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Introduction

VR : real vector space of finite dimension.

W : a finite reflection group of GL(VR), i.e. finite subgroup
generated by reflections ( structure of a finite Coxeter group).

We will consider W acting on the complex vector space
V := VR ⊗ C.
Results remain valid for more general groups (well-
generated complex reflection groups).

Invariant theory of
W (geometry of the
discriminant ∆W )

↔
Combinatorics of the noncrossing
partition lattice of W (factorizations
of a Coxeter element)
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2 Geometry of the discriminant
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The noncrossing partition lattice of type W

Define R := {all reflections of W}.

 reflection length (or absolute length) `R. (not the usual
Coxeter length `S !)
Absolute order 4R :

u 4R v if and only if `R(u) + `R(u−1v) = `R(v) .

Fix c : a Coxeter element in W (particular conjugacy class
of elements of length n = rk(W )).

Definition (Noncrossing partition lattice of type W )

NC(W , c) := {w ∈W | w 4R c}

Note: the structure doesn’t depend on the choice of the
Coxeter element (conjugacy) write NC(W ).
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Prototype: noncrossing partitions of an n-gon

W := Sn, with generating set R := {all transpositions}

c := n-cycle (1 2 3 . . . n)

NC(W , c) ←→ {noncrossing partitions of an n-gon}
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Fuß-Catalan numbers

Kreweras’s formula for multichains of noncrossing partitions
W := Sn;
c : an n-cycle.

The number of multichains w1 4R w2 4R . . . 4R wp 4R c in
NC(W , c) is the Fuß-Catalan number

Cat(p)(n) =
n∏

i=2

i + pn
i

=
1

pn + 1

(
(p + 1)n

n

)
.

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case!
Remark: Cat(1)(W ) (and Cat(p)(W )) appear in other contexts:
Fomin-Zelevinsky cluster algebras, nonnesting partitions...
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Factorizations of a Coxeter element

Definition (Block factorizations of c)

(w1, . . . ,wp) ∈ (W − {1})p is a block factorization of c if

w1 . . .wp = c.
`R(w1) + · · ·+ `R(wp) = `R(c) = n.

FACTp(c) := {block factorizations of c in p factors}.

“Factorizations↔ chains”.
Problem : 4R vs ≺R ?  use classical conversion
formulas.
Bad news : we obtain much more complicated formulas.
Good news : we can interpret some of them geometrically
(and even refine them); in particular for p = n or n − 1.
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Submaximal factorizations of a Coxeter element

The number of reduced decompositions of c is:
| FACTn(c)| = n! hn / |W | , where h is the order of c.

[Deligne, Bessis-Corran] (case-by-case proof).
What about FACTn−1(c) ?

Theorem (R.)

Let Λ be a conjugacy class of elements of length 2 of NC(W ).
Call submaximal factorizations of c of type Λ the block
factorizations containing n − 2 reflections and one element (of
length 2) in the conjugacy class Λ. Then, their number is:

| FACTΛ
n−1(c)| =

(n − 1)! hn−1

|W |
deg DΛ ,

where DΛ is a homogeneous polynomial constructed from the
geometry of the discriminant hypersurface of W.
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The quotient-space V/W

W acts on the polynomial algebra C[V ].

Chevalley-Shephard-Todd’s theorem
There exist invariant polynomials f1, . . . , fn, homogeneous and
algebraically independent, s.t. C[V ]W = C[f1, . . . , fn].

The degrees d1 ≤ · · · ≤ dn = h of f1, . . . , fn (called invariant
degrees) do not depend on the choices of the fundamental
invariants.

 isomorphism: V/W ∼−→ Cn

v̄ 7→ (f1(v), . . . , fn(v)).
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Discriminant hypersurface and strata

A := {reflecting hyperplanes of W} (Coxeter arrangement).

For H in A, denote by αH a linear form of kernel H.

∆W :=

∏
H∈A

αH

2

∈ C[V ]

W = C[f1, . . . , fn] (discriminant of W )

equation of
⋃

H∈AH.

where p : V � V/W .
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Intersection lattice and parabolic subgroups

Stratification of V with the “flats” (intersection lattice):

L :=
{⋂

H∈B H | B ⊆ A
}

∼−→ PSG(W ) (parabolic subgps of W )
L 7→ WL (pointwise stabilizer of L)

A parabolic subgroup is a reflection group [Steinberg].
Its Coxeter elements are called parabolic Coxeter
elements.

L0 ∈ L ↔ W0 ∈ PSG(W ) ← c0 parabolic Coxeter elt
codim(L0) = rk(W0) = `R(c0)
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Strata in H

Construct a stratification of V/W , image of the stratification L:
L̄ = L/W = (p(L))L∈L = (W · L)L∈L.

L

= L/W

↔ {parabolic subgroups of W}

↔ {parab. Coxeter elts }/conj.
codim(Λ) = rank(WΛ) = `R(wΛ)

Proposition

The set L̄ is in canonical bijection with:

the set of conjugacy classes of parabolic subgroups of W;
the set of conjugacy classes of parabolic Coxeter
elements;
the set of conjugacy classes of elements of NC(W ).
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Bifurcation locus

Theorem (Orlik-Solomon, Bessis)
If W is a real (or complex well-generated) reflection group, then
the discriminant ∆W is monic of degree n in the variable fn.

So if we fix f1, . . . , fn−1, the polynomial ∆W , viewed as a
polynomial in fn, has generically n roots...
... except when (f1, . . . , fn−1) is a zero of

DW := Disc(∆W (f1, . . . , fn) ; fn) ∈ C[f1, . . . , fn−1].

Definition
The bifurcation locus of ∆W (w.r.t. fn) is the hypersurface
of Cn−1:

K := {DW = 0}
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Submaximal factorizations of type Λ

L̄2 := {strata of L̄ of codimension 2}
↔ {conjugacy classes of elements of NC(W ) of length 2}

Proposition

The ϕ(Λ), for Λ ∈ L̄2, are the irreducible components of K.

 we can write DW =
∏

Λ∈L̄2
DrΛ

Λ , where rΛ ≥ 1 and the DΛ are
polynomials in f1, . . . , fn−1.

Theorem (R.)

For Λ ∈ L̄2, the number of submaximal factorizations of c of
type Λ (i.e. , whose unique length 2 element lies in the
conjugacy class Λ) is:

| FACTΛ
n−1(c)| =

(n − 1)! hn−1

|W |
deg DΛ .



Submaximal factorizations of type Λ

L̄2 := {strata of L̄ of codimension 2}
↔ {conjugacy classes of elements of NC(W ) of length 2}

Proposition

The ϕ(Λ), for Λ ∈ L̄2, are the irreducible components of K.

 we can write DW =
∏

Λ∈L̄2
DrΛ

Λ , where rΛ ≥ 1 and the DΛ are
polynomials in f1, . . . , fn−1.

Theorem (R.)

For Λ ∈ L̄2, the number of submaximal factorizations of c of
type Λ (i.e. , whose unique length 2 element lies in the
conjugacy class Λ) is:

| FACTΛ
n−1(c)| =

(n − 1)! hn−1

|W |
deg DΛ .



Submaximal factorizations of type Λ

L̄2 := {strata of L̄ of codimension 2}
↔ {conjugacy classes of elements of NC(W ) of length 2}

Proposition

The ϕ(Λ), for Λ ∈ L̄2, are the irreducible components of K.

 we can write DW =
∏

Λ∈L̄2
DrΛ

Λ , where rΛ ≥ 1 and the DΛ are
polynomials in f1, . . . , fn−1.

Theorem (R.)

For Λ ∈ L̄2, the number of submaximal factorizations of c of
type Λ (i.e. , whose unique length 2 element lies in the
conjugacy class Λ) is:

| FACTΛ
n−1(c)| =

(n − 1)! hn−1

|W |
deg DΛ .



Submaximal factorizations of type Λ

L̄2 := {strata of L̄ of codimension 2}
↔ {conjugacy classes of elements of NC(W ) of length 2}

Proposition

The ϕ(Λ), for Λ ∈ L̄2, are the irreducible components of K.

 we can write DW =
∏

Λ∈L̄2
DrΛ

Λ , where rΛ ≥ 1 and the DΛ are
polynomials in f1, . . . , fn−1.

Theorem (R.)

For Λ ∈ L̄2, the number of submaximal factorizations of c of
type Λ (i.e. , whose unique length 2 element lies in the
conjugacy class Λ) is:

| FACTΛ
n−1(c)| =

(n − 1)! hn−1

|W |
deg DΛ .



Submaximal factorizations of a Coxeter element

How to compute uniformly
∑

Λ∈L̄2
deg DΛ ?

Recall that DW =
∏

Λ∈L̄2
DrΛ

Λ .

We found an interpretation of
∏

Λ∈L̄2
DrΛ−1

Λ , as the
Jacobian J of an algebraic morphism. Details

Compute deg J, and then
∑

deg DΛ = deg DW − deg J.

Corollary

The number of block factorisations of a Coxeter element c
in n − 1 factors is:

| FACTn−1(c)| =
(n − 1)! hn−1

|W |

(
(n − 1)(n − 2)

2
h +

n−1∑
i=1

di

)
,

where d1, . . . ,dn = h are the invariant degrees of W.
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Fibers of LL and block factorizations of c Details

Let ω be a multiset in En.

“Compatibility” ⇒ for all y in the fiber LL−1(ω), the distribution
of lengths of factors of facto(y) is the same (composition of n).

Theorem (Bessis ’07)

The map facto induces a bijection between the fiber LL−1(ω)
and the set of strict factorizations of same “composition” as ω.

Equivalently, the product map:

Y
LL× facto−−−−−−→ En × FACT(c)

is injective, and its image is the set of “compatible” pairs.

 a way to compute cardinalities of sets of factorizations using
algebraic properties of LL.
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The map facto induces a bijection between the fiber LL−1(ω)
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Conclusion

New manifestation of the deep connections between the
geometry of W and the combinatorics of NC(W ).
Proof a bit more enlightening and satisfactory than the
usual ones: we travelled from the numerology of FACTn(c)
to that of FACTn−1(c), without adding any case-by-case
analysis.
We recover geometrically formulas for certain specific
factorisations, known in the real case with combinatorial
proofs [Krattenthaler].
To obtain more we should study further the geometrical
setting (Lyashko-Looijenga morphism and its ramification).

Thank you!
Reference: Lyashko-Looijenga morphisms and submaximal
factorisations of a Coxeter element, arXiv:1012.3825.
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Lyashlo-Looijenga morphism and topological
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Lyashko-Looijenga morphism of type W

Definition

LL : Y → En := {multisets of n points in C}
y 7→ {roots, with multiplicities, of ∆W (y , fn) in fn}

∆W = f n
n + a2f n−2

n + a3f n−3
n + · · ·+ an−1fn + an.

Definition (LL as an algebraic (homogeneous) morphism)

LL : Cn−1 → Cn−1

(f1, . . . , fn−1) 7→ (a2, . . . ,an)

facto : Y → FACT(c) := {block factorizations of c}
Geometrical compatibilities:

length of the factors (↔ multiplicities in the multiset LL(y));
conjugacy classes of a factor of facto(y)↔ (via Steinberg
bijection) the strata containing the corresponding
intersection point (y , xi).



Lyashko-Looijenga morphism of type W

Definition

LL : Y → En := {multisets of n points in C}
y 7→ {roots, with multiplicities, of ∆W (y , fn) in fn}

∆W = f n
n + a2f n−2

n + a3f n−3
n + · · ·+ an−1fn + an.

Definition (LL as an algebraic (homogeneous) morphism)

LL : Cn−1 → Cn−1

(f1, . . . , fn−1) 7→ (a2, . . . ,an)

facto : Y → FACT(c) := {block factorizations of c}

Geometrical compatibilities:

length of the factors (↔ multiplicities in the multiset LL(y));
conjugacy classes of a factor of facto(y)↔ (via Steinberg
bijection) the strata containing the corresponding
intersection point (y , xi).



Lyashko-Looijenga morphism of type W

Definition

LL : Y → En := {multisets of n points in C}
y 7→ {roots, with multiplicities, of ∆W (y , fn) in fn}

∆W = f n
n + a2f n−2

n + a3f n−3
n + · · ·+ an−1fn + an.

Definition (LL as an algebraic (homogeneous) morphism)

LL : Cn−1 → Cn−1

(f1, . . . , fn−1) 7→ (a2, . . . ,an)

facto : Y → FACT(c) := {block factorizations of c}
Geometrical compatibilities:

length of the factors (↔ multiplicities in the multiset LL(y));

conjugacy classes of a factor of facto(y)↔ (via Steinberg
bijection) the strata containing the corresponding
intersection point (y , xi).



Lyashko-Looijenga morphism of type W End

Definition

LL : Y → En := {multisets of n points in C}
y 7→ {roots, with multiplicities, of ∆W (y , fn) in fn}

∆W = f n
n + a2f n−2

n + a3f n−3
n + · · ·+ an−1fn + an.

Definition (LL as an algebraic (homogeneous) morphism)

LL : Cn−1 → Cn−1
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bijection) the strata containing the corresponding
intersection point (y , xi).



Example of W = A3: stratification of the discriminant
End ⋃

H∈A

H ⊆ V

/W

H = {∆W = 0} ⊆W\V ' C3

A3

A1 × A1 (su)

A1 (s)

t us

A2 (st)

A3 (stu)



An unramified covering

Bifurcation locus:
K := LL−1(En − E reg

n )
= {y ∈ Y | ∆W (y , fn) has multiple roots w.r.t. fn}
= {y ∈ Y | DLL(y) = 0}

where
DLL := Disc(∆W (y , fn) ; fn) ∈ C[f1, . . . , fn−1].

Proposition (Bessis)

LL : Y −K� E reg
n is a topological covering, of degree

n! hn/ |W |;
| FACTn(c)| = n! hn/ |W |.

How to compute | FACTn−1(c)| ?
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An unramified covering End
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Submaximal factorizations of type Λ

Want to study the restriction of LL : K → En − E reg
n .

Recall DLL =
∏

Λ∈L̄2

DrΛ
Λ (irreducible factors in C[f1, . . . , fn−1]).

The restriction LLΛ : KΛ → En − E reg
n corresponds to the

extension C[a2, . . . ,an]/(D) ⊆ C[f1, . . . , fn−1]/(DΛ) .

Theorem (R.)

For any Λ in L̄2,

LLΛ is a finite morphism of degree (n−2)! hn−1

|W | deg DΛ;

the number of factorizations of c of type Λ is

| FACTΛ
n−1(c)| =

(n − 1)! hn−1

|W |
deg DΛ .
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Submaximal factorizations of type Λ End
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Jacobian of LL

Problem: find a general computation of
∑

Λ∈L̄2
deg DΛ.

Recall that DLL =
∏

Λ∈L̄2
DrΛ

Λ .

Proposition (Saito; R.)

Set JLL := Jac((a2, . . . ,an)/(f1, . . . , fn−1)). Then:

JLL
.

=
∏

Λ∈L̄2

DrΛ−1
Λ

So,
∑

deg DΛ = deg DLL − deg JLL = . . .
Return
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Jacobian of LL End
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Reflection group vs. Lyashko-Looijenga extension End

Reflection group W Extension LL
V → V/W Y → Cn−1

C[f1, . . . , fn] = C[V ]W ⊆ C[V ] C[a2, . . . ,an] ⊆ C[f1, . . . , fn−1]
degree |W | degree n! hn/ |W |

V reg � V reg/W Y −K� E reg
n

Generic fiber 'W ' RedR(c)

ramified on
⋃

H∈AH � H K =
⋃

Λ∈L̄2
ϕ(Λ)� En − E reg

n

∆W =
∏

H∈A α
eH
H DLL =

∏
Λ∈L̄2

DrΛ
Λ

JW =
∏
αeH−1

H JLL =
∏

DrΛ−1
Λ

eH = |WH | rΛ = pseudo-order of
elements of NCPW of type Λ
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