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A definition of root system

V : a real vector space, of finite dimension n
B: a symmetric bilinear form on V

Construction of a root system in (V ,B):

1. Start with a simple system ∆:
∆ is a basis for V ;
∀α ∈ ∆,B(α, α) = 1;
∀α 6= β ∈ ∆:

either B(α, β) = − cos
( π

m

)
for some m ∈ Z≥2,

or B(α, β) ≤ −1.
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A definition of root system

2. For each α ∈ ∆, define the B-reflection sα:

sα : V → V
v 7→ v − 2B(α, v) α.

Check: sα(α) = −α, and sα fixes pointwise α⊥.

Notation: S = {sα, α ∈ ∆}.

3. Construct the B-reflection group W := 〈S〉.

4. Act by W on ∆ to construct the root system

Φ := W (∆) .

Note: if ρ = w(α) (with α ∈ ∆), wsαw−1 is the B-reflection
associated to the root ρ.
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Coxeter group and root system

Proposition (Krammer)
(W ,S) is a Coxeter system, with Coxeter presentation:

W =
〈

S
∣∣∣ s2 = 1 (∀s ∈ S); (st)ms,t = 1 (∀s 6= t ∈ S)

〉
,

where msα,sβ =

{
m if B(α, β) = − cos(π/m),

∞ if B(α, β) ≤ −1.

Let Φ+ := Φ ∩ cone(∆). Then: Φ = Φ+ t (−Φ+).

Note: Conversely, from any Coxeter system it is possible to
construct a root system, using the classical geometric
representation [Tits].
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Infinite root systems

For finite root systems:
Φ is finite⇔W is finite (⇔ B is positive definite).

What does an infinite root system look like?

Simplest example, in rank 2:

sα sβ

∞
Matrix of B in the basis (α, β):

[
1 −1
−1 1

]
.



Infinite root systems

For finite root systems:
Φ is finite⇔W is finite (⇔ B is positive definite).

What does an infinite root system look like?

Simplest example, in rank 2:

sα sβ

∞
Matrix of B in the basis (α, β):

[
1 −1
−1 1

]
.



Infinite root systems

For finite root systems:
Φ is finite⇔W is finite (⇔ B is positive definite).

What does an infinite root system look like?

Simplest example, in rank 2:

sα sβ

∞
Matrix of B in the basis (α, β):

[
1 −1
−1 1

]
.



Infinite dihedral group, case B(α, β) = −1

α = ρ1β = ρ′1

ρ2 = sα(β) = β − 2B(α, β)α = β + 2αρ′2

ρ3ρ′3

ρ4ρ′4

Q

ρ′n = nα + (n + 1)β ; ρn = (n + 1)α + nβ



Observations

The norms of the roots tend to∞;
The directions of the roots tend to the direction of the
isotropic cone Q of B:

Q := {v ∈ V , B(v , v) = 0}.

(in the example the equation is v2
α + v2

β − 2vαvβ = 0, and
Q = span(α + β).)



What if B(α, β) < −1?

Matrix of B:
[
1 κ
κ 1

]
with κ < −1. We write

sα sβ

∞(κ)

Then Q is the union of 2 lines.

Q

α = ρ1β = ρ′1

ρ2ρ′2

ρ3ρ′3

ρ4ρ′4

s t

∞(−1.01)
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Let’s see examples of higher rank
We cut the directions of the roots with an affine hyperplane.

α = ρ1β = ρ′1

ρ2ρ′2

ρ3ρ′3

ρ4ρ′4

Q

V1 = {v ∈ V |
∑
α∈∆

vα = 1}



“Normalization” of roots

α = ρ1β = ρ′1

ρ2ρ′2

ρ3ρ′3

ρ4ρ′4

Q

V1

Q

α = ρ1β = ρ′1

ρ2ρ′2

ρ3ρ′3

ρ4ρ′4

V1

V1Q̂

α = ρ1β = ρ′1 ρ̂2ρ̂′2 · · ·
sα sβ

∞

V1

α = ρ1β = ρ′1 ρ̂2ρ̂′2 · · ·

Q̂

sα sβ
∞(−1.01)

case B(α, β) = −1 case B(α, β) = −1.01 < −1



Examples in rank 3: finite group, sgn B = (3,0). (H3)

sγ

sβ

5

sα

α β

γ



Examples in rank 3: affine group, sgn B = (2,0) (G̃2)

sγ

sβ
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sα
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γ
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Examples in rank 3: case sgn B = (2,1)
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Examples in rank 3: case sgn B = (2,1)

sγ

sβ

∞(−1.5)

sα ∞

4

α β

γ



Examples in rank 4

sα sβ

sδ

sγ



Examples in rank 4

sα sβ
∞

sδ

∞ ∞

sγ
∞ ∞

∞



The limit roots lie in the isotropic cone Q
Theorem (Hohlweg-Labbé-R. ’11)
Let Φ be a root system for an (infinite) Coxeter group, and
(ρn)n∈N an injective sequence in Φ. Then:

||ρn|| tends to∞ (for any norm on V);
if the sequence of normalized root ρ̂n has a limit `, then

` ∈ Q̂ ∩ conv(∆).

Property proved independently in other contexts:
[Kac 90] for Weyl groups of Kac-Moody algebras,
generalized by [Dyer 2012] (work on the imaginary cone of
a Coxeter group).

 Problem: understand the set of possible limits, i.e., the
accumulation points of Φ̂:

E(Φ) := Acc
(

Φ̂
)

(“limit roots”).
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Let Φ be a root system for an (infinite) Coxeter group, and
(ρn)n∈N an injective sequence in Φ. Then:

||ρn|| tends to∞ (for any norm on V);
if the sequence of normalized root ρ̂n has a limit `, then

` ∈ Q̂ ∩ conv(∆).

Property proved independently in other contexts:
[Kac 90] for Weyl groups of Kac-Moody algebras,
generalized by [Dyer 2012] (work on the imaginary cone of
a Coxeter group).

 Problem: understand the set of possible limits, i.e., the
accumulation points of Φ̂:

E(Φ) := Acc
(

Φ̂
)

(“limit roots”).



Outline

1 Root systems and “limit roots” of a Coxeter group W

2 Normalized roots, limit roots and isotropic cone

3 Action of W on the limit roots and topological properties



A natural group action of W on E
Geometric action of W on a part of V1: w · v := ŵ(v).
Defined on D = V1 ∩

⋂
w∈W

w(V \ V0), where V0 =
−→
V1.

Proposition
E(Φ) ⊆ D and E(Φ) is stable under the action of W.

For α ∈ Φ and x ∈ E, Q̂ ∩ L(α̂, x) = {x , sα · x}.

α β

γ

sα sβ∞

sγ
4 ∞(−1.5)

y

x

sα · y

sα · x
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Faithfulness of the action

If W affine, then E = singleton non faithful action.

Theorem (Dyer-Hohlweg-R. ’12)
If W is infinite, non-affine and irreducible, then the action of W
on E is faithful.

we prove that E is not contained in a finite union of affine
subspaces of V1.
we use the link with the imaginary cone of Φ studied by
Dyer. It is a positive cone Z defined by the geometry of Φ
and W , and verifying:

conv(E) = Z ∩ V1.
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Minimality of the action

Theorem (Dyer-Hohlweg-R. ’12)
If W is irreducible infinite, then for all x ∈ E, the orbit of x under
the action of W is dense in E:

W · x = E .

The proof uses:
the properties of the action on C = conv(E) [Dyer ’12]:
if W is irreducible infinite, then

∀x ∈ C, conv
(

W · x
)

= C.

the fact that the set of extreme points of the convex set C
is dense in E [Dyer-Hohlweg-R. ’12].
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“Fractal” description of a dense subset of E
Start with the intersections of Q̂ with the faces of conv(∆), and
act by W ...
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“Fractal” description of a dense subset of E

sα sβ

sδ
4 4

sγ

4



How to describe E directly?
Special case:

Theorem

Suppose W irreducible, infinite non affine. If Q̂ ⊆ conv(∆), then
sgn B = (n − 1,1) and E(Φ) = Q̂.

sα sβ

sδ

sγ



How to describe E directly? (general case)
Conjecture

If W is irreducible, E(Φ) is equal to Q̂ minus all the images by
W of the parts of Q̂ which are outside conv(∆), i.e. :

E(Φ) = Q̂ ∩
⋂

w∈W

w · conv(∆).

α β

γ

sα · β

sα · γ

sα sβ∞

sγ
4 ∞(−1.5)

y

x

sα · y

sα · x



General case: Q̂ cut the faces

sα sβ
∞

sδ

∞ ∞

sγ
∞ ∞

∞



Equivalent conjecture

Conjecture

In general, E(Φ) is equal to Q̂ minus all the images by W of the
parts of Q̂ which are outside conv(∆), i.e. :

E(Φ) = Q̂ ∩
⋂

w∈W

w · conv(∆).

From [Dyer ’12]:
⋂

w∈W

w · conv(∆) = conv(E), so:

Conjecture ⇔ E = conv(E) ∩ Q̂.

 True for the case where B has signature (n − 1,1) (we can
assume Q̂ is a sphere).
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Conjecture
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Some other questions

How does E behave in regards to restriction to parabolic
subgroups? Take I ⊆ ∆, WI its associated parabolic
subgroup, ΦI = WI(∆I), and VI = Vect(I) ∩ V1. Then
E(ΦI) 6= E(Φ) ∩ VI in general! (counterexample in rank 5).
But this type of property of good restriction works for other
“natural” subsets of E ...

Case of signature (n − 1,1). Links with hyperbolic
geometry, and with Kleinian groups in rank 4.
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Imaginary cone
Definition (Kac, Hée, Dyer...)
The imaginary cone of Φ is :

Z := {w(v) | w ∈W , v ∈ cone(∆), et ∀α ∈ ∆,B(α, v) ≤ 0}.

α β

γ

sα sβ

sγ
4 6
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