Limit points of root systems of infinite Coxeter groups

Vivien RIPOLL

LaCIM, Université du Québec à Montréal

2012 CMS Winter Meeting Session of Algebraic Combinatorics Montreal, December 9th 2012

(ロ) (同) (三) (三) (三) (○) (○)

From joint works with

- Matthew Dyer (University of Notre Dame)
- Christophe Hohlweg (UQÀM)
- Jean-Philippe Labbé (FU Berlin)

Outline

2 Normalized roots, limit roots and isotropic cone

3 Action of W on the limit roots and topological properties

Outline

Root systems and "limit roots" of a Coxeter group W

2 Normalized roots, limit roots and isotropic cone

3 Action of *W* on the limit roots and topological properties

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

• V: a real vector space, of finite dimension n

• B: a symmetric bilinear form on V

Construction of a root system in (V, B):

- 1. Start with a simple system Δ :
 - Δ is a basis for *V*;
 - $\forall \alpha \in \Delta, B(\alpha, \alpha) = 1;$
 - $\forall \alpha \neq \beta \in \Delta$:
 - \circ either $B(lpha,eta)=-\cosig(rac{\pi}{m}ig)$ for some $m\in\mathbb{Z}_{\geq2}$

(日) (日) (日) (日) (日) (日) (日)

• or $B(lpha,eta)\leq -1.$

- V: a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B):

- 1. Start with a simple system Δ :
 - Δ is a basis for V;
 - $\forall \alpha \in \Delta, B(\alpha, \alpha) = 1;$
 - $\forall \alpha \neq \beta \in \Delta$:
 - either $B(\alpha, \beta) = -\cos\left(\frac{\pi}{m}\right)$ for some $m \in \mathbb{Z}_{\geq 2}$ • or $B(\alpha, \beta) \leq -1$.

(日) (日) (日) (日) (日) (日) (日)

- V: a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B):

- 1. Start with a simple system Δ :
 - Δ is a basis for V;
 - $\forall \alpha \in \Delta, B(\alpha, \alpha) = 1;$
 - $\forall \alpha \neq \beta \in \Delta$:
 - either $B(\alpha,\beta) = -\cos\left(\frac{\pi}{m}\right)$ for some $m \in \mathbb{Z}_{\geq 2}$,

(日) (日) (日) (日) (日) (日) (日)

• or $B(\alpha,\beta) \leq -1$.

- V: a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B):

- 1. Start with a simple system Δ :
 - Δ is a basis for V;

•
$$\forall \alpha \in \Delta, B(\alpha, \alpha) = 1;$$

• $\forall \alpha \neq \beta \in \Delta$:

• either $B(\alpha,\beta) = -\cos\left(\frac{\pi}{m}\right)$ for some $m \in \mathbb{Z}_{\geq 2}$,

・ロト・日本・日本・日本・日本

• or $B(\alpha,\beta) \leq -1$.

- V: a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B):

- 1. Start with a simple system Δ :
 - Δ is a basis for V;

•
$$\forall \alpha \in \Delta, B(\alpha, \alpha) = 1;$$

• $\forall \alpha \neq \beta \in \Delta$:

• either $B(\alpha,\beta) = -\cos\left(\frac{\pi}{m}\right)$ for some $m \in \mathbb{Z}_{\geq 2}$,

(日) (日) (日) (日) (日) (日) (日)

• or $B(\alpha, \beta) \leq -1$.

- V: a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B):

- 1. Start with a simple system Δ :
 - Δ is a basis for V;

•
$$\forall \alpha \in \Delta, B(\alpha, \alpha) = 1;$$

• $\forall \alpha \neq \beta \in \Delta$:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- V: a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B):

- 1. Start with a simple system Δ :
 - Δ is a basis for V;

•
$$\forall \alpha \in \Delta, B(\alpha, \alpha) = 1;$$

- $\forall \alpha \neq \beta \in \Delta$:
 - either $B(\alpha,\beta) = -\cos\left(rac{\pi}{m}
 ight)$ for some $m \in \mathbb{Z}_{\geq 2}$,

(日) (日) (日) (日) (日) (日) (日)

• or $B(\alpha,\beta) \leq -1$.

2. For each $\alpha \in \Delta$, define the *B*-reflection s_{α} :

$$egin{array}{rcl} m{s}_lpha: & m{V} &
ightarrow & m{V} \ & m{v} & \mapsto & m{v} - m{2B}(lpha,m{v}) \ lpha. \end{array}$$

Check: $s_{\alpha}(\alpha) = -\alpha$, and s_{α} fixes pointwise α^{\perp} . Notation: $S = \{s_{\alpha}, \ \alpha \in \Delta\}.$

3. Construct the *B*-reflection group $W := \langle S \rangle$.

4. Act by W on Δ to construct the root system

 $\Phi:=W(\Delta)$.

(日) (日) (日) (日) (日) (日) (日)

2. For each $\alpha \in \Delta$, define the *B*-reflection s_{α} :

$$egin{array}{rcl} m{s}_lpha: & m{V} &
ightarrow & m{V} \ & m{v} & \mapsto & m{v} - m{2B}(lpha,m{v}) \ lpha. \end{array}$$

Check: $s_{\alpha}(\alpha) = -\alpha$, and s_{α} fixes pointwise α^{\perp} . Notation: $S = \{s_{\alpha}, \alpha \in \Delta\}.$

3. Construct the *B*-reflection group $W := \langle S \rangle$.

4. Act by W on Δ to construct the root system

 $\Phi := W(\Delta)$.

(日) (日) (日) (日) (日) (日) (日)

2. For each $\alpha \in \Delta$, define the *B*-reflection s_{α} :

$$egin{array}{rcl} m{s}_lpha &\colon &m{V}& o&m{V}\ &m{v}&\mapsto&m{v}-2m{B}(lpha,m{v})\,lpha, \end{array}$$

Check: $s_{\alpha}(\alpha) = -\alpha$, and s_{α} fixes pointwise α^{\perp} . Notation: $S = \{s_{\alpha}, \alpha \in \Delta\}$.

3. Construct the *B*-reflection group $W := \langle S \rangle$.

4. Act by W on Δ to construct the root system

 $\Phi:=W(\Delta)$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

2. For each $\alpha \in \Delta$, define the *B*-reflection s_{α} :

$$egin{array}{rcl} m{s}_lpha: & m{V} &
ightarrow & m{V} \ & m{v} & \mapsto & m{v} - 2m{B}(lpha,m{v}) \ lpha. \end{array}$$

Check: $s_{\alpha}(\alpha) = -\alpha$, and s_{α} fixes pointwise α^{\perp} . Notation: $S = \{s_{\alpha}, \alpha \in \Delta\}$.

3. Construct the *B*-reflection group $W := \langle S \rangle$.

4. Act by W on \triangle to construct the root system

 $\Phi := W(\Delta)$.

A D F A 同 F A E F A E F A Q A

2. For each $\alpha \in \Delta$, define the *B*-reflection s_{α} :

$$egin{array}{rcl} m{s}_lpha &\colon &m{V}& o&m{V}\ &m{v}&\mapsto&m{v}-2m{B}(lpha,m{v})\,lpha, \end{array}$$

Check: $s_{\alpha}(\alpha) = -\alpha$, and s_{α} fixes pointwise α^{\perp} . Notation: $S = \{s_{\alpha}, \alpha \in \Delta\}$.

- **3**. Construct the *B*-reflection group $W := \langle S \rangle$.
- **4**. Act by W on Δ to construct the root system

 $\Phi := W(\Delta)$.

(ロ) (同) (三) (三) (三) (○) (○)

2. For each $\alpha \in \Delta$, define the *B*-reflection s_{α} :

$$egin{array}{rcl} m{s}_lpha &\colon &m{V}& o&m{V}\ &m{v}&\mapsto&m{v}-2m{B}(lpha,m{v})\,lpha, \end{array}$$

Check: $s_{\alpha}(\alpha) = -\alpha$, and s_{α} fixes pointwise α^{\perp} . Notation: $S = \{s_{\alpha}, \alpha \in \Delta\}$.

- **3**. Construct the *B*-reflection group $W := \langle S \rangle$.
- **4**. Act by W on Δ to construct the root system

 $\Phi := W(\Delta) .$

Note: if $\rho = w(\alpha)$ (with $\alpha \in \Delta$), $ws_{\alpha}w^{-1}$ is the *B*-reflection associated to the root ρ .

・ロト・(四ト・(川下・(日下))

Proposition (Krammer) • (W, S) is a Coxeter system, with Coxeter presentation: $W = \left\langle S \mid s^2 = 1 \; (\forall s \in S); \; (st)^{m_{s,t}} = 1 \; (\forall s \neq t \in S) \right\rangle,$ where $m_{s_{\alpha},s_{\beta}} = \begin{cases} m & \text{if } B(\alpha,\beta) = -\cos(\pi/m), \\ \infty & \text{if } B(\alpha,\beta) \leq -1. \end{cases}$ • Let $\Phi^+ := \Phi \cap \operatorname{cone}(\Delta)$. Then: $\Phi = \Phi^+ \sqcup (-\Phi^+)$.

Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].

(日) (日) (日) (日) (日) (日) (日)

Proposition (Krammer) • (W, S) is a Coxeter system, with Coxeter presentation: $W = \left\langle S \mid s^2 = 1 \; (\forall s \in S); \; (st)^{m_{s,t}} = 1 \; (\forall s \neq t \in S) \right\rangle,$ where $m_{s_{\alpha},s_{\beta}} = \left\{ \begin{matrix} m & \text{if } B(\alpha,\beta) = -\cos(\pi/m), \\ \infty & \text{if } B(\alpha,\beta) \leq -1. \end{matrix} \right.$ • Let $\Phi^+ := \Phi \cap \operatorname{cone}(\Delta)$. Then: $\Phi = \Phi^+ \sqcup (-\Phi^+)$.

Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].

Proposition (Krammer) • (W, S) is a Coxeter system, with Coxeter presentation: $W = \left\langle S \mid s^2 = 1 \; (\forall s \in S); \; (st)^{m_{s,t}} = 1 \; (\forall s \neq t \in S) \right\rangle,$ where $m_{s_{\alpha},s_{\beta}} = \left\{ \begin{matrix} m & \text{if } B(\alpha,\beta) = -\cos(\pi/m), \\ \infty & \text{if } B(\alpha,\beta) \leq -1. \end{matrix} \right.$ • Let $\Phi^+ := \Phi \cap \operatorname{cone}(\Delta)$. Then: $\Phi = \Phi^+ \sqcup (-\Phi^+)$.

Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].

Proposition (Krammer) • (W, S) is a Coxeter system, with Coxeter presentation: $W = \left\langle S \mid s^2 = 1 \; (\forall s \in S); \; (st)^{m_{s,t}} = 1 \; (\forall s \neq t \in S) \right\rangle,$ where $m_{s_{\alpha},s_{\beta}} = \left\{ \begin{matrix} m & \text{if } B(\alpha,\beta) = -\cos(\pi/m), \\ \infty & \text{if } B(\alpha,\beta) \leq -1. \end{matrix} \right.$ • Let $\Phi^+ := \Phi \cap \operatorname{cone}(\Delta)$. Then: $\Phi = \Phi^+ \sqcup (-\Phi^+)$.

Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].

For finite root systems: Φ is finite \Leftrightarrow *W* is finite (\Leftrightarrow *B* is positive definite).

What does an infinite root system look like?

Simplest example, in rank 2:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For finite root systems:

 Φ is finite \Leftrightarrow *W* is finite (\Leftrightarrow *B* is positive definite).

What does an infinite root system look like?

Simplest example, in rank 2:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For finite root systems: Φ is finite \Leftrightarrow *W* is finite (\Leftrightarrow *B* is positive definite).

What does an infinite root system look like?

Simplest example, in rank 2:

Matrix of *B* in the basis
$$(\alpha, \beta)$$
: $\begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Infinite dihedral group, case $B(\alpha, \beta) = -1$

Observations

- The **norms** of the roots tend to ∞ ;
- The **directions** of the roots tend to the direction of the isotropic cone *Q* of *B*:

$$\boldsymbol{Q}:=\{\boldsymbol{v}\in\boldsymbol{V},\;\boldsymbol{B}(\boldsymbol{v},\boldsymbol{v})=\boldsymbol{0}\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(in the example the equation is $v_{\alpha}^2 + v_{\beta}^2 - 2v_{\alpha}v_{\beta} = 0$, and $Q = \text{span}(\alpha + \beta)$.)

What if $B(\alpha, \beta) < -1$?

• Matrix of B: $\begin{bmatrix} 1 & \kappa \\ \kappa & 1 \end{bmatrix}$ with $\kappa < -1$. We write $\mathbf{e}_{\mathbf{x}} \underbrace{\mathbf{e}_{\alpha}}_{\mathbf{x}} \mathbf{e}_{\beta}$

What if $B(\alpha, \beta) < -1$? • Matrix of $B: \begin{bmatrix} 1 & \kappa \\ \kappa & 1 \end{bmatrix}$ with $\kappa < -1$. We write $\begin{array}{c} \infty(\kappa) \\ \bullet \\ s_{\alpha} & \bullet \\ s_{\beta} \end{array}$

What if $B(\alpha, \beta) < -1$?

• Matrix of *B*:
$$\begin{bmatrix} 1 & \kappa \\ \kappa & 1 \end{bmatrix}$$
 with $\kappa < -1$. We write $\begin{array}{c} \bullet \\ \bullet \\ s_{\alpha} \\ s_{\beta} \end{array}$

What if $B(\alpha, \beta) < -1$?

• Matrix of *B*:
$$\begin{bmatrix} 1 & \kappa \\ \kappa & 1 \end{bmatrix}$$
 with $\kappa < -1$. We write $\begin{array}{c} \bullet \\ \bullet \\ s_{\alpha} \\ s_{\beta} \end{array}$

Outline

Root systems and "limit roots" of a Coxeter group W

2 Normalized roots, limit roots and isotropic cone

3 Action of W on the limit roots and topological properties

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Let's see examples of higher rank

We cut the directions of the roots with an affine hyperplane.

"Normalization" of roots

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Examples in rank 3: finite group, sgn B = (3, 0). (H_3)

Examples in rank 3: affine group, sgn B = (2,0) (\widetilde{G}_2)

Examples in rank 3: affine group, sgn B = (2,0) (\widetilde{G}_2)

Examples in rank 3: case sgn B = (2, 1)

Examples in rank 4

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Examples in rank 4

The limit roots lie in the isotropic cone Q

Theorem (Hohlweg-Labbé-R. '11)

Let Φ be a root system for an (infinite) Coxeter group, and $(\rho_n)_{n \in \mathbb{N}}$ an injective sequence in Φ . Then:

- $||\rho_n||$ tends to ∞ (for any norm on V);
- if the sequence of normalized root $\hat{\rho_n}$ has a limit ℓ , then

 $\ell \in \widehat{Q} \cap \operatorname{conv}(\Delta).$

Property proved independently in other contexts:

- [Kac 90] for Weyl groups of Kac-Moody algebras,
- generalized by [Dyer 2012] (work on the imaginary cone of a Coxeter group).

 \rightsquigarrow **Problem:** understand the set of possible limits, i.e., the accumulation points of $\widehat{\Phi}$:

$$E(\Phi) := \operatorname{Acc}\left(\widehat{\Phi}\right) \qquad (\text{``limit roots''}).$$

The limit roots lie in the isotropic cone Q

Theorem (Hohlweg-Labbé-R. '11)

Let Φ be a root system for an (infinite) Coxeter group, and $(\rho_n)_{n \in \mathbb{N}}$ an injective sequence in Φ . Then:

- $||\rho_n||$ tends to ∞ (for any norm on V);
- if the sequence of normalized root $\hat{\rho_n}$ has a limit ℓ , then

 $\ell \in \widehat{Q} \cap \operatorname{conv}(\Delta).$

Property proved independently in other contexts:

- [Kac 90] for Weyl groups of Kac-Moody algebras,
- generalized by [Dyer 2012] (work on the imaginary cone of a Coxeter group).

 \rightsquigarrow **Problem:** understand the set of possible limits, i.e., the accumulation points of $\widehat{\Phi}$:

$$E(\Phi) := \operatorname{Acc}\left(\widehat{\Phi}\right) \qquad (\text{``limit roots''}).$$

The limit roots lie in the isotropic cone Q

Theorem (Hohlweg-Labbé-R. '11)

Let Φ be a root system for an (infinite) Coxeter group, and $(\rho_n)_{n \in \mathbb{N}}$ an injective sequence in Φ . Then:

- $||\rho_n||$ tends to ∞ (for any norm on V);
- if the sequence of normalized root $\hat{\rho_n}$ has a limit ℓ , then

 $\ell \in \widehat{Q} \cap \operatorname{conv}(\Delta).$

Property proved independently in other contexts:

- [Kac 90] for Weyl groups of Kac-Moody algebras,
- generalized by [Dyer 2012] (work on the imaginary cone of a Coxeter group).

→ **Problem:** understand the set of possible limits, i.e., the accumulation points of $\widehat{\Phi}$:

$$E(\Phi) := \operatorname{Acc}\left(\widehat{\Phi}\right)$$
 ("limit roots").

Outline

Root systems and "limit roots" of a Coxeter group W

2 Normalized roots, limit roots and isotropic cone

3 Action of W on the limit roots and topological properties

◆□▼ ▲□▼ ▲目▼ ▲目▼ ▲□▼

A natural group action of W on EGeometric action of W on a part of $V_1: w \cdot v := \widehat{w(v)}$. Defined on $D = V_1 \cap \bigcap_{w \in W} w(V \setminus V_0)$, where $V_0 = \overline{V_1}$.

- $E(\Phi) \subseteq D$ and $E(\Phi)$ is stable under the action of W.
- For $\alpha \in \Phi$ and $x \in E$, $\widehat{Q} \cap L(\widehat{\alpha}, x) = \{x, s_{\alpha} \cdot x\}$.

A natural group action of W on E

Geometric action of W on a part of $V_1: w \cdot v := w(v)$. Defined on $D = V_1 \cap \bigcap_{w \in W} w(V \setminus V_0)$, where $V_0 = V_1$.

- $E(\Phi) \subseteq D$ and $E(\Phi)$ is stable under the action of W.
- For $\alpha \in \Phi$ and $x \in E$, $\widehat{Q} \cap L(\widehat{\alpha}, x) = \{x, s_{\alpha} \cdot x\}$.

A natural group action of W on E

Geometric action of W on a part of $V_1: w \cdot v := w(v)$. Defined on $D = V_1 \cap \bigcap_{w \in W} w(V \setminus V_0)$, where $V_0 = V_1$.

- $E(\Phi) \subseteq D$ and $E(\Phi)$ is stable under the action of W.
- For $\alpha \in \Phi$ and $x \in E$, $\widehat{Q} \cap L(\widehat{\alpha}, x) = \{x, s_{\alpha} \cdot x\}$.

A natural group action of W on E

Geometric action of W on a part of $V_1: w \cdot v := w(v)$. Defined on $D = V_1 \cap \bigcap_{w \in W} w(V \setminus V_0)$, where $V_0 = V_1$.

- $E(\Phi) \subseteq D$ and $E(\Phi)$ is stable under the action of W.
- For $\alpha \in \Phi$ and $x \in E$, $\widehat{Q} \cap L(\widehat{\alpha}, x) = \{x, s_{\alpha} \cdot x\}$.

If W affine, then E = singleton \rightarrow non faithful action.

Theorem (Dyer-Hohlweg-R. '12)

If W is infinite, non-affine and irreducible, then the action of W on E is faithful.

- we prove that *E* is not contained in a finite union of affine subspaces of *V*₁.
- we use the link with the imaginary cone of Φ studied by Dyer. It is a positive cone Z defined by the geometry of Φ and W, and verifying:

 $\operatorname{conv}(E) = \overline{\mathcal{Z}} \cap V_1.$

・ロト・日本・日本・日本・日本

If W affine, then E = singleton \rightsquigarrow non faithful action.

Theorem (Dyer-Hohlweg-R. '12)

If W is infinite, non-affine and irreducible, then the action of W on E is faithful.

- we prove that E is not contained in a finite union of affine subspaces of V₁.
- we use the link with the imaginary cone of Φ studied by Dyer. It is a positive cone Z defined by the geometry of Φ and W, and verifying:

 $\operatorname{conv}(E) = \overline{\mathcal{Z}} \cap V_1.$

・ロト・日本・日本・日本・日本

If W affine, then E = singleton \rightsquigarrow non faithful action.

Theorem (Dyer-Hohlweg-R. '12)

If W is infinite, non-affine and irreducible, then the action of W on E is faithful.

 we prove that *E* is not contained in a finite union of affine subspaces of *V*₁.

 we use the link with the imaginary cone of Φ studied by Dyer. It is a positive cone Z defined by the geometry of Φ and W, and verifying:

 $\operatorname{conv}(E) = \overline{\mathcal{Z}} \cap V_1.$

(ロ) (同) (三) (三) (三) (○) (○)

If W affine, then E = singleton \rightarrow non faithful action.

Theorem (Dyer-Hohlweg-R. '12)

If W is infinite, non-affine and irreducible, then the action of W on E is faithful.

- we prove that *E* is not contained in a finite union of affine subspaces of *V*₁.
- we use the link with the imaginary cone of Φ studied by Dyer. It is a positive cone Z defined by the geometry of Φ and W, and verifying:

 $\operatorname{conv}(E) = \overline{\mathcal{Z}} \cap V_1.$

(ロ) (同) (三) (三) (三) (○) (○)

Minimality of the action

Theorem (Dyer-Hohlweg-R. '12)

If W is irreducible infinite, then for all $x \in E$, the orbit of x under the action of W is dense in E:

$\overline{W\cdot x}=E.$

The proof uses:

the properties of the action on C = conv(E) [Dyer '12]:
 if W is irreducible infinite, then

$$\forall x \in C, \text{ conv}\left(\overline{W \cdot x}\right) = C.$$

 the fact that the set of extreme points of the convex set C is dense in E [Dyer-Hohlweg-R. '12].

Minimality of the action

Theorem (Dyer-Hohlweg-R. '12)

If W is irreducible infinite, then for all $x \in E$, the orbit of x under the action of W is dense in E:

$$\overline{W\cdot x}=E.$$

The proof uses:

the properties of the action on C = conv(E) [Dyer '12]:
 if W is irreducible infinite, then

$$\forall x \in C, \operatorname{conv}\left(\overline{W \cdot x}\right) = C.$$

• the fact that the set of extreme points of the convex set *C* is dense in *E* [Dyer-Hohlweg-R. '12].

Minimality of the action

Theorem (Dyer-Hohlweg-R. '12)

If W is irreducible infinite, then for all $x \in E$, the orbit of x under the action of W is dense in E:

$$\overline{W\cdot x}=E.$$

The proof uses:

the properties of the action on C = conv(E) [Dyer '12]:
 if W is irreducible infinite, then

$$\forall x \in C, \text{ conv}\left(\overline{W \cdot x}\right) = C.$$

• the fact that the set of extreme points of the convex set *C* is dense in *E* [Dyer-Hohlweg-R. '12].

"Fractal" description of a dense subset of E

Start with the intersections of \widehat{Q} with the faces of conv(Δ), and act by W...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

"Fractal" description of a dense subset of E

Start with the intersections of \widehat{Q} with the faces of conv(Δ), and act by W...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

How to describe *E* directly?

Special case:

Theorem

Suppose W irreducible, infinite non affine. If $\widehat{Q} \subseteq \text{conv}(\Delta)$, then sgn B = (n - 1, 1) and $E(\Phi) = \widehat{Q}$.

How to describe *E* directly? (general case)

Conjecture

If W is irreducible, $E(\Phi)$ is equal to \hat{Q} minus all the images by W of the parts of \hat{Q} which are outside $conv(\Delta)$, i.e. :

$$E(\Phi) = \widehat{Q} \cap \bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta).$$

General case: \hat{Q} cut the faces

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ のへの

Equivalent conjecture

Conjecture

In general, $E(\Phi)$ is equal to \widehat{Q} minus all the images by W of the parts of \widehat{Q} which are outside conv(Δ), i.e. :

$$E(\Phi) = \widehat{Q} \cap \bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta).$$

From [Dyer '12]:
$$\bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta) = \operatorname{conv}(E)$$
, so:
Conjecture $\Leftrightarrow E = \operatorname{conv}(E) \cap \widehat{Q}$.

→ True for the case where *B* has signature (n - 1, 1) (we can assume \hat{Q} is a sphere).

Equivalent conjecture

Conjecture

In general, $E(\Phi)$ is equal to \widehat{Q} minus all the images by W of the parts of \widehat{Q} which are outside conv(Δ), i.e. :

$$E(\Phi) = \widehat{Q} \cap \bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta).$$

From [Dyer '12]:
$$\bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta) = \operatorname{conv}(E)$$
, so:
Conjecture $\Leftrightarrow E = \operatorname{conv}(E) \cap \widehat{Q}$.

→ True for the case where *B* has signature (n - 1, 1) (we can assume \hat{Q} is a sphere).

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

Equivalent conjecture

Conjecture

In general, $E(\Phi)$ is equal to \widehat{Q} minus all the images by W of the parts of \widehat{Q} which are outside conv(Δ), i.e. :

$$E(\Phi) = \widehat{Q} \cap \bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta).$$

From [Dyer '12]:
$$\bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta) = \operatorname{conv}(E)$$
, so:
Conjecture $\Leftrightarrow E = \operatorname{conv}(E) \cap \widehat{Q}$.

→ True for the case where *B* has signature (n - 1, 1) (we can assume \hat{Q} is a sphere).

Some other questions

How does *E* behave in regards to restriction to parabolic subgroups? Take *I* ⊆ Δ, *W_I* its associated parabolic subgroup, Φ_I = *W_I*(Δ_I), and *V_I* = Vect(*I*) ∩ *V*₁. Then *E*(Φ_I) ≠ *E*(Φ) ∩ *V_I* in general! (counterexample in rank 5). But this type of property of good restriction works for other "natural" subsets of *E*...

 Case of signature (n – 1, 1). Links with hyperbolic geometry, and with Kleinian groups in rank 4.

Some other questions

How does *E* behave in regards to restriction to parabolic subgroups? Take *I* ⊆ Δ, *W_I* its associated parabolic subgroup, Φ_I = *W_I*(Δ_I), and *V_I* = Vect(*I*) ∩ *V*₁. Then *E*(Φ_I) ≠ *E*(Φ) ∩ *V_I* in general! (counterexample in rank 5). But this type of property of good restriction works for other "natural" subsets of *E*...

 Case of signature (n – 1, 1). Links with hyperbolic geometry, and with Kleinian groups in rank 4.

References:

- Ch. Hohlweg, J.-P. Labbé, V. Ripoll, *Asymptotical behaviour of roots of infinite Coxeter groups I*, arXiv:1112.5415.
- M. Dyer, *Imaginary cone and reflection subgroups of Coxeter groups*, arXiv:1210.5206.
- M. Dyer, Ch. Hohlweg, V. Ripoll, *Asymptotical behaviour* of roots of infinite Coxeter groups II, in preparation.

References:

- Ch. Hohlweg, J.-P. Labbé, V. Ripoll, *Asymptotical behaviour of roots of infinite Coxeter groups I*, arXiv:1112.5415.
- M. Dyer, *Imaginary cone and reflection subgroups of Coxeter groups*, arXiv:1210.5206.
- M. Dyer, Ch. Hohlweg, V. Ripoll, *Asymptotical behaviour* of roots of infinite Coxeter groups II, in preparation.

References:

- Ch. Hohlweg, J.-P. Labbé, V. Ripoll, *Asymptotical behaviour of roots of infinite Coxeter groups I*, arXiv:1112.5415.
- M. Dyer, *Imaginary cone and reflection subgroups of Coxeter groups*, arXiv:1210.5206.
- M. Dyer, Ch. Hohlweg, V. Ripoll, *Asymptotical behaviour* of roots of infinite Coxeter groups II, in preparation.

References:

- Ch. Hohlweg, J.-P. Labbé, V. Ripoll, *Asymptotical behaviour of roots of infinite Coxeter groups I*, arXiv:1112.5415.
- M. Dyer, *Imaginary cone and reflection subgroups of Coxeter groups*, arXiv:1210.5206.
- M. Dyer, Ch. Hohlweg, V. Ripoll, *Asymptotical behaviour* of roots of infinite Coxeter groups II, in preparation.

References:

- Ch. Hohlweg, J.-P. Labbé, V. Ripoll, *Asymptotical behaviour of roots of infinite Coxeter groups I*, arXiv:1112.5415.
- M. Dyer, *Imaginary cone and reflection subgroups of Coxeter groups*, arXiv:1210.5206.
- M. Dyer, Ch. Hohlweg, V. Ripoll, *Asymptotical behaviour* of roots of infinite Coxeter groups II, in preparation.

Imaginary cone

Definition (Kac, Hée, Dyer...)

The imaginary cone of Φ is :

 $\mathcal{Z} := \{ w(v) \mid w \in W, v \in \mathsf{cone}(\Delta), \text{ et } \forall \alpha \in \Delta, B(\alpha, v) \leq 0 \}.$

Imaginary cone

Definition (Kac, Hée, Dyer...)

The imaginary cone of Φ is :

 $\mathcal{Z} := \{ w(v) \mid w \in W, v \in \mathsf{cone}(\Delta), \text{ et } \forall \alpha \in \Delta, B(\alpha, v) \leq 0 \}.$

