{-1} v\right)=\ell_{R}(v) .
$$

- Fix c : a Coxeter element in W (particular conjugacy class of elements of length $n=\mathrm{rk}(W))$.

Definition (Noncrossing partition lattice of type W)

$$
\mathrm{NC}(W, c):=\left\{w \in W \mid w \preccurlyeq_{R} c\right\}
$$

Note: the structure doesn't depend on the choice of the Coxeter element (conjugacy) \rightsquigarrow write $\mathrm{NC}(W)$.

Prototype: noncrossing partitions of an n-gon

- $W:=\mathfrak{S}_{n}$, with generating set $R:=\{$ all transpositions $\}$

Prototype: noncrossing partitions of an n-gon

- $W:=\mathfrak{S}_{n}$, with generating set $R:=\{$ all transpositions $\}$
- $c:=n$-cycle (123 2 . n)

Prototype: noncrossing partitions of an n-gon

- $W:=\mathfrak{S}_{n}$, with generating set $R:=\{$ all transpositions $\}$
- $c:=n$-cycle (1 $23 \ldots$ n)
- $\mathrm{NC}(W, c) \longleftrightarrow$ \{noncrossing partitions of an n-gon $\}$

Prototype: noncrossing partitions of an n-gon

- $W:=\mathfrak{S}_{n}$, with generating set $R:=\{$ all transpositions $\}$
- $c:=n$-cycle (1 $23 \ldots$ n)
- $\mathrm{NC}(W, c) \longleftrightarrow\{$ noncrossing partitions of an n-gon $\}$

Prototype: noncrossing partitions of an n-gon

- $W:=\mathfrak{S}_{n}$, with generating set $R:=\{$ all transpositions $\}$
- $c:=n$-cycle (1 $23 \ldots$)
- $\mathrm{NC}(W, c) \longleftrightarrow\{$ noncrossing partitions of an n-gon $\}$

crossing

Prototype: noncrossing partitions of an n-gon

- $W:=\mathfrak{S}_{n}$, with generating set $R:=\{$ all transpositions $\}$
- $c:=n$-cycle (1 $23 \ldots$ n)
- $\mathrm{NC}(W, c) \longleftrightarrow\{$ noncrossing partitions of an n-gon $\}$

crossing

noncrossing

Fuß-Catalan numbers

Kreweras's formula for multichains of noncrossing partitions

- $W:=\mathfrak{S}_{n}$;
- c: an n-cycle.

The number of multichains $w_{1} \preccurlyeq_{R} w_{2} \preccurlyeq_{R} \ldots \preccurlyeq_{R} w_{p} \preccurlyeq_{R} C$ in $\mathrm{NC}(W, c)$ is the Fuß-Catalan number

$$
\operatorname{Cat}^{(p)}(n)=\prod_{i=2}^{n} \frac{i+p n}{i}=\frac{1}{p n+1}\binom{(p+1) n}{n}
$$

Fuß-Catalan numbers of type W

Chapoton's formula for multichains in $\mathrm{NC}(W)$

- $W:=\mathfrak{S}_{n}$;
- c: an n-cycle.

The number of multichains $w_{1} \preccurlyeq_{R} w_{2} \preccurlyeq_{R} \ldots \preccurlyeq_{R} w_{p} \preccurlyeq_{R} C$ in $\mathrm{NC}(W, c)$ is the Fuß-Catalan number

$$
\operatorname{Cat}^{(p)}(n)=\prod_{i=2}^{n} \frac{i+p n}{i}=\frac{1}{p n+1}\binom{(p+1) n}{n}
$$

Fuß-Catalan numbers of type W

Chapoton's formula for multichains in NC(W)

- $W:=$ an irreducible reflection group of rank n;
- c: an n-cycle.

The number of multichains $w_{1} \preccurlyeq_{R} w_{2} \preccurlyeq_{R} \ldots \preccurlyeq_{R} w_{p} \preccurlyeq_{R} C$ in $\mathrm{NC}(W, c)$ is the Fuß-Catalan number

$$
\operatorname{Cat}^{(p)}(n)=\prod_{i=2}^{n} \frac{i+p n}{i}=\frac{1}{p n+1}\binom{(p+1) n}{n}
$$

Fuß-Catalan numbers of type W

Chapoton's formula for multichains in NC(W)

- $W:=$ an irreducible reflection group of rank n;
- c: a Coxeter element.

The number of multichains $w_{1} \preccurlyeq_{R} W_{2} \preccurlyeq_{R} \ldots \preccurlyeq_{R} w_{p} \preccurlyeq_{R} C$ in $\mathrm{NC}(W, c)$ is the Fuß-Catalan number

$$
\operatorname{Cat}^{(p)}(n)=\prod_{i=2}^{n} \frac{i+p n}{i}=\frac{1}{p n+1}\binom{(p+1) n}{n}
$$

Fuß-Catalan numbers of type W

Chapoton's formula for multichains in NC(W)

- $W:=$ an irreducible reflection group of rank n;
- c: a Coxeter element.

The number of multichains $w_{1} \preccurlyeq_{R} w_{2} \preccurlyeq_{R} \ldots \preccurlyeq_{R} w_{p} \preccurlyeq_{R} C$ in $\mathrm{NC}(W, c)$ is the Fuß-Catalan number of type W

$$
\operatorname{Cat}^{(p)}(n)=\prod_{i=2}^{n} \frac{i+p n}{i}=\frac{1}{p n+1}\binom{(p+1) n}{n}
$$

Fuß-Catalan numbers of type W

Chapoton's formula for multichains in NC(W)

- $W:=$ an irreducible reflection group of rank n;
- $c:$ a Coxeter element.

The number of multichains $w_{1} \preccurlyeq_{R} w_{2} \preccurlyeq_{R} \ldots \preccurlyeq_{R} w_{p} \preccurlyeq_{R} C$ in $\mathrm{NC}(W, c)$ is the Fuß-Catalan number of type W

$$
\operatorname{Cat}^{(p)}(W)=\prod_{i=1}^{n} \frac{d_{i}+p h}{d_{i}}=\frac{1}{|W|} \prod_{i=1}^{n}\left(d_{i}+p h\right)
$$

Fuß-Catalan numbers of type W

Chapoton's formula for multichains in NC(W)

- $W:=$ an irreducible reflection group of rank n;
- $c:$ a Coxeter element.

The number of multichains $w_{1} \preccurlyeq_{R} w_{2} \preccurlyeq_{R} \ldots \preccurlyeq_{R} w_{p} \preccurlyeq_{R} C$ in $\mathrm{NC}(W, c)$ is the Fuß-Catalan number of type W

$$
\operatorname{Cat}^{(p)}(W)=\prod_{i=1}^{n} \frac{d_{i}+p h}{d_{i}}=\frac{1}{|W|} \prod_{i=1}^{n}\left(d_{i}+p h\right)
$$

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case!

Fuß-Catalan numbers of type W

Chapoton's formula for multichains in NC (W)

- $W:=$ an irreducible reflection group of rank n;
- c: a Coxeter element.

The number of multichains $w_{1} \preccurlyeq_{R} w_{2} \preccurlyeq_{R} \ldots \preccurlyeq_{R} w_{p} \preccurlyeq_{R} C$ in $\mathrm{NC}(W, c)$ is the Fuß-Catalan number of type W

$$
\operatorname{Cat}^{(p)}(W)=\prod_{i=1}^{n} \frac{d_{i}+p h}{d_{i}}=\frac{1}{|W|} \prod_{i=1}^{n}\left(d_{i}+p h\right) .
$$

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case! Remark: $\operatorname{Cat}^{(1)}(W)$ (and $\operatorname{Cat}^{(p)}(W)$) appear in other contexts: Fomin-Zelevinsky cluster algebras, nonnesting partitions...

Factorizations of a Coxeter element

Definition (Block factorizations of c)
$\left(w_{1}, \ldots, w_{p}\right) \in(W-\{1\})^{p}$ is a block factorization of c if

Factorizations of a Coxeter element

Definition (Block factorizations of c)
$\left(w_{1}, \ldots, w_{p}\right) \in(W-\{1\})^{p}$ is a block factorization of c if

- $W_{1} \ldots W_{p}=c$.

Factorizations of a Coxeter element

Definition (Block factorizations of c)
$\left(w_{1}, \ldots, w_{p}\right) \in(W-\{1\})^{p}$ is a block factorization of c if

- $w_{1} \ldots w_{p}=c$.
- $\ell_{R}\left(w_{1}\right)+\cdots+\ell_{R}\left(w_{p}\right)=\ell_{R}(c)=n$.

Factorizations of a Coxeter element

Definition (Block factorizations of c)
$\left(w_{1}, \ldots, w_{p}\right) \in(W-\{1\})^{p}$ is a block factorization of c if

- $w_{1} \ldots w_{p}=c$.
- $\ell_{R}\left(w_{1}\right)+\cdots+\ell_{R}\left(w_{p}\right)=\ell_{R}(c)=n$.

FACT $_{p}(c):=\{$ block factorizations of c in p factors $\}$.

Factorizations of a Coxeter element

Definition (Block factorizations of c)
$\left(w_{1}, \ldots, w_{p}\right) \in(W-\{1\})^{p}$ is a block factorization of c if

- $w_{1} \ldots w_{p}=c$.
- $\ell_{R}\left(w_{1}\right)+\cdots+\ell_{R}\left(w_{p}\right)=\ell_{R}(c)=n$.

FACT $_{p}(c):=\{$ block factorizations of c in p factors $\}$.

- "Factorizations \leftrightarrow chains".

Factorizations of a Coxeter element

Definition (Block factorizations of c)
$\left(w_{1}, \ldots, w_{p}\right) \in(W-\{1\})^{p}$ is a block factorization of c if

- $w_{1} \ldots w_{p}=c$.
- $\ell_{R}\left(w_{1}\right)+\cdots+\ell_{R}\left(w_{p}\right)=\ell_{R}(c)=n$.

FACT $_{p}(c):=\{$ block factorizations of c in p factors $\}$.

- "Factorizations \leftrightarrow chains".
- Problem : $\preccurlyeq_{R} v s \prec_{R}$? \rightsquigarrow use classical conversion formulas.

Factorizations of a Coxeter element

Definition (Block factorizations of c)
$\left(w_{1}, \ldots, w_{p}\right) \in(W-\{1\})^{p}$ is a block factorization of c if

- $w_{1} \ldots w_{p}=c$.
- $\ell_{R}\left(w_{1}\right)+\cdots+\ell_{R}\left(w_{p}\right)=\ell_{R}(c)=n$.

FACT $_{p}(c):=\{$ block factorizations of c in p factors $\}$.

- "Factorizations \leftrightarrow chains".
- Problem : $\preccurlyeq_{R} v s \prec_{R}$? \rightsquigarrow use classical conversion formulas.
- Bad news : we obtain much more complicated formulas.

Factorizations of a Coxeter element

Definition (Block factorizations of c)
$\left(w_{1}, \ldots, w_{p}\right) \in(W-\{1\})^{p}$ is a block factorization of c if

- $w_{1} \ldots w_{p}=c$.
- $\ell_{R}\left(w_{1}\right)+\cdots+\ell_{R}\left(w_{p}\right)=\ell_{R}(c)=n$.

FACT $_{p}(c):=\{$ block factorizations of c in p factors $\}$.

- "Factorizations \leftrightarrow chains".
- Problem : $\preccurlyeq_{R} v s \prec_{R}$? \rightsquigarrow use classical conversion formulas.
- Bad news : we obtain much more complicated formulas.
- Good news : we can interpret some of them geometrically (and even refine them); in particular for $p=n$ or $n-1$.

Submaximal factorizations of a Coxeter element

The number of reduced decompositions of c is:
$\operatorname{FACT}_{n}(c)\left|=n!h^{n} /|W|\right.$, where h is the order of c.

Submaximal factorizations of a Coxeter element

The number of reduced decompositions of c is:
$\left|\operatorname{FACT}_{n}(c)\right|=n!h^{n} /|W| \quad$, where h is the order of c.
[Deligne, Bessis-Corran] (case-by-case proof).

Submaximal factorizations of a Coxeter element

The number of reduced decompositions of c is:
$\left|\operatorname{FACT}_{n}(c)\right|=n!h^{n} /|W| \quad$, where h is the order of c.
[Deligne, Bessis-Corran] (case-by-case proof).
What about FACT ${ }_{n-1}(c)$?

Submaximal factorizations of a Coxeter element

The number of reduced decompositions of c is:
$\left|\operatorname{FACT}_{n}(c)\right|=n!h^{n} /|W| \quad$, where h is the order of c.
[Deligne, Bessis-Corran] (case-by-case proof).
What about FACT ${ }_{n-1}(c)$?

Theorem (R.)

Let \wedge be a conjugacy class of elements of length 2 of $\mathrm{NC}(W)$. Call submaximal factorizations of c of type \wedge the block factorizations containing $n-2$ reflections and one element (of length 2) in the conjugacy class \wedge. Then, their number is:

$$
\left|\operatorname{FACT}_{n-1}^{\wedge}(c)\right|=\frac{(n-1)!h^{n-1}}{|W|} \operatorname{deg} D_{\wedge}
$$

where D_{\wedge} is a homogeneous polynomial constructed from the geometry of the discriminant hypersurface of W.

Outline

> (1) Noncrossing partition lattice and factorizations - The noncrossing partition lattice of type W - Factorizations of a Coxeter element
(2) Geometry of the discriminant

- Strata in the discriminant hypersurface
- Bifurcation locus of the discriminant

The quotient-space V / W

W acts on the polynomial algebra $\mathbb{C}[V]$.

The quotient-space V / W

W acts on the polynomial algebra $\mathbb{C}[V]$.
Chevalley-Shephard-Todd's theorem
There exist invariant polynomials f_{1}, \ldots, f_{n}, homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]$.

The quotient-space V / W

W acts on the polynomial algebra $\mathbb{C}[V]$.
Chevalley-Shephard-Todd's theorem
There exist invariant polynomials f_{1}, \ldots, f_{n}, homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]$.
The degrees $d_{1} \leq \cdots \leq d_{n}=h$ of f_{1}, \ldots, f_{n} (called invariant degrees) do not depend on the choices of the fundamental invariants.

The quotient-space V / W

W acts on the polynomial algebra $\mathbb{C}[V]$.

Chevalley-Shephard-Todd's theorem

There exist invariant polynomials f_{1}, \ldots, f_{n}, homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]$.
The degrees $d_{1} \leq \cdots \leq d_{n}=h$ of f_{1}, \ldots, f_{n} (called invariant degrees) do not depend on the choices of the fundamental invariants.
\rightsquigarrow isomorphism: $\quad V / W \xrightarrow{\sim} \mathbb{C}^{n}$

$$
\bar{v} \mapsto\left(f_{1}(v), \ldots, f_{n}(v)\right) .
$$

Discriminant hypersurface and strata

$\mathcal{A}:=\{$ reflecting hyperplanes of $W\}$ (Coxeter arrangement).
For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

Discriminant hypersurface and strata

$\mathcal{A}:=\{$ reflecting hyperplanes of $W\}$ (Coxeter arrangement).
For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

$$
\prod_{H \in \mathcal{A}} \alpha_{H} \in \mathbb{C}[V]
$$

equation of $\bigcup_{H \in \mathcal{A}} H$.

Discriminant hypersurface and strata

$\mathcal{A}:=\{$ reflecting hyperplanes of $W\}$ (Coxeter arrangement).
For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

$$
\prod_{H \in \mathcal{A}} \alpha_{H}^{2} \in \mathbb{C}[V]
$$

equation of $\bigcup_{H \in \mathcal{A}} H$.

Discriminant hypersurface and strata

$\mathcal{A}:=\{$ reflecting hyperplanes of $W\}$ (Coxeter arrangement).
For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

$$
\prod_{H \in \mathcal{A}} \alpha_{H}{ }^{2} \in \mathbb{C}[V]^{W}
$$

equation of $\bigcup_{H \in \mathcal{A}} H$.

Discriminant hypersurface and strata

$\mathcal{A}:=\{$ reflecting hyperplanes of $W\}$ (Coxeter arrangement).
For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

$$
\prod_{H \in \mathcal{A}} \alpha_{H}{ }^{2} \in \mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]
$$

equation of $\bigcup_{H \in \mathcal{A}} H$.

Discriminant hypersurface and strata

$\mathcal{A}:=\{$ reflecting hyperplanes of $W\}$ (Coxeter arrangement).
For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

$$
\Delta_{W}:=\prod_{H \in \mathcal{A}} \alpha_{H}{ }^{2} \in \mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right] \quad \text { (discriminant of } W \text {) }
$$

equation of $\bigcup_{H \in \mathcal{A}} H$.

Discriminant hypersurface and strata

$\mathcal{A}:=\{$ reflecting hyperplanes of $W\}$ (Coxeter arrangement).
For H in \mathcal{A}, denote by α_{H} a linear form of kernel H.

$$
\Delta_{W}:=\prod_{H \in \mathcal{A}} \alpha_{H}{ }^{2} \in \mathbb{C}[V]^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right] \quad \text { (discriminant of } W \text {) }
$$ equation of $\mathrm{p}\left(\cup_{H \in \mathcal{A}} H\right)=\mathcal{H}$, where $\mathrm{p}: V \rightarrow V / W$.

Example $W=A_{3}$: discriminant ("swallowtail")

$$
\bigcup_{H \in \mathcal{A}} H \subseteq V
$$

Example $W=A_{3}$: discriminant ("swallowtail")

$\bigcup H \subseteq V$
$H \in \mathcal{A}$
/W

Example $W=A_{3}$: discriminant ("swallowtail")

hypersurface \mathcal{H} (discriminant) $\subseteq W \backslash V \simeq \mathbb{C}^{3}$

Intersection lattice and parabolic subgroups

Stratification of V with the "flats" (intersection lattice):

$$
\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\}
$$

Intersection lattice and parabolic subgroups

Stratification of V with the "flats" (intersection lattice):
$\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} \quad \xrightarrow{\sim} \quad \operatorname{PSG}(W) \quad$ (parabolic subgps of W)

Intersection lattice and parabolic subgroups

Stratification of V with the "flats" (intersection lattice):

$$
\begin{array}{clcl}
\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} & \xrightarrow{\sim} & \mathrm{PSG}(W) & \text { (parabolic subgps of } W \text {) } \\
& \mapsto & W_{L} & \text { (pointwise stabilizer of } L \text {) }
\end{array}
$$

Intersection lattice and parabolic subgroups

Stratification of V with the "flats" (intersection lattice):

$$
\begin{array}{clcl}
\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} & \xrightarrow{\sim} & \mathrm{PSG}(W) & \text { (parabolic subgps of } W \text {) } \\
& \mapsto & W_{L} & \text { (pointwise stabilizer of } L \text {) }
\end{array}
$$

- A parabolic subgroup is a reflection group [Steinberg].

Intersection lattice and parabolic subgroups

Stratification of V with the "flats" (intersection lattice):

$$
\begin{array}{clll}
\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} & \xrightarrow{\sim} & \mathrm{PSG}(W) & \text { (parabolic subgps of } W \text {) } \\
& \mapsto & W_{L} & \text { (pointwise stabilizer of } L \text {) }
\end{array}
$$

- A parabolic subgroup is a reflection group [Steinberg].
- Its Coxeter elements are called parabolic Coxeter elements.

Intersection lattice and parabolic subgroups

Stratification of V with the "flats" (intersection lattice):

$$
\begin{array}{clll}
\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} & \xrightarrow{\sim} & \mathrm{PSG}(W) & \text { (parabolic subgps of } W \text {) } \\
& \mapsto & W_{L} & \text { (pointwise stabilizer of } L \text {) }
\end{array}
$$

- A parabolic subgroup is a reflection group [Steinberg].
- Its Coxeter elements are called parabolic Coxeter elements.

Intersection lattice and parabolic subgroups

Stratification of V with the "flats" (intersection lattice):

$$
\begin{array}{clcl}
\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} & \xrightarrow{\sim} & \mathrm{PSG}(W) & \text { (parabolic subgps of } W \text {) } \\
& \mapsto & W_{L} & \text { (pointwise stabilizer of } L \text {) }
\end{array}
$$

- A parabolic subgroup is a reflection group [Steinberg].
- Its Coxeter elements are called parabolic Coxeter elements.

$$
L_{0} \in \mathcal{L} \quad \leftrightarrow \quad W_{0} \in \operatorname{PSG}(W)
$$

Intersection lattice and parabolic subgroups

Stratification of V with the "flats" (intersection lattice):

$$
\begin{array}{cccc}
\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} & \xrightarrow{\sim} & \mathrm{PSG}(W) & \text { (parabolic subgps of } W \text {) } \\
& \mapsto & W_{L} & \text { (pointwise stabilizer of } L \text {) }
\end{array}
$$

- A parabolic subgroup is a reflection group [Steinberg].
- Its Coxeter elements are called parabolic Coxeter elements.

$$
L_{0} \in \mathcal{L} \quad \leftrightarrow \quad W_{0} \in \operatorname{PSG}(W) \quad \leftarrow c_{0} \text { parabolic Coxeter elt }
$$

Intersection lattice and parabolic subgroups

Stratification of V with the "flats" (intersection lattice):

$\mathcal{L}:=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\} \quad \xrightarrow{\sim} \quad \operatorname{PSG}(W) \quad$| (parabolic subgps of W) | | |
| :--- | :--- | :--- |
| | | (pointwise stabilizer of L) |

L
\longmapsto
W_{L} (pointwise stabilizer of L)

- A parabolic subgroup is a reflection group [Steinberg].
- Its Coxeter elements are called parabolic Coxeter elements.

$$
\begin{array}{ccccc}
L_{0} \in \mathcal{L} & \leftrightarrow & W_{0} \in \operatorname{PSG}(W) & \leftarrow & c_{0} \text { parabolic Coxeter elt } \\
\operatorname{codim}\left(L_{0}\right) & = & \operatorname{rk}\left(W_{0}\right) & = & \ell_{R}\left(c_{0}\right)
\end{array}
$$

Strata in \mathcal{H}

Construct a stratification of V / W, image of the stratification \mathcal{L} : $\overline{\mathcal{L}}=\mathcal{L} / W=(\mathrm{p}(L))_{L \in \mathcal{L}}=(W \cdot L)_{L \in \mathcal{L}}$.

Strata in \mathcal{H}

Construct a stratification of V / W, image of the stratification \mathcal{L} : $\overline{\mathcal{L}}=\mathcal{L} / W=(\mathrm{p}(L))_{L \in \mathcal{L}}=(W \cdot L)_{L \in \mathcal{L}}$.
$\mathcal{L} \quad \leftrightarrow \quad\{$ parabolic subgroups of $W\}$

Strata in \mathcal{H}

Construct a stratification of V / W, image of the stratification \mathcal{L} :

$$
\begin{aligned}
& \overline{\mathcal{L}}=\mathcal{L} / W=(\mathrm{p}(L))_{L \in \mathcal{L}}=(W \cdot L)_{L \in \mathcal{L} .} \\
& \overline{\mathcal{L}} \leftrightarrow \\
& \operatorname{PSG}(W) / \text { conj. }
\end{aligned}
$$

Strata in \mathcal{H}

Construct a stratification of V / W, image of the stratification \mathcal{L} : $\overline{\mathcal{L}}=\mathcal{L} / W=(\mathrm{p}(L))_{L \in \mathcal{L}}=(W \cdot L)_{L \in \mathcal{L}}$.
$\overline{\mathcal{L}} \quad \leftrightarrow \quad \mathrm{PSG}(W) /$ conj. $\leftrightarrow \quad$ \{parab. Coxeter elts $\} /$ conj.

Strata in \mathcal{H}

Construct a stratification of V / W, image of the stratification \mathcal{L} : $\overline{\mathcal{L}}=\mathcal{L} / W=(\mathrm{p}(L))_{L \in \mathcal{L}}=(W \cdot L)_{L \in \mathcal{L}}$.
$\overline{\mathcal{L}} \quad \leftrightarrow \operatorname{PSG}(W) /$ conj. $\leftrightarrow \quad$ \{parab. Coxeter elts $\} /$ conj.
$\operatorname{codim}(\Lambda)=\operatorname{rank}\left(W_{\Lambda}\right) \quad=\quad \ell_{R}\left(w_{\Lambda}\right)$

Strata in \mathcal{H}

Construct a stratification of V / W, image of the stratification \mathcal{L} : $\overline{\mathcal{L}}=\mathcal{L} / W=(\mathrm{p}(L))_{L \in \mathcal{L}}=(W \cdot L)_{L \in \mathcal{L}}$.
$\overline{\mathcal{L}} \quad \leftrightarrow \operatorname{PSG}(W) /$ conj. $\quad \leftrightarrow \quad$ \{parab. Coxeter elts $\} /$ conj. $\operatorname{codim}(\Lambda)=\operatorname{rank}\left(W_{\Lambda}\right) \quad=\quad \ell_{R}\left(w_{\Lambda}\right)$

Proposition

The set $\overline{\mathcal{L}}$ is in canonical bijection with:

- the set of conjugacy classes of parabolic subgroups of W;

Strata in \mathcal{H}

Construct a stratification of V / W, image of the stratification \mathcal{L} : $\overline{\mathcal{L}}=\mathcal{L} / W=(p(L))_{L \in \mathcal{L}}=(W \cdot L)_{L \in \mathcal{L}}$.
$\overline{\mathcal{L}} \quad \leftrightarrow \quad \mathrm{PSG}(W) /$ conj. $\quad \leftrightarrow \quad$ \{parab. Coxeter elts \}$/$ conj.
$\operatorname{codim}(\Lambda)=\operatorname{rank}\left(W_{\Lambda}\right) \quad=\quad \ell_{R}\left(w_{\Lambda}\right)$

Proposition

The set $\overline{\mathcal{L}}$ is in canonical bijection with:

- the set of conjugacy classes of parabolic subgroups of W;
- the set of conjugacy classes of parabolic Coxeter elements;

Strata in \mathcal{H}

Construct a stratification of V / W, image of the stratification \mathcal{L} : $\overline{\mathcal{L}}=\mathcal{L} / W=(p(L))_{L \in \mathcal{L}}=(W \cdot L)_{L \in \mathcal{L}}$.
$\overline{\mathcal{L}} \quad \leftrightarrow \quad \mathrm{PSG}(W) /$ conj. $\quad \leftrightarrow \quad$ \{parab. Coxeter elts $\} /$ conj.
$\operatorname{codim}(\Lambda)=\operatorname{rank}\left(W_{\Lambda}\right) \quad=\quad \ell_{R}\left(w_{\Lambda}\right)$

Proposition

The set $\overline{\mathcal{L}}$ is in canonical bijection with:

- the set of conjugacy classes of parabolic subgroups of W;
- the set of conjugacy classes of parabolic Coxeter elements;
- the set of conjugacy classes of elements of $\mathrm{NC}(W)$.

Example of $W=A_{3}$: stratification of the discriminant

Example of $W=A_{3}$: stratification of the discriminant

Example of $W=A_{3}$: stratification of the discriminant

Example of $W=A_{3}$: stratification of the discriminant

Bifurcation locus

Theorem (Orlik-Solomon, Bessis)
If W is a real (or complex well-generated) reflection group, then the discriminant Δ_{W} is monic of degree n in the variable f_{n}.

Bifurcation locus

Theorem (Orlik-Solomon, Bessis)
If W is a real (or complex well-generated) reflection group, then the discriminant Δ_{W} is monic of degree n in the variable f_{n}.

So if we fix f_{1}, \ldots, f_{n-1}, the polynomial Δ_{w}, viewed as a polynomial in f_{n}, has generically n roots...

Bifurcation locus

Theorem (Orlik-Solomon, Bessis)

If W is a real (or complex well-generated) reflection group, then the discriminant Δ_{W} is monic of degree n in the variable f_{n}.

So if we fix f_{1}, \ldots, f_{n-1}, the polynomial Δ_{W}, viewed as a polynomial in f_{n}, has generically n roots...
... except when $\left(f_{1}, \ldots, f_{n-1}\right)$ is a zero of

$$
D_{w}:=\operatorname{Disc}\left(\Delta_{W}\left(f_{1}, \ldots, f_{n}\right) ; f_{n}\right) \in \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right] .
$$

Bifurcation locus

Theorem (Orlik-Solomon, Bessis)

If W is a real (or complex well-generated) reflection group, then the discriminant Δ_{W} is monic of degree n in the variable f_{n}.

So if we fix f_{1}, \ldots, f_{n-1}, the polynomial Δ_{W}, viewed as a polynomial in f_{n}, has generically n roots...
... except when $\left(f_{1}, \ldots, f_{n-1}\right)$ is a zero of

$$
D_{W}:=\operatorname{Disc}\left(\Delta_{W}\left(f_{1}, \ldots, f_{n}\right) ; f_{n}\right) \in \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right] .
$$

Definition

The bifurcation locus of Δ_{W} (w.r.t. f_{n}) is the hypersurface of \mathbb{C}^{n-1} :

$$
\mathcal{K}:=\left\{D_{W}=0\right\}
$$

Example of A_{3} : bifurcation locus \mathcal{K}

$$
\mathcal{H} \subseteq W \backslash V \simeq \mathbb{C}^{3}
$$

Example of A_{3} : bifurcation locus \mathcal{K}

Example of A_{3} : bifurcation locus \mathcal{K}
 Hey! Look at that!

Example of A_{3} : bifurcation locus \mathcal{K} Hey! Look at that!

Example of A_{3} : bifurcation locus \mathcal{K} Hey! Look at that!

Submaximal factorizations of type \wedge

$\overline{\mathcal{L}}_{2}:=\{$ strata of $\overline{\mathcal{L}}$ of codimension 2$\}$
$\leftrightarrow \quad$ \{conjugacy classes of elements of $\mathrm{NC}(W)$ of length 2$\}$

Submaximal factorizations of type \wedge

$\overline{\mathcal{L}}_{2}:=\{$ strata of $\overline{\mathcal{L}}$ of codimension 2$\}$
$\leftrightarrow \quad$ \{conjugacy classes of elements of $\mathrm{NC}(W)$ of length 2$\}$

Proposition

The $\varphi(\Lambda)$, for $\Lambda \in \overline{\mathcal{L}}_{2}$, are the irreducible components of \mathcal{K}.

Submaximal factorizations of type \wedge

$\overline{\mathcal{L}}_{2}:=\{$ strata of $\overline{\mathcal{L}}$ of codimension 2$\}$
$\leftrightarrow \quad$ \{conjugacy classes of elements of $\mathrm{NC}(W)$ of length 2$\}$

Proposition

The $\varphi(\Lambda)$, for $\Lambda \in \overline{\mathcal{L}}_{2}$, are the irreducible components of \mathcal{K}.
\rightsquigarrow we can write $D_{W}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$, where $r_{\Lambda} \geq 1$ and the D_{Λ} are polynomials in f_{1}, \ldots, f_{n-1}.

Submaximal factorizations of type \wedge

$\overline{\mathcal{L}}_{2}:=\{$ strata of $\overline{\mathcal{L}}$ of codimension 2$\}$
$\leftrightarrow \quad$ \{conjugacy classes of elements of $\operatorname{NC}(W)$ of length 2$\}$

Proposition

The $\varphi(\Lambda)$, for $\Lambda \in \overline{\mathcal{L}}_{2}$, are the irreducible components of \mathcal{K}.
\rightsquigarrow we can write $D_{W}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$, where $r_{\Lambda} \geq 1$ and the D_{Λ} are polynomials in f_{1}, \ldots, f_{n-1}.

Theorem (R.)

For $\Lambda \in \overline{\mathcal{L}}_{2}$, the number of submaximal factorizations of c of type \wedge (i.e. , whose unique length 2 element lies in the conjugacy class Λ) is:

$$
\left|\operatorname{FACT}_{n-1}^{\wedge}(c)\right|=\frac{(n-1)!h^{n-1}}{|W|} \operatorname{deg} D_{\wedge} .
$$

Submaximal factorizations of a Coxeter element

How to compute uniformly $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}}$ deg D_{Λ} ?

Submaximal factorizations of a Coxeter element

How to compute uniformly $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}}$ deg D_{Λ} ?

- Recall that $D_{W}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.

Submaximal factorizations of a Coxeter element

How to compute uniformly $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}}$ deg D_{Λ} ?

- Recall that $D_{W}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.
- We found an interpretation of $\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}-1}$, as the Jacobian J of an algebraic morphism. Delails

Submaximal factorizations of a Coxeter element

How to compute uniformly $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}}$ deg D_{Λ} ?

- Recall that $D_{W}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.
- We found an interpretation of $\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}-1}$, as the Jacobian J of an algebraic morphism. Deiails
- Compute $\operatorname{deg} J$, and then $\sum \operatorname{deg} D_{\Lambda}=\operatorname{deg} D_{W}-\operatorname{deg} J$.

Submaximal factorizations of a Coxeter element cemo

How to compute uniformly $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}} \operatorname{deg} D_{\Lambda}$?

- Recall that $D_{W}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.
- We found an interpretation of $\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}-1}$, as the Jacobian J of an algebraic morphism. Deiails
- Compute $\operatorname{deg} J$, and then $\sum \operatorname{deg} D_{\Lambda}=\operatorname{deg} D_{W}-\operatorname{deg} J$.

Corollary

The number of block factorisations of a Coxeter element c in $n-1$ factors is:

$$
\left|\mathrm{FACT}_{n-1}(c)\right|=\frac{(n-1)!h^{n-1}}{|W|}\left(\frac{(n-1)(n-2)}{2} h+\sum_{i=1}^{n-1} d_{i}\right)
$$

where $d_{1}, \ldots, d_{n}=h$ are the invariant degrees of W.

The proof uses the Lyashko-Looijenga morphism and topological factorizations

$$
\mathcal{H} \subseteq W \backslash V \simeq \mathbb{C}^{3}
$$

The proof uses the Lyashko-Looijenga morphism and topological factorizations

$$
\mathcal{H} \subseteq W \backslash V \simeq \mathbb{C}^{3}
$$

The proof uses the Lyashko-Looijenga morphism and topological factorizations

The proof uses the Lyashko-Looijenga morphism and topological factorizations

The proof uses the Lyashko-Looijenga morphism and topological factorizations

The proof uses the Lyashko-Looijenga morphism and topological factorizations

The proof uses the Lyashko-Looijenga morphism and topological factorizations

The proof uses the Lyashko-Looijenga morphism and topological factorizations

The proof uses the Lyashko-Looijenga morphism and topological factorizations

The proof uses the Lyashko-Looijenga morphism and topological factorizations

The proof uses the Lyashko-Looijenga morphism and topological factorizations

The proof uses the Lyashko-Looijenga morphism and topological factorizations

Fibers of LL and block factorizations of c c.casa

Let ω be a multiset in E_{n}.
"Compatibility" \Rightarrow for all y in the fiber $\mathrm{LL}^{-1}(\omega)$, the distribution of lengths of factors of facto (y) is the same (composition of n).

Fibers of LL and block factorizations of c c.casa

Let ω be a multiset in E_{n}.
"Compatibility" \Rightarrow for all y in the fiber $\mathrm{LL}^{-1}(\omega)$, the distribution of lengths of factors of facto (y) is the same (composition of n).

Theorem (Bessis '07)

The map facto induces a bijection between the fiber $\mathrm{LL}^{-1}(\omega)$ and the set of strict factorizations of same "composition" as ω.

Fibers of LL and block factorizations of c coase

Let ω be a multiset in E_{n}.
"Compatibility" \Rightarrow for all y in the fiber $\mathrm{LL}^{-1}(\omega)$, the distribution of lengths of factors of facto (y) is the same (composition of n).

Theorem (Bessis '07)

The map facto induces a bijection between the fiber $\mathrm{LL}^{-1}(\omega)$ and the set of strict factorizations of same "composition" as ω.

Equivalently, the product map:

$$
Y \xrightarrow{\mathrm{LL} \times \text { facto }} E_{n} \times \mathrm{FACT}(c)
$$

is injective, and its image is the set of "compatible" pairs.

Fibers of LL and block factorizations of c c.casas

Let ω be a multiset in E_{n}.
"Compatibility" \Rightarrow for all y in the fiber $\mathrm{LL}^{-1}(\omega)$, the distribution of lengths of factors of facto (y) is the same (composition of n).

Theorem (Bessis '07)

The map facto induces a bijection between the fiber $\mathrm{LL}^{-1}(\omega)$ and the set of strict factorizations of same "composition" as ω.
Equivalently, the product map:

$$
Y \xrightarrow{\mathrm{LL} \times \text { facto }} E_{n} \times \mathrm{FACT}(c)
$$

is injective, and its image is the set of "compatible" pairs.
\rightsquigarrow a way to compute cardinalities of sets of factorizations using algebraic properties of LL.

Conclusion

- New manifestation of the deep connections between the geometry of W and the combinatorics of $\mathrm{NC}(W)$.
- Proof a bit more enlightening and satisfactory than the usual ones: we travelled from the numerology of $\mathrm{FACT}_{n}(c)$ to that of $\mathrm{FACT}_{n-1}(c)$, without adding any case-by-case analysis.
- We recover geometrically formulas for certain specific factorisations, known in the real case with combinatorial proofs [Krattenthaler].
- To obtain more we should study further the geometrical setting (Lyashko-Looijenga morphism and its ramification).

Conclusion

- New manifestation of the deep connections between the geometry of W and the combinatorics of $\mathrm{NC}(W)$.
- Proof a bit more enlightening and satisfactory than the usual ones: we travelled from the numerology of $\mathrm{FACT}_{n}(c)$ to that of $\mathrm{FACT}_{n-1}(c)$, without adding any case-by-case analysis.
- We recover geometrically formulas for certain specific factorisations, known in the real case with combinatorial proofs [Krattenthaler].
- To obtain more we should study further the geometrical setting (Lyashko-Looijenga morphism and its ramification).

Thank you!

Reference: Lyashko-Looijenga morphisms and submaximal factorisations of a Coxeter element, arXiv:1012.3825.

Conclusion

- New manifestation of the deep connections between the geometry of W and the combinatorics of $\mathrm{NC}(W)$.
- Proof a bit more enlightening and satisfactory than the usual ones: we travelled from the numerology of $\mathrm{FACT}_{n}(c)$ to that of $\mathrm{FACT}_{n-1}(c)$, without adding any case-by-case analysis.
- We recover geometrically formulas for certain specific factorisations, known in the real case with combinatorial proofs [Krattenthaler].
- To obtain more we should study further the geometrical setting (Lyashko-Looijenga morphism and its ramification).

Thank you!

Reference: Lyashko-Looijenga morphisms and submaximal factorisations of a Coxeter element, arXiv:1012.3825.

Conclusion

- New manifestation of the deep connections between the geometry of W and the combinatorics of $\mathrm{NC}(W)$.
- Proof a bit more enlightening and satisfactory than the usual ones: we travelled from the numerology of $\mathrm{FACT}_{n}(c)$ to that of $\mathrm{FACT}_{n-1}(c)$, without adding any case-by-case analysis.
- We recover geometrically formulas for certain specific factorisations, known in the real case with combinatorial proofs [Krattenthaler].
- To obtain more we should study further the geometrical setting (Lyashko-Looijenga morphism and its ramification).

Thank you!

Reference: Lyashko-Looijenga morphisms and submaximal factorisations of a Coxeter element, arXiv:1012.3825.

Outline

(3) Appendix

- Lyashlo-Looijenga morphism and topological factorizations
- Jacobian
- Comparison reflection groups / LL extensions

Lyashko-Looijenga morphism of type W

Definition

LL: $\quad Y \rightarrow E_{n}:=\{$ multisets of n points in $\mathbb{C}\}$
$y \mapsto$ \{roots, with multiplicities, of $\Delta_{W}\left(y, f_{n}\right)$ in $\left.f_{n}\right\}$

Lyashko-Looijenga morphism of type W

Definition

LL: $\quad Y \rightarrow E_{n}:=\{$ multisets of n points in $\mathbb{C}\}$
$y \mapsto$ \{roots, with multiplicities, of $\Delta_{W}\left(y, f_{n}\right)$ in $\left.f_{n}\right\}$

$$
\Delta_{W}=f_{n}^{n}+a_{2} f_{n}^{n-2}+a_{3} f_{n}^{n-3}+\cdots+a_{n-1} f_{n}+a_{n}
$$

Definition (LL as an algebraic (homogeneous) morphism)

$$
\begin{array}{lccc}
\mathrm{LL}: & \mathbb{C}^{n-1} & \rightarrow & \mathbb{C}^{n-1} \\
& \left(f_{1}, \ldots, f_{n-1}\right) & \mapsto & \left.\mapsto a_{2}, \ldots, a_{n}\right)
\end{array}
$$

facto $: Y \rightarrow \operatorname{FACT}(c):=\{$ block factorizations of $c\}$

Lyashko-Looijenga morphism of type W

Definition

LL: $\quad Y \rightarrow E_{n}:=\{$ multisets of n points in $\mathbb{C}\}$
$y \mapsto$ \{roots, with multiplicities, of $\Delta_{w}\left(y, f_{n}\right)$ in $\left.f_{n}\right\}$

$$
\Delta_{W}=f_{n}^{n}+a_{2} f_{n}^{n-2}+a_{3} f_{n}^{n-3}+\cdots+a_{n-1} f_{n}+a_{n}
$$

Definition (LL as an algebraic (homogeneous) morphism)

$$
\begin{array}{lccc}
\text { LL : } & \mathbb{C}^{n-1} & \rightarrow & \mathbb{C}^{n-1} \\
& \left(f_{1}, \ldots, f_{n-1}\right) & \mapsto & \left.\mapsto a_{2}, \ldots, a_{n}\right)
\end{array}
$$

facto : $Y \rightarrow \operatorname{FACT}(c):=\{$ block factorizations of $c\}$
Geometrical compatibilities:

- length of the factors (\leftrightarrow multiplicities in the multiset $\operatorname{LL}(y)$);

Lyashko-Looijenga morphism of type W

Definition

LL: $\quad Y \rightarrow E_{n}:=\{$ multisets of n points in $\mathbb{C}\}$
$y \mapsto$ \{roots, with multiplicities, of $\Delta_{W}\left(y, f_{n}\right)$ in $\left.f_{n}\right\}$

$$
\Delta_{W}=f_{n}^{n}+a_{2} f_{n}^{n-2}+a_{3} f_{n}^{n-3}+\cdots+a_{n-1} f_{n}+a_{n}
$$

Definition (LL as an algebraic (homogeneous) morphism)

$\mathrm{LL}:$	\mathbb{C}^{n-1}	\rightarrow	\mathbb{C}^{n-1}
	$\left(f_{1}, \ldots, f_{n-1}\right)$	\mapsto	$\left(a_{2}, \ldots, a_{n}\right)$

facto : $Y \rightarrow \operatorname{FACT}(c):=\{$ block factorizations of $c\}$
Geometrical compatibilities:

- length of the factors (\leftrightarrow multiplicities in the multiset $\operatorname{LL}(y)$);
- conjugacy classes of a factor of facto $(y) \leftrightarrow$ (via Steinberg bijection) the strata containing the corresponding intersection point $\left(y, x_{i}\right)$.

Example of $W=A_{3}$: stratification of the discriminant

- End

An unramified covering

Bifurcation locus:

$$
\begin{aligned}
\mathcal{K} & :=\mathrm{LL}^{-1}\left(E_{n}-E_{n}^{\mathrm{reg}}\right) \\
& =\left\{y \in Y \mid \Delta_{W}\left(y, f_{n}\right) \text { has multiple roots w.r.t. } f_{n}\right\} \\
& =\left\{y \in Y \mid D_{\mathrm{LL}}(y)=0\right\}
\end{aligned}
$$

An unramified covering

Bifurcation locus:

$$
\begin{aligned}
\mathcal{K} & :=\mathrm{LL}^{-1}\left(E_{n}-E_{n}^{\mathrm{reg}}\right) \\
& =\left\{y \in Y \mid \Delta_{W}\left(y, f_{n}\right) \text { has multiple roots w.r.t. } f_{n}\right\} \\
& =\left\{y \in Y \mid D_{\mathrm{LL}}(y)=0\right\}
\end{aligned}
$$

where
$D_{\mathrm{LL}}:=\operatorname{Disc}\left(\Delta_{W}\left(y, f_{n}\right) ; f_{n}\right) \in \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right]$.

An unramified covering

Bifurcation locus:

$$
\begin{aligned}
\mathcal{K} & :=\mathrm{LL}-E_{n}^{-1}\left(E_{n}-E_{n}^{\mathrm{reg}}\right) \\
& =\left\{y \in Y \mid \Delta_{W}\left(y, f_{n}\right) \text { has multiple roots w.r.t. } f_{n}\right\} \\
& =\left\{y \in Y \mid D_{\mathrm{LL}}(y)=0\right\}
\end{aligned}
$$

where
$D_{\mathrm{LL}}:=\operatorname{Disc}\left(\Delta_{W}\left(y, f_{n}\right) ; f_{n}\right) \in \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right]$.

Proposition (Bessis)

- LL : $Y-\mathcal{K} \rightarrow E_{n}^{\mathrm{reg}}$ is a topological covering, of degree $n!h^{n} /|W|$;

An unramified covering

Bifurcation locus:

$$
\begin{aligned}
\mathcal{K} & :=\mathrm{LL}-E_{n}^{-1}\left(E_{n}-E_{n}^{\mathrm{reg}}\right) \\
& =\left\{y \in Y \mid \Delta_{W}\left(y, f_{n}\right) \text { has multiple roots w.r.t. } f_{n}\right\} \\
& =\left\{y \in Y \mid D_{\mathrm{LL}}(y)=0\right\}
\end{aligned}
$$

where
$D_{\mathrm{LL}}:=\operatorname{Disc}\left(\Delta_{W}\left(y, f_{n}\right) ; f_{n}\right) \in \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right]$.

Proposition (Bessis)

- LL : $Y-\mathcal{K} \rightarrow E_{n}^{\mathrm{reg}}$ is a topological covering, of degree $n!h^{n} /|W|$;
- $\left|\operatorname{FACT}_{n}(c)\right|=n!h^{n} /|W|$.

An unramified covering

Bifurcation locus:

$$
\begin{aligned}
\mathcal{K} & :=\mathrm{LL}^{-1}\left(E_{n}-E_{n}^{\mathrm{reg}}\right) \\
& =\left\{y \in Y \mid \Delta_{W}\left(y, f_{n}\right) \text { has multiple roots w.r.t. } f_{n}\right\} \\
& =\left\{y \in Y \mid D_{\mathrm{LL}}(y)=0\right\}
\end{aligned}
$$

where
$D_{\mathrm{LL}}:=\operatorname{Disc}\left(\Delta_{W}\left(y, f_{n}\right) ; f_{n}\right) \in \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right]$.

Proposition (Bessis)

- LL: $Y-\mathcal{K} \rightarrow E_{n}^{\mathrm{reg}}$ is a topological covering, of degree $n!h^{n} /|W|$;
- $\left|\operatorname{FACT}_{n}(c)\right|=n!h^{n} /|W|$.

How to compute \mid FACT $_{n-1}(c) \mid$?

Submaximal factorizations of type \wedge

Want to study the restriction of $\mathrm{LL}: \mathcal{K} \rightarrow E_{n}-E_{n}^{\text {reg }}$. Recall $D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{\nwarrow_{\Lambda}}$ (irreducible factors in $\left.\mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right]\right)$.

Submaximal factorizations of type Λ

Want to study the restriction of $\mathrm{LL}: \mathcal{K} \rightarrow E_{n}-E_{n}^{\text {reg }}$. Recall $D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{\kappa_{\Lambda}}$ (irreducible factors in $\left.\mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right]\right)$.
The restriction $L_{\Lambda}: \mathcal{K}_{\wedge} \rightarrow E_{n}-E_{n}^{\text {reg }}$

Submaximal factorizations of type \wedge

Want to study the restriction of $\mathrm{LL}: \mathcal{K} \rightarrow E_{n}-E_{n}^{\text {reg }}$. Recall $D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{\digamma_{\Lambda}}$ (irreducible factors in $\left.\mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right]\right)$.
The restriction $L L_{\Lambda}: \mathcal{K}_{\Lambda} \rightarrow E_{n}-E_{n}^{\text {reg }}$ corresponds to the extension $\mathbb{C}\left[a_{2}, \ldots, a_{n}\right] /(D) \subseteq \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right] /\left(D_{\wedge}\right)$.

Submaximal factorizations of type Λ

Want to study the restriction of $\mathrm{LL}: \mathcal{K} \rightarrow E_{n}-E_{n}^{\text {reg }}$. Recall $D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{\digamma_{\Lambda}}$ (irreducible factors in $\left.\mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right]\right)$.
The restriction $L L_{\Lambda}: \mathcal{K}_{\Lambda} \rightarrow E_{n}-E_{n}^{\text {reg }}$ corresponds to the extension $\mathbb{C}\left[a_{2}, \ldots, a_{n}\right] /(D) \subseteq \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right] /\left(D_{\wedge}\right)$.

Theorem (R.)

For any \wedge in $\overline{\mathcal{L}}_{2}$,

- $L L_{\wedge}$ is a finite morphism of degree $\frac{(n-2)!}{|W|} h^{n-1} \operatorname{deg} D_{\wedge}$;

Submaximal factorizations of type Λ © End

Want to study the restriction of $\mathrm{LL}: \mathcal{K} \rightarrow E_{n}-E_{n}^{\text {reg }}$.
Recall $D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$ (irreducible factors in $\left.\mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right]\right)$.
The restriction $L L_{\Lambda}: \mathcal{K}_{\Lambda} \rightarrow E_{n}-E_{n}^{\text {reg }}$ corresponds to the extension $\mathbb{C}\left[a_{2}, \ldots, a_{n}\right] /(D) \subseteq \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right] /\left(D_{\wedge}\right)$.

Theorem (R.)

For any \wedge in $\overline{\mathcal{L}}_{2}$,

- LL_{\wedge} is a finite morphism of degree $\frac{(n-2)!}{|W|} h^{n-1} \operatorname{deg} D_{\wedge}$;
- the number of factorizations of c of type \wedge is

$$
\left|\operatorname{FACT}_{n-1}^{\wedge}(c)\right|=\frac{(n-1)!h^{n-1}}{|W|} \operatorname{deg} D_{\Lambda} .
$$

Jacobian of LL

Problem: find a general computation of $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}} \operatorname{deg} D_{\Lambda}$.

Jacobian of LL

Problem: find a general computation of $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}} \operatorname{deg} D_{\Lambda}$.
Recall that $D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.

Jacobian of LL

Problem: find a general computation of $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}} \operatorname{deg} D_{\Lambda}$.
Recall that $D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.
Proposition (Saito; R.)
Set $J_{\mathrm{LL}}:=\operatorname{Jac}\left(\left(a_{2}, \ldots, a_{n}\right) /\left(f_{1}, \ldots, f_{n-1}\right)\right)$. Then:

$$
J_{\mathrm{LL}} \doteq \prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}-1}
$$

Jacobian of LL cemo

Problem: find a general computation of $\sum_{\Lambda \in \overline{\mathcal{L}}_{2}} \operatorname{deg} D_{\Lambda}$.
Recall that $D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}}$.
Proposition (Saito; R.)
Set $J_{\mathrm{LL}}:=\operatorname{Jac}\left(\left(a_{2}, \ldots, a_{n}\right) /\left(f_{1}, \ldots, f_{n-1}\right)\right)$. Then:

$$
J_{\mathrm{LL}} \doteq \prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}-1}
$$

So, $\sum \operatorname{deg} D_{\wedge}=\operatorname{deg} D_{\mathrm{LL}}-\operatorname{deg} J_{\mathrm{LL}}=\ldots$

Reflection group vs. Lyashko-Looijenga extension

Reflection group W	Extension LL
$V \rightarrow V / W$	$Y \rightarrow \mathbb{C}^{n-1}$
$\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]=\mathbb{C}[V]^{W} \subseteq \mathbb{C}[V]$	$\mathbb{C}\left[a_{2}, \ldots, a_{n}\right] \subseteq \mathbb{C}\left[f_{1}, \ldots, f_{n-1}\right]$
degree $\|W\|$	degree $n!h^{n} /\|W\|$
$V^{\text {reg }} \rightarrow V^{\text {reg }} / W$	$Y-\mathcal{K} \rightarrow E_{n}^{\text {reg }}$
Generic fiber $\simeq W$	$\simeq \operatorname{Red}_{R}(c)$

ramified on $\bigcup_{H \in \mathcal{A}} H \rightarrow \mathcal{H}$

$$
\begin{gathered}
\Delta_{W}=\prod_{H \in \mathcal{A}} \alpha_{H}^{e_{H}} \\
J_{W}=\prod_{H}^{e_{H}-1} \\
e_{H}=\left|W_{H}\right|
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{K}=\bigcup_{\Lambda \in \overline{\mathcal{L}}_{2}} \varphi(\Lambda) \rightarrow E_{n}-E_{n}^{\text {reg }} \\
D_{\mathrm{LL}}=\prod_{\Lambda \in \overline{\mathcal{L}}_{2}} D_{\Lambda}^{r_{\Lambda}} \\
J_{\mathrm{LL}}=\prod_{\Lambda}^{r_{\Lambda}-1}
\end{gathered}
$$

$$
r_{\Lambda}=\text { pseudo-order of }
$$

$$
\text { elements of NCP }{ }_{W} \text { of type } \wedge
$$

