Limit points of root systems of infinite Coxeter groups

Vivien Ripoll

LaCIM, Université du Québec à Montréal

2012 CMS Winter Meeting Session of Algebraic Combinatorics
Montreal, December 9th 2012

From joint works with

- Matthew Dyer (University of Notre Dame)
- Christophe Hohlweg (UQÀM)
- Jean-Philippe Labbé (FU Berlin)

Outline

(1) Root systems and "limit roots" of a Coxeter group W
(2) Normalized roots, limit roots and isotropic cone
(3) Action of W on the limit roots and topological properties

Outline

(1) Root systems and "limit roots" of a Coxeter group W
(2) Normalized roots, limit roots and isotropic cone
(3) Action of W on the limit roots and topological properties

A definition of root system

- V : a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B) :

1. Start with a simple system Δ :

A definition of root system

- V : a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B) :

1. Start with a simple system Δ :

A definition of root system

- V : a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B) :

1. Start with a simple system Δ :

- Δ is a basis for V;
- $\forall \alpha \in \Delta, B(\alpha, \alpha)=1$;
- $\forall \alpha \neq \beta \in \Delta$:

A definition of root system

- V : a real vector space, of finite dimension n
- B : a symmetric bilinear form on V

Construction of a root system in (V, B) :

1. Start with a simple system Δ :

- Δ is a basis for V;
- $\forall \alpha \in \Delta, B(\alpha, \alpha)=1$;

A definition of root system

- V : a real vector space, of finite dimension n
- B : a symmetric bilinear form on V

Construction of a root system in (V, B) :

1. Start with a simple system Δ :

- Δ is a basis for V;
- $\forall \alpha \in \Delta, B(\alpha, \alpha)=1$;
- $\forall \alpha \neq \beta \in \Delta$:
- either $B(\alpha, \beta)=-\cos \left(\frac{\pi}{m}\right)$ for some $m \in \mathbb{Z}_{\geq 2}$,
- or $B(\alpha, \beta) \leq-1$.

A definition of root system

- V : a real vector space, of finite dimension n
- B : a symmetric bilinear form on V

Construction of a root system in (V, B) :

1. Start with a simple system Δ :

- Δ is a basis for V;
- $\forall \alpha \in \Delta, B(\alpha, \alpha)=1$;
- $\forall \alpha \neq \beta \in \Delta$:
- either $B(\alpha, \beta)=-\cos \left(\frac{\pi}{m}\right)$ for some $m \in \mathbb{Z}_{\geq 2}$,
- or $B(\alpha, \beta) \leq-1$.

A definition of root system

- V : a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B) :

1. Start with a simple system Δ :

- Δ is a basis for V;
- $\forall \alpha \in \Delta, B(\alpha, \alpha)=1$;
- $\forall \alpha \neq \beta \in \Delta$:
- either $B(\alpha, \beta)=-\cos \left(\frac{\pi}{m}\right)$ for some $m \in \mathbb{Z}_{\geq 2}$,
- or $B(\alpha, \beta) \leq-1$.

A definition of root system

2. For each $\alpha \in \Delta$, define the B-reflection \boldsymbol{s}_{α} :

$$
\begin{array}{cccc}
\boldsymbol{s}_{\alpha}: & \boldsymbol{V} & \rightarrow & \boldsymbol{V} \\
& \boldsymbol{v} & \mapsto & v-2 B(\alpha, v) \alpha .
\end{array}
$$

Check: $s_{\alpha}(\alpha)=-\alpha$, and s_{α} fixes pointwise α^{\perp}.
Notation: $S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$.
3. Construct the B-reflection group $W:=\langle S\rangle$.
4. Act by W on Δ to construct the root system

$$
\Phi:=W(\Delta) .
$$

Note: if $\rho=w(\alpha)$ (with $\alpha \in \Delta$), $w s_{\alpha} w^{-1}$ is the B-reflection associated to the root ρ.

A definition of root system

2. For each $\alpha \in \Delta$, define the B-reflection \boldsymbol{s}_{α} :

$$
\begin{array}{cccc}
\boldsymbol{s} \alpha_{\alpha}: & \boldsymbol{V} & \rightarrow & \boldsymbol{V} \\
& \boldsymbol{v} & \mapsto & v-2 B(\alpha, v) \alpha .
\end{array}
$$

Check: $s_{\alpha}(\alpha)=-\alpha$, and s_{α} fixes pointwise α^{\perp}.
Notation: $S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$.
3. Construct the B-reflection group $W:=\langle S\rangle$.
4. Act by W on \triangle to construct the root system

$$
\Phi:=W(\Delta) .
$$

Note: if $\rho=W(\alpha)$ (with $\alpha \in \Delta$), $w s_{\alpha} W^{-1}$ is the B-reflection associated to the root ρ.

A definition of root system

2. For each $\alpha \in \Delta$, define the B-reflection \boldsymbol{s}_{α} :

$$
\begin{array}{cccc}
\boldsymbol{s} \alpha_{\alpha}: & \mathbf{V} & \rightarrow & \mathbf{V} \\
& \boldsymbol{v} & \mapsto & v-2 B(\alpha, v) \alpha .
\end{array}
$$

Check: $s_{\alpha}(\alpha)=-\alpha$, and s_{α} fixes pointwise α^{\perp}.
Notation: $S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$.
3. Construct the B-reflection group $W:=\langle S\rangle$.
4. Act by W on Δ to construct the root system

$$
\Phi:=W(\Delta) .
$$

Note: if $\rho=w(\alpha)$ (with $\alpha \in \Delta$), $w s_{\alpha} W^{-1}$ is the B-reflection associated to the root ρ.

A definition of root system

2. For each $\alpha \in \Delta$, define the B-reflection \boldsymbol{s}_{α} :

$$
\begin{array}{cccc}
\boldsymbol{s} \alpha_{\alpha}: & \mathbf{V} & \rightarrow & \mathbf{V} \\
& \boldsymbol{v} & \mapsto & v-2 B(\alpha, v) \alpha .
\end{array}
$$

Check: $\boldsymbol{s}_{\alpha}(\alpha)=-\alpha$, and \boldsymbol{s}_{α} fixes pointwise α^{\perp}.
Notation: $S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$.
3. Construct the B-reflection group $W:=\langle S\rangle$.
4. Act by W on Δ to construct the root system
$\Phi:=W(\Delta)$
Note: if $\rho=w(\alpha)$ (with $\alpha \in \Delta$), $w s_{\alpha} W^{-1}$ is the B-reflection associated to the root ρ.

A definition of root system

2. For each $\alpha \in \Delta$, define the B-reflection \boldsymbol{s}_{α} :

$$
\begin{array}{cccc}
\boldsymbol{s}_{\alpha}: & \boldsymbol{V} & \rightarrow & \boldsymbol{V} \\
& \boldsymbol{v} & \mapsto & v-2 B(\alpha, v) \alpha .
\end{array}
$$

Check: $\boldsymbol{s}_{\alpha}(\alpha)=-\alpha$, and \boldsymbol{s}_{α} fixes pointwise α^{\perp}.
Notation: $S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$.
3. Construct the B-reflection group $W:=\langle S\rangle$.
4. Act by W on Δ to construct the root system

$$
\Phi:=W(\Delta) .
$$

Note: if $\rho=w(\alpha)$ (with $\alpha \in \Delta$), $w s_{\alpha} W^{-1}$ is the B-reflection associated to the root ρ.

A definition of root system

2. For each $\alpha \in \Delta$, define the B-reflection \boldsymbol{s}_{α} :

$$
\begin{array}{cccc}
\boldsymbol{s}_{\alpha}: & \boldsymbol{V} & \rightarrow & \boldsymbol{V} \\
& \boldsymbol{v} & \mapsto & v-2 B(\alpha, v) \alpha .
\end{array}
$$

Check: $\boldsymbol{s}_{\alpha}(\alpha)=-\alpha$, and s_{α} fixes pointwise α^{\perp}.
Notation: $S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$.
3. Construct the B-reflection group $W:=\langle S\rangle$.
4. Act by W on Δ to construct the root system

$$
\Phi:=W(\Delta)
$$

Note: if $\rho=w(\alpha)$ (with $\alpha \in \Delta$), $w s_{\alpha} W^{-1}$ is the B-reflection associated to the root ρ.

Coxeter group and root system

Proposition (Krammer)

- (W, S) is a Coxeter system, with Coxeter presentation:

$$
\begin{aligned}
& \qquad W=\left\langle s \mid s^{2}=1(\forall s \in S) ;(s t)^{m_{s, t}}=1(\forall s \neq t \in S)\right\rangle, \\
& \text { where } m_{s_{\alpha}, s_{\beta}}= \begin{cases}m & \text { if } B(\alpha, \beta)=-\cos (\pi / m), \\
\infty & \text { if } B(\alpha, \beta) \leq-1 .\end{cases}
\end{aligned}
$$

$$
\text { - Let } \left.\phi^{+}:=\phi \text { Cone(} \triangle\right) \text {. Then: } \phi=\phi^{+} \sqcup\left(-\phi^{+}\right) \text {. }
$$

Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].

Coxeter group and root system

Proposition (Krammer)

- (W, S) is a Coxeter system, with Coxeter presentation:

$$
\begin{aligned}
& W=\left\langle s \mid s^{2}=1(\forall s \in S) ;(s t)^{m_{s, t}}=1(\forall s \neq t \in S)\right\rangle, \\
& \text { where } m_{s_{\alpha}, s_{\beta}}= \begin{cases}m & \text { if } B(\alpha, \beta)=-\cos (\pi / m), \\
\infty & \text { if } B(\alpha, \beta) \leq-1 .\end{cases} \\
& \text { Let } \Phi^{+}:=\Phi \cap \operatorname{cone}(\Delta) . \text { Then: } \Phi=\Phi^{+} \sqcup\left(-\Phi^{+}\right) .
\end{aligned}
$$

Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].

Coxeter group and root system

Proposition (Krammer)

- (W, S) is a Coxeter system, with Coxeter presentation:

$$
\begin{aligned}
& W=\left\langle s \mid s^{2}=1(\forall s \in S) ;(s t)^{m_{s, t}}=1(\forall s \neq t \in S)\right\rangle, \\
& \text { where } m_{s_{\alpha}, s_{\beta}}= \begin{cases}m & \text { if } B(\alpha, \beta)=-\cos (\pi / m), \\
\infty & \text { if } B(\alpha, \beta) \leq-1 .\end{cases} \\
& \text { Let } \Phi^{+}:=\Phi \cap \operatorname{cone}(\Delta) . \text { Then: } \Phi=\Phi^{+} \sqcup\left(-\Phi^{+}\right) .
\end{aligned}
$$

Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].

Coxeter group and root system

Proposition (Krammer)

- (W, S) is a Coxeter system, with Coxeter presentation:

$$
\begin{aligned}
& W=\left\langle s \mid s^{2}=1(\forall s \in S) ;(s t)^{m_{s, t}}=1(\forall s \neq t \in S)\right\rangle, \\
& \text { where } m_{s_{\alpha}, s_{\beta}}= \begin{cases}m & \text { if } B(\alpha, \beta)=-\cos (\pi / m), \\
\infty & \text { if } B(\alpha, \beta) \leq-1 .\end{cases} \\
& \text { Let } \Phi^{+}:=\Phi \cap \operatorname{cone}(\Delta) . \text { Then: } \Phi=\Phi^{+} \sqcup\left(-\Phi^{+}\right) .
\end{aligned}
$$

Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].

Infinite root systems

For finite root systems:
Φ is finite $\Leftrightarrow W$ is finite ($\Leftrightarrow B$ is positive definite).
What does an infinite root system look like?
Simplest example, in rank 2 :

Infinite root systems

For finite root systems:
Φ is finite $\Leftrightarrow W$ is finite ($\Leftrightarrow B$ is positive definite).
What does an infinite root system look like?
Simplest example, in rank 2:

Infinite root systems

For finite root systems:
Φ is finite $\Leftrightarrow W$ is finite ($\Leftrightarrow B$ is positive definite).
What does an infinite root system look like?
Simplest example, in rank 2 :
$\stackrel{\infty}{\stackrel{\infty}{s_{\alpha}}} \boldsymbol{s}_{\beta} \quad$ Matrix of B in the basis $(\alpha, \beta):\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$.

Infinite dihedral group, case $B(\alpha, \beta)=-1$
Q

Observations

- The norms of the roots tend to ∞;
- The directions of the roots tend to the direction of the isotropic cone Q of B :

$$
Q:=\{v \in V, B(v, v)=0\} .
$$

(in the example the equation is $v_{\alpha}^{2}+v_{\beta}^{2}-2 v_{\alpha} v_{\beta}=0$, and $Q=\operatorname{span}(\alpha+\beta)$.)

What if $\boldsymbol{B}(\alpha, \beta)<-1$?

What if $B(\alpha, \beta)<-1$?

- Matrix of B : $\left[\begin{array}{cc}1 & \kappa \\ \kappa & 1\end{array}\right]$ with $\kappa<-1$. We write $\underset{s_{\alpha}}{\stackrel{\infty}{\bullet}} \stackrel{s_{\beta}}{\bullet}$

- Then Q is the union of 2 lines.

What if $B(\alpha, \beta)<-1$?

- Matrix of B : $\left[\begin{array}{cc}1 & \kappa \\ \kappa & 1\end{array}\right]$ with $\kappa<-1$. We write $\underset{s_{\alpha}}{\stackrel{\infty}{\bullet}} \stackrel{s_{\beta}}{\bullet}$
- Then Q is the union of 2 lines.

What if $B(\alpha, \beta)<-1$?

- Matrix of B : $\left[\begin{array}{cc}1 & \kappa \\ \kappa & 1\end{array}\right]$ with $\kappa<-1$. We write $\underset{s_{\alpha}}{\stackrel{\infty}{\bullet}} \stackrel{s_{\beta}}{\bullet}$
- Then Q is the union of 2 lines.

Outline

(1) Root systems and "limit roots" of a Coxeter group W
(2) Normalized roots, limit roots and isotropic cone
(3) Action of W on the limit roots and topological properties

Let's see examples of higher rank

We cut the directions of the roots with an affine hyperplane.

"Normalization" of roots

case $B(\alpha, \beta)=-1$

case $B(\alpha, \beta)=-1.01<-1$

Examples in rank 3: finite group, sgn $B=(3,0) .\left(H_{3}\right)$

Examples in rank 3: affine group, sgn $B=(2,0)\left(\widetilde{G_{2}}\right)$

Examples in rank 3: affine group, sgn $B=(2,0)\left(\widetilde{G_{2}}\right)$

Examples in rank 3: case sgn $B=(2,1)$

Examples in rank 3: case sgn $B=(2,1)$

Examples in rank 3: cas sgn $B=(2,1)$

Examples in rank 3: case sgn $B=(2,1)$

Examples in rank 3: case sgn $B=(2,1)$

Examples in rank 3: case sgn $B=(2,1)$

Examples in rank 3: case sgn $B=(2,1)$

Examples in rank 3: case sgn $B=(2,1)$

Examples in rank 4

Examples in rank 4

The limit roots lie in the isotropic cone Q

Theorem (Hohlweg-Labbé-R. '11)

Let Φ be a root system for an (infinite) Coxeter group, and $\left(\rho_{n}\right)_{n \in \mathbb{N}}$ an injective sequence in Φ. Then:

- \| $\rho_{n} \|$ tends to ∞ (for any norm on V);
- if the sequence of normalized root $\widehat{\rho_{n}}$ has a limit ℓ, then

$$
\ell \in \widehat{Q} \cap \operatorname{conv}(\Delta) .
$$

Property proved independently in other contexts:

- [Kac 90] for Weyl groups of Kac-Moody algebras,
- generalized by [Dyer 2012] (work on the imaginary cone of a Coxeter group).
\rightsquigarrow Problem: understand the set of possible limits, i.e., the accumulation points of $\hat{\phi}$:

$$
\begin{equation*}
E(\Phi):=\operatorname{Acc}(\widehat{\phi}) \tag{"limitroots"}
\end{equation*}
$$

The limit roots lie in the isotropic cone Q

Theorem (Hohlweg-Labbé-R. '11)

Let Φ be a root system for an (infinite) Coxeter group, and $\left(\rho_{n}\right)_{n \in \mathbb{N}}$ an injective sequence in Φ. Then:

- $\left\|\rho_{n}\right\|$ tends to ∞ (for any norm on V);
- if the sequence of normalized root $\widehat{\rho_{n}}$ has a limit ℓ, then

$$
\ell \in \widehat{Q} \cap \operatorname{conv}(\Delta) .
$$

Property proved independently in other contexts:

- [Kac 90] for Weyl groups of Kac-Moody algebras,
- generalized by [Dyer 2012] (work on the imaginary cone of a Coxeter group).
\rightsquigarrow Problem: understand the set of possible limits, i.e., the accumulation points of $\widehat{\phi}$:

The limit roots lie in the isotropic cone Q

Theorem (Hohlweg-Labbé-R. '11)

Let Φ be a root system for an (infinite) Coxeter group, and
$\left(\rho_{n}\right)_{n \in \mathbb{N}}$ an injective sequence in Φ. Then:

- $\left\|\rho_{n}\right\|$ tends to ∞ (for any norm on V);
- if the sequence of normalized root $\widehat{\rho_{n}}$ has a limit ℓ, then

$$
\ell \in \widehat{Q} \cap \operatorname{conv}(\Delta) .
$$

Property proved independently in other contexts:

- [Kac 90] for Weyl groups of Kac-Moody algebras,
- generalized by [Dyer 2012] (work on the imaginary cone of a Coxeter group).
\rightsquigarrow Problem: understand the set of possible limits, i.e., the accumulation points of $\widehat{\phi}$:

$$
E(\Phi):=\operatorname{Acc}(\widehat{\Phi}) \quad \text { ("limit roots"). }
$$

Outline

(1) Root systems and "limit roots" of a Coxeter group W

2 Normalized roots, limit roots and isotropic cone
(3) Action of W on the limit roots and topological properties

A natural group action of W on E

Geometric action of W on a part of $V_{1}: w \cdot v:=\widehat{w(v)}$. Defined on $D=V_{1} \cap \cap w\left(V \backslash V_{0}\right)$, where $V_{0}=\vec{V}_{1}$.

Proposition

- $E(\Phi) \subseteq D$ and $E(\Phi)$ is stable under the action of W.
- For $\alpha \in \Phi$ and $x \in E, \widehat{Q} \cap(\widehat{\alpha}, x)=\left\{x, s_{\alpha} \cdot x\right\}$.

A natural group action of W on E

Geometric action of W on a part of $V_{1}: w \cdot v:=\widehat{w(v)}$. Defined on $D=V_{1} \cap \bigcap w\left(V \backslash V_{0}\right)$, where $V_{0}=\vec{V}_{1}$. $w \in W$

Proposition

- $E(\Phi) \subseteq D$ and $E(\Phi)$ is stable under the action of W.
- For $\alpha \in \Phi$ and $x \in E, \widehat{Q} \cap L(\widehat{\alpha}, x)=\left\{x, s_{\alpha} \cdot x\right\}$.

A natural group action of W on E

Geometric action of W on a part of $V_{1}: w \cdot v:=\widehat{w(v)}$. Defined on $D=V_{1} \cap \bigcap_{w \in W} w\left(V \backslash V_{0}\right)$, where $V_{0}=\vec{V}_{1}$.

Proposition

- $E(\Phi) \subseteq D$ and $E(\Phi)$ is stable under the action of W.
- For $\alpha \in \Phi$ and $x \in E, \widehat{Q} \cap L(\widehat{\alpha}, x)=\left\{x, s_{\alpha} \cdot x\right\}$.

A natural group action of W on E

Geometric action of W on a part of $V_{1}: w \cdot v:=\widehat{w(v)}$. Defined on $D=V_{1} \cap \bigcap w\left(V \backslash V_{0}\right)$, where $V_{0}=\vec{V}_{1}$. $w \in W$

Proposition

- $E(\Phi) \subseteq D$ and $E(\Phi)$ is stable under the action of W.
- For $\alpha \in \Phi$ and $x \in E, \widehat{Q} \cap L(\widehat{\alpha}, x)=\left\{x, s_{\alpha} \cdot x\right\}$.

Faithfulness of the action

If W affine, then $E=$ singleton \rightsquigarrow non faithful action.
Theorem (Dyer-Hohlweg-R. '12)
If W is infinite, non-affine and irreducible, then the action of W
on E is faithful.

Faithfulness of the action

If W affine, then $E=$ singleton \rightsquigarrow non faithful action.
Theorem (Dyer-Hohlweg-R. '12)
If W is infinite, non-affine and irreducible, then the action of W on E is faithful.

Faithfulness of the action

If W affine, then $E=$ singleton \rightsquigarrow non faithful action.
Theorem (Dyer-Hohlweg-R. '12)
If W is infinite, non-affine and irreducible, then the action of W on E is faithful.

- we prove that E is not contained in a finite union of affine subspaces of V_{1}.
- we use the link with the imaginary cone of Φ studied by Dyer. It is a positive cone \mathcal{Z} defined by the geometry of Φ and W, and verifying:

Faithfulness of the action

If W affine, then $E=$ singleton \rightsquigarrow non faithful action.

Theorem (Dyer-Hohlweg-R. '12)

If W is infinite, non-affine and irreducible, then the action of W on E is faithful.

- we prove that E is not contained in a finite union of affine subspaces of V_{1}.
- we use the link with the imaginary cone of Φ studied by Dyer. It is a positive cone \mathcal{Z} defined by the geometry of Φ and W, and verifying:

$$
\operatorname{conv}(E)=\overline{\mathcal{Z}} \cap V_{1}
$$

Minimality of the action

Theorem (Dyer-Hohlweg-R. '12)
If W is irreducible infinite, then for all $x \in E$, the orbit of x under the action of W is dense in E :

$$
\overline{W \cdot x}=E .
$$

The proof uses:

Minimality of the action

Theorem (Dyer-Hohlweg-R. '12)
If W is irreducible infinite, then for all $x \in E$, the orbit of x under the action of W is dense in E :

$$
\overline{W \cdot x}=E .
$$

The proof uses:

- the properties of the action on $C=\operatorname{conv}(E)$ [Dyer '12]: if W is irreducible infinite, then

$$
\forall x \in C, \operatorname{conv}(\overline{W \cdot x})=C .
$$

- the fact that the set of extreme points of the convex set C is dense in E [Dyer-Hohlweg-R. '12].

Minimality of the action

Theorem (Dyer-Hohlweg-R. '12)

If W is irreducible infinite, then for all $x \in E$, the orbit of x under the action of W is dense in E :

$$
\overline{W \cdot x}=E .
$$

The proof uses:

- the properties of the action on $C=\operatorname{conv}(E)$ [Dyer '12]: if W is irreducible infinite, then

$$
\forall x \in C, \operatorname{conv}(\overline{W \cdot x})=C .
$$

- the fact that the set of extreme points of the convex set C is dense in E [Dyer-Hohlweg-R. '12].

"Fractal" description of a dense subset of E

Start with the intersections of \widehat{Q} with the faces of $\operatorname{conv}(\Delta)$, and act by W...

"Fractal" description of a dense subset of E

Start with the intersections of \widehat{Q} with the faces of $\operatorname{conv}(\Delta)$, and act by W...

"Fractal" description of a dense subset of E

How to describe E directly?

Special case:

Theorem

Suppose W irreducible, infinite non affine. If $\widehat{Q} \subseteq \operatorname{conv}(\Delta)$, then $\operatorname{sgn} B=(n-1,1)$ and $E(\Phi)=\widehat{Q}$.

How to describe E directly? (general case)

Conjecture

If W is irreducible, $E(\Phi)$ is equal to \widehat{Q} minus all the images by W of the parts of \widehat{Q} which are outside $\operatorname{conv}(\Delta)$, i.e. :

$$
E(\Phi)=\widehat{Q} \cap \bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta)
$$

General case: \widehat{Q} cut the faces

Equivalent conjecture

Conjecture

In general, $E(\Phi)$ is equal to \widehat{Q} minus all the images by W of the parts of \widehat{Q} which are outside $\operatorname{conv}(\Delta)$, i.e. :

$$
E(\Phi)=\hat{Q} \cap \bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta) .
$$

From [Dyer '12]: $\bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta)=\operatorname{conv}(E)$, so:

$$
\text { Conjecture } \Leftrightarrow E=\operatorname{conv}(E) \cap \widehat{Q}
$$

\rightsquigarrow True for the case where B has signature $(n-1,1)$ (we can assume Q is a sphere).

Equivalent conjecture

Conjecture

In general, $E(\Phi)$ is equal to \widehat{Q} minus all the images by W of the parts of \widehat{Q} which are outside $\operatorname{conv}(\Delta)$, i.e. :

$$
E(\Phi)=\hat{Q} \cap \bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta) .
$$

From [Dyer '12]: $\bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta)=\operatorname{conv}(E)$, so:
Conjecture $\Leftrightarrow E=\operatorname{conv}(E) \cap \widehat{Q}$.
\rightsquigarrow True for the case where B has signature $(n-1,1)$ (we can assume Q is a sphere).

Equivalent conjecture

Conjecture

In general, $E(\Phi)$ is equal to \widehat{Q} minus all the images by W of the parts of \widehat{Q} which are outside $\operatorname{conv}(\Delta)$, i.e. :

$$
E(\Phi)=\hat{Q} \cap \bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta) .
$$

From [Dyer '12]: $\bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta)=\operatorname{conv}(E)$, so:

$$
\text { Conjecture } \Leftrightarrow E=\operatorname{conv}(E) \cap \widehat{Q} \text {. }
$$

\rightsquigarrow True for the case where B has signature $(n-1,1)$ (we can assume \widehat{Q} is a sphere).

Some other questions

- How does E behave in regards to restriction to parabolic subgroups? Take $I \subseteq \Delta$, W_{l} its associated parabolic subgroup, $\Phi_{I}=W_{l}\left(\Delta_{I}\right)$, and $V_{I}=\operatorname{Vect}(I) \cap V_{1}$. Then $E\left(\Phi_{l}\right) \neq E(\Phi) \cap V_{l}$ in general! (counterexample in rank 5). But this type of property of good restriction works for other "natural" subsets of E...
- Case of signature ($n-1,1$). Links with hyperbolic geometry, and with Kleinian groups in rank 4.

Some other questions

- How does E behave in regards to restriction to parabolic subgroups? Take $I \subseteq \Delta, W_{l}$ its associated parabolic subgroup, $\Phi_{I}=W_{l}\left(\Delta_{I}\right)$, and $V_{I}=\operatorname{Vect}(I) \cap V_{1}$. Then $E\left(\Phi_{l}\right) \neq E(\Phi) \cap V_{l}$ in general! (counterexample in rank 5). But this type of property of good restriction works for other "natural" subsets of E...
- Case of signature $(n-1,1)$. Links with hyperbolic geometry, and with Kleinian groups in rank 4.

Merci !

References:

- Ch. Hohlweg, J.-P. Labbé, V. Ripoll, Asymptotical behaviour of roots of infinite Coxeter groups I, arXiv:1112.5415.
- M. Dyer, Imaginary cone and reflection subgroups of Coxeter groups, arXiv:1210.5206.
- M. Dyer, Ch. Hohlweg, V. Ripoll, Asymptotical behaviour of roots of infinite Coxeter groups II, in preparation.

Merci !

References:

- Ch. Hohlweg, J.-P. Labbé, V. Ripoll, Asymptotical behaviour of roots of infinite Coxeter groups I, arXiv:1112.5415.
- M. Dyer, Imaginary cone and reflection subgroups of Coxeter groups, arXiv:1210.5206.
- M. Dyer, Ch. Hohlweg, V. Ripoll, Asymptotical behaviour of roots of infinite Coxeter groups II, in preparation.

Merci !

References:

- Ch. Hohlweg, J.-P. Labbé, V. Ripoll, Asymptotical behaviour of roots of infinite Coxeter groups I, arXiv:1112.5415.
- M. Dyer, Imaginary cone and reflection subgroups of Coxeter groups, arXiv:1210.5206.
- M. Dyer, Ch. Hohlweg, V. Ripoll, Asymptotical behaviour of roots of infinite Coxeter groups II, in preparation.

Merci !

References:

- Ch. Hohlweg, J.-P. Labbé, V. Ripoll, Asymptotical behaviour of roots of infinite Coxeter groups I, arXiv:1112.5415.
- M. Dyer, Imaginary cone and reflection subgroups of Coxeter groups, arXiv:1210.5206.
- M. Dyer, Ch. Hohlweg, V. Ripoll, Asymptotical behaviour of roots of infinite Coxeter groups II, in preparation.

Merci !

References:

- Ch. Hohlweg, J.-P. Labbé, V. Ripoll, Asymptotical behaviour of roots of infinite Coxeter groups I, arXiv:1112.5415.
- M. Dyer, Imaginary cone and reflection subgroups of Coxeter groups, arXiv:1210.5206.
- M. Dyer, Ch. Hohlweg, V. Ripoll, Asymptotical behaviour of roots of infinite Coxeter groups II, in preparation.

Imaginary cone

Definition (Kac, Hée, Dyer...)
The imaginary cone of Φ is :

$$
\mathcal{Z}:=\{w(v) \mid w \in W, v \in \operatorname{cone}(\Delta), \text { et } \forall \alpha \in \Delta, B(\alpha, v) \leq 0\} .
$$

Imaginary cone

Definition (Kac, Hée, Dyer...)
The imaginary cone of Φ is :

$$
\mathcal{Z}:=\{w(v) \mid w \in W, v \in \operatorname{cone}(\Delta), \text { et } \forall \alpha \in \Delta, B(\alpha, v) \leq 0\} .
$$

