
Received: 2 July 2017 Revised: 11 January 2018 Accepted: 23 March 2018

DOI: 10.1002/mana.201700251

O R I G I N A L PA P E R

Complete families of smooth space curves and strong semistability

Olivier Benoist

Département de mathématiques et applica-
tions, ÉNS, 45 rue d'Ulm, 75230 Paris Cedex
05, France

Correspondence
Olivier Benoist, Département de mathéma-
tiques et applications, ÉNS, 45 rue d'Ulm,
75230 Paris Cedex 05, France.
Email: olivier.benoist@ens.fr

Abstract
We construct the first non-trivial examples of complete families of non-degenerate

smooth space curves, and show that the base of such a family cannot be a ratio-

nal curve. Both results rely on the study of the strong semistability of certain vector

bundles.
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1 INTRODUCTION

We work over an algebraically closed field 𝕜. A curve is a projective connected one-dimensional variety over 𝕜. If 𝐵 is an integral
variety over 𝕜, a family of smooth space curves over 𝐵 is a closed subvariety  → ℙ3

𝐵
∶= ℙ3 × 𝐵 such that  → 𝐵 is a smooth

family of curves. Equivalently, it is a morphism from 𝐵 to the Hilbert scheme of smooth curves in ℙ3. Such a family will be
said to be trivial if all its fibers are isomorphic as subvarieties of ℙ3; in other words, if the induced morphism from 𝐵 to the
Hilbert scheme of ℙ3 is constant. It is said to be isotrivial if all its fibers are isomorphic as abstract curves. We are interested in
complete families: those whose base 𝐵 is proper.

The family of lines parametrized by the Grassmannian is a non-trivial complete family of smooth space curves. It is also easy to
construct (necessarily isotrivial) non-trivial complete families whose members are plane curves [2, Proposition 2.1]. For this rea-
son, we will restrict our attention to families parametrizing non-degenerate space curves, that is curves whose linear span is ℙ3.

Non-trivial complete families of non-degenerate smooth space curves have been studied by Chang and Ran [5,6]. They showed
that the curves parametrized by the family can be neither rational nor elliptic [6, Theorem 3]. They also proved that every such
family comes by base-change from a family over a curve [6, Theorem 1], so that one may restrict the study to this case.

However, they do not provide examples of such families. The existence of non-trivial complete families of non-degenerate
smooth space curves is also stated as an open question in [13, p. 57]. Our main goal is to construct examples.

Theorem 1.1.

(i) There exist non-trivial complete families of non-degenerate smooth space curves over any elliptic curve.
(ii) If 𝕜 has characteristic 𝑝 with 𝑝 ≡ ±1[8], there is a non-trivial complete family of non-degenerate smooth space curves over

a smooth curve of genus ≥ 2 that does not come by base-change from a family over a curve of genus ≤ 1.

The curves parametrized by our families have genus 2 and degree 5. As the moduli space of smooth curves of genus 2 is affine
[17], such families are necessarily isotrivial. It is the degree 5 line bundle providing the embedding that varies in the family. In
view of Chang and Ran's result [6, Theorem 3], those examples are minimal: they have both smallest genus and smallest degree
possible.

Theorem 1.1 (i) is also optimal in the sense that the genus of the base is minimal:
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Theorem 1.2. There are no non-trivial complete families of non-degenerate smooth space curves over ℙ1.

Theorem 1.1 shows the existence of elliptic curves (and, when char(𝕜) ≡ ±1[8], of a curve of genus ≥ 2) in the Hilbert scheme
of non-degenerate smooth space curves: it fits into the classical theme of constructing complete subvarieties of moduli spaces
initiated by Oort [27].

We do not know how to remove the hypothesis on 𝕜 in Theorem 1.1 (ii) (see Remark 2.12). We also leave open the question
whether there exist non-isotrivial complete families of smooth space curves. Since there do not exist non-isotrivial complete
families of smooth curves over curves of genus ≤ 1 [29, Théorème 4], Theorem 1.1 (ii) may be viewed as a first step towards
constructing non-isotrivial complete families of smooth space curves.

In Section 2, we study when an abstract family of smooth polarized curves over a smooth projective curve gives rise to a
non-trivial family of non-degenerate smooth space curves. We obtain necessary conditions in Proposition 2.7 and sufficient
conditions in Proposition 2.9 that yield proofs of Theorem 1.2 and Theorem 1.1, respectively. A key role is played by the strong
semistability of some vector bundles on the base, and §2.1 is devoted to recalling generalities on strong semistability.

The proof of Theorem 1.1 (ii) in Section 2 requires to verify the strong semistability of some vector bundles. We postpone
this important step to Section 3. Our strategy there is to ensure that the relevant bundles are syzygy bundles (see Definition 3.2).
The strong semistability of such bundles has been related by Brenner [3] and Trivedi [30] to Hilbert–Kunz multiplicities (see
Definition 3.15 and Theorem 3.16). In our situation, we do not know how to compute the relevant Hilbert–Kunz multiplicities
directly, as Han and Monsky did for Fermat curves [10,11,24]. Instead, we take inspiration from [4], where Brenner and Kaid
obtain stronger results than strong semistability (explicit Frobenius periodicity up to a twist) for some syzygy bundles over
Fermat curves. The strategy of [4] uses crucially the semistability of the syzygy bundles, that is known thanks to Han and
Monsky. We need to replace these arguments by different ones: explicit syzygy computations using the strong Lefschetz property
of appropriate homogeneous ideals (see §3.2). A benefit of our method is that it allows us to give new examples of how Hilbert–
Kunz multiplicities vary with the characteristic of the base field in Theorem 3.17.

2 EMBEDDING ABSTRACT FAMILIES

2.1 Strong semistability
If 𝕜 is of positive characteristic, and 𝑋 is a variety over 𝕜, we denote by 𝐹 ∶ 𝑋 → 𝑋 the absolute Frobenius morphism.

Definition 2.1. A vector bundle  on a smooth curve 𝐵 is strongly semistable if 𝕜 is of characteristic 0 and  is semistable, or
if 𝕜 is of positive characteristic and for every 𝑘 ≥ 0, 𝐹𝑘∗ is semistable.

Unlike semistability, strong semistability is always preserved by finite base-change, tensor products and symmetric powers
[21, 2.2.2, 2.2.3]. The following important theorem is due to Langer [22, Theorem 2.7]:

Theorem 2.2. Let  be a vector bundle on a smooth curve 𝐵. Then there exists a finite morphism from a smooth curve 𝑓 ∶
𝐵′ → 𝐵 such that the graded pieces of the Harder–Narasimhan filtration of 𝑓 ∗ are strongly semistable.

Such a filtration will be called a strong Harder–Narasimhan filtration. In characteristic 0, the Harder–Narasimhan filtration
is always strong. Over elliptic curves, the situation is very simple:

Proposition 2.3. Let  be an indecomposable vector bundle over an elliptic curve.

(i)  is strongly semistable,
(ii)  is stable if and only if its degree is prime to its rank.

Proof. In the first statement, the semistability of  is proved in [15, Lemma 1]. The strong semistability then follows from the
more general [23, Theorem 2.1].

A semistable vector bundle whose rank and degree are prime to each other is clearly stable. Conversely, when the degree and
the rank of  are not prime to each other, Oda has proved [25, Corollary 2.5] that  is not simple, hence not stable. □

We will need conditions ensuring that a vector bundle becomes isomorphic to a direct sum of isomorphic line bundles after
an appropriate base-change. This is the goal of the two following propositions. The first one might be well known, but I do not
know a reference for it. The second one is the Lange–Stuhler theorem.
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Proposition 2.4. Let  be a stable vector bundle over an elliptic curve 𝐸. Then there exists an isogeny 𝑓 ∶ 𝐸′ → 𝐸 such that
𝑓 ∗ is isomorphic to a direct sum of isomorphic line bundles.

Proof. By Proposition 2.3 (i), the pull-back of  by any isogeny is semistable.
We first claim that there exists an isogeny 𝑓 ∶ 𝐸′ → 𝐸 such that 𝑓 ∗ is isomorphic to a direct sum of line bundles. To prove

it, let 𝑓 ∶ 𝐸′ → 𝐸 be an isogeny whose degree is divisible by the rank of  . Write 𝑓 ∗ as a direct sum of indecomposable
bundles. If 𝕜 is of characteristic 0, those indecomposable bundles are all stable of the same slope by [16, Lemma 3.2.3], and
Proposition 2.3 (ii) implies that they are line bundles. If 𝕜 is of positive characteristic 𝑝, Proposition 2.3 (ii) shows that 𝑓 ∗

cannot be stable. Considering a Jordan–Hölder filtration for 𝑓 ∗ and using induction on the rank of  , it is possible to suppose
that all the graded pieces of this filtration have rank 1. Now, extensions between line bundles of the same degree are trivial if
the line bundles are not isomorphic, and parametrized by 𝐻1(𝐸′,𝐸′

)
otherwise. Let [𝑝] ∶ 𝐸′ → 𝐸′ denote the multiplication

by 𝑝 isogeny. Since the dual of [𝑝] (that is [𝑝] itself) is not separable, the pull-back map [𝑝]∗ ∶ 𝐻1(𝐸′,𝐸′
)
→ 𝐻1(𝐸′,𝐸′

)
vanishes. Base-changing by an appropriate power of [𝑝] thus splits all extensions appearing in the Jordan–Hölder filtration, and
proves our claim.

It remains to prove that, up to another base-change by an isogeny, all these line bundles are isomorphic. Let us write
𝑓 ∗ ≃

⨁
𝑖 𝑖, where the 𝑖 are the isotypical factors: each 𝑖 is the direct sum of isomorphic line bundles. Write 𝑓 = 𝑔◦ℎ,

where ℎ ∶ 𝐸′ → 𝐹 is separable of Galois group 𝐺 and 𝑔 ∶ 𝐹 → 𝐸 is purely inseparable. If the group 𝐺 did not act transi-
tively on the isotypical factors, a non-trivial direct sum  of some of them would descend to 𝐹 by Galois descent. Since,

Hom
(
, 𝑓 ∗∕⊗Ω1

𝐸′

)
= Hom(, 𝑓 ∗∕) = 0, inseparable descent [18, Theorem 5.1] shows that this sheaf descends even to

𝐸, contradicting the stability of  . Hence 𝐺 permutes transitively the isotypical components. But since 𝐺 acts on 𝐸′ as a finite
subgroup of translations, it follows that the line bundles appearing in  differ from each other by torsion line bundles. Hence all
the line bundles appearing become isomorphic after further pull-back by a well-chosen isogeny. □

Proposition 2.5. Let  be a vector bundle on a smooth curve 𝐵 over the algebraic closure of a finite field. Then the following
conditions are equivalent:

(i)  is strongly semistable.
(ii) There exists a finite morphism from a smooth curve 𝑓 ∶ 𝐵′ → 𝐵 such that 𝑓 ∗ is isomorphic to a direct sum of isomorphic

line bundles.

Proof. If (ii) holds, the vector bundle 𝑓 ∗𝐹𝑘∗ = 𝐹𝑘∗𝑓 ∗ is semistable as a direct sum of isomorphic line bundles. This implies
that 𝐹𝑘∗ is semistable, proving (i).

Let us explain the other implication, due to Lange and Stuhler [20]. First, it is easy to find a finite morphism from a smooth
curve 𝑔 ∶ 𝐵′′ → 𝐵 and a line bundle  on 𝐵′′ such that 𝑔∗ ⊗ has degree 0. By our hypothesis on the base field, the
strongly semistable vector bundle 𝑔∗ ⊗ is trivialized by a finite surjective morphism ℎ ∶ 𝐵′ → 𝐵′′ by [20, Satz 1.9]. Setting
𝑓 = 𝑔 ◦ℎ, one sees that 𝑓 ∗ is a direct sum of line bundles isomorphic to ℎ∗−1. □

2.2 The Harder–Narasimhan filtration
We start with a lemma:

Lemma 2.6. Let𝐵 be a smooth curve, let 𝜋 ∶  → 𝐵 be a smooth projective family of curves over𝐵 and let be a line bundle on
. Then  ∶= 𝜋∗ is locally free and its formation commutes with base-change by any finite map from a smooth curve 𝐵′ → 𝐵.
Moreover, for every 𝑏 ∈ 𝐵, the natural map |𝑏 → 𝐻0(𝑏,𝑏) is injective.

Proof. The sheaf  is locally free as a torsion-free coherent sheaf over a smooth curve. The second statement is a
consequence of flat base-change [14, III Proposition 9.3]. As for the third statement, consider the exact sequence
0 → 𝐵(−𝑏) → 𝐵 → 𝐵|𝑏 → 0. Pull it back to , tensor with  and push it forward to 𝐵 to get an exact sequence
0 → (−𝑏) →  → Im

(
 → 𝐻0(𝑏,𝑏)

)
→ 0. Restricting it to 𝑏 using right-exactness of tensor product, and noticing that

the morphism (−𝑏)|𝑏 → |𝑏 vanishes, one sees that |𝑏 → 𝐻0(𝑏,𝑏) is indeed injective. □

In the following proposition, we make use of the secant variety 𝑆 ⊂ ℙ4 of a smooth curve 𝐶 ⊂ ℙ4, which is the union of all
lines in ℙ4 that meet 𝐶 with multiplicity ≥ 2.
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Proposition 2.7. Let 𝜋 ∶  → 𝐵, 𝜙 ∶  → ℙ3
𝐵

be a non-trivial complete family of non-degenerate smooth space curves over
a smooth curve 𝐵, and  ∶= 𝜋∗𝜙

∗ℙ3 (1). Then the constant subbundle ⊕4
𝐵

⊂  with fibers 𝐻0(ℙ3,ℙ3 (1)) is the first step of
the Harder–Narasimhan filtration of  .

Proof. We argue by contradiction and suppose that the conclusion does not hold. The idea of the proof is to use the hypothesis
that ⊕4

𝐵
⊂  is not the first step of the Harder–Narasimhan filtration of  to produce an embedding of  in a four-dimensional

projective bundle over 𝐵, and to derive a contradiction by studying geometrically this embedding. At any point of the proof, we
may replace 𝐵 by a finite cover by a smooth curve 𝐵′ because the formation of  commutes with this base-change by Lemma 2.6.

Let  be the quotient of  by ⊕4
𝐵

. Using Theorem 2.2, perform a base-change to ensure that the strong Harder–Narasimhan

filtration of  is defined over 𝐵. Since ⊕4
𝐵

is not the first step of the Harder–Narasimhan filtration of  , the first step of the
Harder–Narasimhan filtration of  has nonnegative degree.

Choosing a field of definition of finite type, spreading out and specializing to a general closed point, we get data defined
over a finite field. It still contradicts the proposition, as  still has a subbundle of nonnegative degree after such a general
specialization. Consequently, we may suppose that 𝕜 is the algebraic closure of a finite field. As above, we may assume that the
strong Harder–Narasimhan filtration of  is defined over 𝐵 and that its first step has nonnegative degree.

Base-changing again using Proposition 2.5, we may assume that this subbundle is a direct sum of line bundles of nonnegative
degree. In particular,  contains a subbundle  of rank 1 of nonnegative degree. Consequently, there exists a subbundle 

of  that is an extension of a line bundle of nonnegative degree  by ⊕4
𝐵

. Base-changing using Theorem 2.2, the strong
Harder–Narasimhan filtration of  is defined over 𝐵. Let  ⊂  be the first step of this filtration.

Now, let us use  to embed  in a relative projective bundle over 𝐵: we get an immersion 𝜓 ∶  → ℙ𝐵 . Moreover, one
recovers the original embedding 𝜙 by projecting away from ℙ𝐵. Note that, as  |𝑏 → 𝐻0(𝑏,𝑏) is injective by Lemma 2.6, 𝜓
embeds all fibers of 𝜋 in a non-degenerate way in ℙ4. Let us introduce the relative secant variety  → ℙ𝐵 that is the union of
the secant varieties of the embedded curves 𝑏 → ℙ𝑏. It is a hypersurface of ℙ𝐵 because secant varieties of non-degenerate
curves in ℙ4 are of dimension 3. It does not meet ℙ𝐵 because, for every 𝑏 ∈ 𝐵, the linear system 𝐻0(ℙ3,ℙ3 (1)

)
induced

an embedding of 𝑏.
Let 𝑞 ∶ ℙ𝐵 → 𝐵 be the projection and 𝑞(1) be the relative tautological bundle. By description of the Picard group of a

projective bundle, there exist  ∈ Pic(𝐵) and 𝑙 ∈ ℤ such that  is the zero-locus of a section 𝜎 ∈ 𝐻0(ℙ𝐵 ,𝑞(𝑙)⊗ 𝑞∗
)
=

𝐻0(𝐵,Sym𝑙  ⊗
)
. That  does not meet ℙ𝐵 means exactly that 𝜎 induces a nowhere vanishing section of ⊗𝑙 ⊗ on

𝐵. In particular,  ≃ ⊗−𝑙.
We distinguish three cases. Suppose first that 𝜇() < 𝜇(), so that the graded pieces 𝑖 of the strong Harder–Narasimhan

filtration of  all have slope < 𝜇(). This filtration induces a filtration of Sym𝑙  whose graded pieces are tensor products of
symmetric powers of the 𝑖: these are strongly semistable of slope < 𝜇

(
⊗𝑙

)
. Consequently, 𝐻0(𝐵,Sym𝑙  ⊗⊗−𝑙) = 0,

which is a contradiction.
Next, suppose that 𝜇() ≥ 𝜇() > 0. The morphism  →  cannot be zero as there are no non-zero morphisms  → ⊕4

𝐵

by semistability of . Again by semistability of , this morphism has to be surjective. Then  is an extension of by a subbundle
of ⊕4

𝐵
, and the inequality 𝜇() ≥ 𝜇() implies that  →  is an isomorphism. Hence  splits as a direct sum ⊕4

𝐵
⊕.

The space 𝐻0(𝐵,Sym𝑙  ⊗⊗−𝑙) is one-dimensional because 𝜇() > 0, and the zero locus of one of its sections on a fiber
of 𝑞 is a hyperplane with multiplicity 𝑙. This contradicts the fact that, the curve 𝑏 being embedded in a non-degenerate way in
ℙ4, its secant variety is also non-degenerate.

Finally, suppose that 𝜇() = 0. Then  is strongly semistable as an extension of strongly semistable bundles of the same
degree. Applying Proposition 2.5, we may assume that  is a direct sum of isomorphic line bundles, so that ℙ𝐵 ≃ ℙ4

𝐵
. The

relative secant variety  is then a hypersurface of ℙ4
𝐵

avoiding a constant section. It follows that  is a product hypersurface,
isomorphic to 𝑆 × 𝐵 where 𝑆 ⊂ ℙ4 is a hypersurface. Consequently, 𝑆 is the secant variety of all curves 𝑏 → ℙ4. Recall that
Chang and Ran [6, Theorem 3] proved that the curves 𝑏 have genus ≥ 2. Hence, by Lemma 2.8 below, there are only finitely
many possibilities for the curves 𝑏 ⊂ ℙ4, and the subvariety 𝜓 ∶  → ℙ4

𝐵
has to be a product itself. Since the original family

𝜙 is obtained by projecting away from a constant section, it follows that our original family was a product, contradicting its
non-triviality. □

We have used the following lemma:

Lemma 2.8. Let 𝐶 ⊂ ℙ4 be a smooth non-degenerate curve of genus at least 2, and let 𝑆 be its secant variety. Then there is a
unique family of lines that covers 𝑆, namely the 2-dimensional family of secants of 𝐶 . Moreover, 𝐶 is an irreducible component
of the set of points included in infinitely many of these lines.
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Proof. Let 𝑃 be the ℙ1-bundle over the two-fold symmetric product 𝐶 (2) of 𝐶 whose fiber over (𝑥, 𝑦) ∈ 𝐶 (2) is the line through
𝑥 and 𝑦 if 𝑥 ≠ 𝑦 (resp. the tangent at 𝑥 if 𝑥 = 𝑦). The natural surjective morphism 𝑝 ∶ 𝑃 → 𝑆 is birational by [7]. As this claim
is not explicitly stated by Dale, we explain how to deduce it from [7].

To do so, we introduce a few notation. Let 𝑄 be the pull-back of 𝑃 by the degree 2 morphism 𝐶2 → 𝐶 (2): it is a ℙ1-bundle
over 𝐶2. Define 𝑀(𝐶) to be the set of triples (𝑥, 𝑧, 𝑙), where 𝑥 ∈ 𝐶 , 𝑧 ∈ ℙ4, and 𝑙 is a line containing 𝑥 and 𝑧 that is secant
to 𝐶 . The morphism 𝑟 ∶ 𝑄 → 𝑀(𝐶) sending a point 𝑧 on the line 𝑙 over (𝑥, 𝑦) to (𝑥, 𝑧, 𝑙) is birational by [7, Theorem 1.8].
Define 𝑆𝐵(𝐶) to be the set of pairs (𝑧, 𝑙) where 𝑙 is a line secant to 𝐶 and 𝑧 ∈ 𝑙. The morphism 𝑠 ∶ 𝑀(𝐶) → 𝑆𝐵(𝐶) defined
by (𝑥, 𝑧, 𝑙) → (𝑧, 𝑙) is separable of degree 2 by [7, Theorem 1.8, Lemma 3.5], and the morphism 𝑡 ∶ 𝑆𝐵(𝐶) → 𝑆 defined by
𝑡(𝑧, 𝑙) = 𝑧 is birational by [7, Theorem 4.1, Theorem 1.10]. The composition 𝑡◦𝑠◦𝑟 ∶ 𝑄 → 𝑆 then has degree 2. Since it factors
as the composition of the natural degree 2 morphism 𝑄 → 𝑃 and of 𝑝 ∶ 𝑃 → 𝑆, it follows that 𝑝 is indeed birational.

Since 𝐶 has genus ≥ 2, the Abel–Jacobi map shows that 𝐶 (2) contains only finitely many rational curves. Hence, the only
family of rational curves that covers 𝑆 is the one induced by the fibers of the ℙ1-bundle structure, that is the family of secants
of 𝐶 . The subset of 𝑆 consisting of points included in infinitely many of these secants is the image by 𝑡 of the union of the
positive-dimensional fibers of 𝑡. A dimension count shows that it is an algebraic variety of dimension at most 1. Since 𝐶 is
obviously contained in it, 𝐶 has to be an irreducible component of this locus. □

Proposition 2.7 gives necessary conditions for a polarized family (𝜋 ∶  → 𝐵,) to induce a non-trivial family of non-
degenerate smooth space curves 𝜙 ∶  → ℙ3

𝐵
with  ≃ 𝜙∗ℙ3 (1): the first graded piece of the Harder–Narasimhan filtration of

 ∶= 𝜋∗ has to be of rank 4, and the corresponding sections have to induce embeddings of the fibers of 𝜋 in ℙ3. The proof of
Theorem 1.2 follows:

Proof of Theorem 1.2. Let 𝜋 ∶  → ℙ1, 𝜙 ∶  → ℙ3
ℙ1 be a complete family of non-degenerate smooth space curves over ℙ1.

It is isotrivial by [29, Théorème 4]: all the fibers of 𝜋 are isomorphic to a fixed curve 𝐶 . By Chang and Ran [6, Theorem 3],
𝐶 has genus ≥ 2. Since the automorphism group of 𝐶 is finite [28] and ℙ1 is simply connected, the family has to be a product:
 ≃ 𝐶 × ℙ1.

Since the Picard scheme Pic(𝐶) does not contain non-trivial rational curves, all the fibers are even isomorphic as polarized
curves and 𝜙∗ℙ3 (1) ≃ ⊠ for some line bundles  (resp.  ) on 𝐶 (resp. ℙ1). Consequently,  ∶= 𝜋∗𝜙

∗ℙ3 (1) is
isomorphic to a direct sum of isomorphic line bundles, hence is strongly semistable. It follows from Proposition 2.7 that the
subbundle of  used to construct the embedding 𝜙 is  itself, so that our family is trivial. □

2.3 Constructing embeddings
We now provide a sufficient condition for an abstract family of curves to give rise to a complete family of non-degenerate smooth
space curves, up to maybe replacing the base by a finite surjective cover.

Proposition 2.9. Let 𝜋 ∶  → 𝐵 be a smooth projective family of curves over a smooth projective curve. Let  be a line bundle
on  and  ∶= 𝜋∗. Let  ⊂  be a subbundle of rank 4 such that for every 𝑏 ∈ 𝐵,  |𝑏 ⊂ 𝐻0(𝑏,𝑏) embeds 𝑏 in ℙ3.

Suppose that one of the following conditions is satisfied:

(i)  is stable and 𝐵 is an elliptic curve,
(ii)  is strongly semistable and 𝕜 is the algebraic closure of a finite field.

Then there exist a finite morphism from a smooth curve 𝑓 ∶ 𝐵′ → 𝐵 and, denoting by (𝜋′ ∶ ′ → 𝐵′,′) the base-change, a
complete family of non-degenerate smooth space curves 𝜙′ ∶ ′ → ℙ3

𝐵′ such that ′|′
𝑏
≃ 𝜙′∗(1)|′

𝑏
for every 𝑏 ∈ 𝐵′.

Moreover, in case (i), 𝐵′ may be chosen isomorphic to 𝐵.

Proof. By Propositions 2.4 and 2.5, there exists a finite morphism from a smooth curve 𝑓 ∶ 𝐵′ → 𝐵 such that 𝑓 ∗ is isomorphic
to a direct sum of isomorphic line bundles. By Lemma 2.6, 𝑓 ∗ is a subbundle of 𝜋′

∗
′, and for every 𝑏 ∈ 𝐵, (𝑓 ∗ )|𝑏 ⊂

𝐻0(′
𝑏
,′

𝑏
) embeds ′

𝑏
in a non-degenerate way in ℙ3. Consequently, 𝑓 ∗ induces an embedding 𝜙′ ∶ ′ → ℙ𝐵′ (𝑓 ∗ ) that is

non-degenerate over every 𝑏 ∈ 𝐵′. Since this projective bundle is trivial by our choice of 𝑓 , we are done.
In case (i), one may choose 𝑓 to be an isogeny by Proposition 2.4. The isogeny 𝑓 factors some multiplication isogeny [𝑁] ∶

𝐵 → 𝐵, allowing us to assume 𝐵′ = 𝐵. □

Remark 2.10. A family constructed by Proposition 2.9 is non-trivial if the (𝑏,𝑏) are not all isomorphic as polarized curves.
In this case, Proposition 2.7 shows that  has to be the first graded piece of the Harder–Narasimhan filtration of  .
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Remark 2.11. In Proposition 2.9 (ii), the genus of the curve 𝐵′ is not explicit as the construction of 𝐵′ relies on the Lange–
Stuhler theorem (Proposition 2.5). However, it follows from the proof of this theorem [20, Satz 1.4 b)] that we can give bounds
for the genus of 𝐵′ if we know an explicit Frobenius periodicity property for the strongly semistable vector bundle  (that is a
relation of the form 𝐹 𝑟∗ ≃ 𝐹 𝑠∗ ⊗ for some 𝑟 ≠ 𝑠 and some line bundle  ).

Fortunately, in our applications to Theorem 1.1 (ii), we prove the strong semistability of the relevant vector bundle precisely
by exhibiting such a relation (see the proof of Corollary 3.12). Consequently, Lange–Stuhler's proof provides bounds for the
genus of the base of the families constructed in Theorem 1.1 (ii).

2.4 Curves of genus 2 and degree 5
We may now give the:

Proof of Theorem 1.1. Let 𝐶 be a smooth curve of genus 2 and  be a degree 5 line bundle on 𝐶 . The Riemann–Roch theorem
shows that ℎ1(𝐶,) = 0, ℎ0(𝐶,) = 4, and that these four sections embed 𝐶 in ℙ3. Let 𝐴 ∶= Pic5(𝐶) be the variety parametriz-
ing degree 5 line bundles on 𝐶 and  be a Poincaré bundle on 𝐶 × 𝐴. By [14, III Theorem 12.11], the sheaf  ∶= 𝑝2∗ is a
rank 4 vector bundle on 𝐴 whose formation commutes with base-change.

Let 𝐵 be a smooth projective curve and 𝑖 ∶ 𝐵 → 𝐴 be a non-constant morphism. Consider the constant family 𝜋 ∶  ∶=
𝐶 × 𝐵 → 𝐵 polarized by  ∶= (Id, 𝑖)∗ . By base-change, 𝜋∗ = 𝑖∗ . To prove Theorem 1.1, we apply Proposition 2.9 to polar-
ized families ( → 𝐵,) as above, with  ∶= 𝑖∗ .

Let us show that it is possible to choose 𝐶 , 𝐵 and 𝑖 carefully so that the stability hypotheses (i) or (ii) in Proposition 2.9
are satisfied. In the setting of Theorem 1.1 (i), the curve 𝐵 be an elliptic curve, and Proposition 2.13 below produces a genus
2 curve 𝐶 and a non-constant morphism 𝑖 ∶ 𝐵 → 𝐴 such that 𝑖∗ is stable. In the setting of Theorem 1.1 (ii), the field 𝕜 is of
characteristic 𝑝 ≡ ±1[8], and Proposition 3.1 proven in Section 3 produces a genus 2 curve 𝐶 and, setting 𝐵 ∶= 𝐶 , an immersion
𝑖 ∶ 𝐵 → 𝐴, both defined over �̄�𝑝, such that 𝑖∗ is strongly semistable.

To conclude the proof, it remains to verify that the families of smooth space curves constructed by applying Proposition 2.9
are non-trivial. To do so, fix 𝑏 ∈ 𝐵, and consider the polarized variety (𝑏,𝑏). Since 𝑖 is non-constant and Aut(𝑏) is finite
[28], there are at most finitely many 𝑏′ ∈ 𝐵 such that (𝑏,𝑏) ≃ (𝑏′ ,𝑏′ ), allowing to apply Remark 2.10. □

Remark 2.12. The difficulty of removing the assumption that 𝑝 ≡ ±1[8] in the statement of Theorem 1.1 (ii) lies in the verification
of the strong semistability assumption in Proposition 2.9 (ii), for an appropriate choice of 𝐶 , 𝐵 and 𝑖.

Proposition 2.13 relies on a construction of curves of genus 2 whose jacobian is not simple, that is very well explained in the
first section of [9]. We keep the notations 𝐴 and  of the proof of Theorem 1.1 above.

Proposition 2.13. Let 𝐵 be an elliptic curve over 𝕜. Then there exist a genus 2 curve 𝐶 and an immersion 𝑖 ∶ 𝐵 → 𝐴 ∶= Pic5(𝐶)
such that 𝑖∗ is stable.

Proof. Let 𝐸 be an elliptic curve over 𝕜 not isogenous to 𝐵. Let 𝑛 be an odd integer invertible in 𝕜. Choose an isomor-

phism 𝐸[𝑛]
∼
←→ 𝐵[𝑛] whose graph Γ is isotropic with respect to the Weil pairings on 𝐸[𝑛] and 𝐵[𝑛]. Let 𝐴 ∶= (𝐸 × 𝐵)∕Γ.

The quotient of 𝐴 by the image 𝐵 of {0} × 𝐵 in 𝐴 is (𝐸 × 𝐵)∕⟨{0} × 𝐵,Γ⟩ ≃ 𝐸∕𝐸[𝑛] ≃ 𝐸, yielding an exact sequence

0 → 𝐵 → 𝐴
𝑞
←→ 𝐸 → 0 of abelian varieties. By [9, Propositions 1.1 and 1.4], 𝐴 is isomorphic to the Jacobian of a smooth curve

𝐶 of genus 2 and the theta divisor of 𝐴 has degree 𝑛 on 𝐵.
Choose an isomorphism 𝐴 ≃ Pic5(𝐶) and let 𝑖 ∶ 𝐵 → 𝐴 be the inclusion of a general fiber of 𝑞. Suppose for contradiction

that 𝑖∗ is not stable. As det() is numerically equivalent to the opposite of the theta divisor [1, VII.4], the rank 4 of 𝑖∗ is
prime with its degree −𝑛, showing that 𝑖∗ is not semistable.

By the existence of a relative Harder–Narasimhan filtration with respect to 𝑞 [16, Theorem 2.3.2], there exists a saturated
subsheaf  ⊂  whose restriction to a general fiber of 𝑞 destabilizes  . Outside of a finite number of points of 𝐴,  is a vector
bundle. Its determinant det( ) extends uniquely as a line bundle  on 𝐴 by smoothness of 𝐴. By construction,  has degree
greater than −𝑛 on the fibers of  .

Consider the projection 𝑢 ∶ 𝐸 × 𝐵 → 𝐴. The isomorphism class of the line bundle 𝑢∗ is Γ-invariant. Since 𝐸 and 𝐵 are not
isogenous, Pic(𝐸 × 𝐵) ≃ Pic(𝐸)⊕ Pic(𝐵). The action of Γ on Pic(𝐸 × 𝐵) is easy to describe, and one sees that Pic(𝐸 × 𝐵)Γ
consists of line bundles of the form 𝐸 ⊠𝐵 , where 𝐸 (resp. 𝐵) have degree divisible by 𝑛 on 𝐸 (resp. 𝐵). Hence
 ⋅ 𝐵 = 𝑢∗ ⋅ ({0} × 𝐵) is a multiple of 𝑛.

Hence, the restriction of  to a general fiber of 𝑞 has nonnegative degree. Equivalently, the restriction of ∨ to a general fiber
of 𝑞 has non-positive degree. Consequently, the vector bundle ∨ is not ample. This contradicts [1, VII 2.2]. □
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3 CONSTRUCTING STRONGLY SEMISTABLE VECTOR BUNDLES

In this section, 𝕜 is assumed to be of positive characteristic 𝑝.
Let𝐶 be a smooth curve of genus 2, 𝑐 ∈ 𝐶 a point and a degree 6 line bundle on𝐶 . Let𝐴 ∶= Pic5(𝐶), and be the Poincaré

bundle on 𝐶 × 𝐴 normalized so that |{𝑐}×𝐴 ≃ 𝐴, and  ∶= 𝑝2∗ . Let 𝑖 ∶ 𝐶 → 𝐴 be defined by 𝑖(𝑃 ) ∶= ⊗ 𝐶 (−𝑃 ).
The main goal of this section is to prove the following proposition, thus completing the proof of Theorem 1.1 (ii) given in

§ 2.4. More precisely, Proposition 3.1 follows from Lemma 3.3, Corollary 3.12 and Proposition 3.13.

Proposition 3.1. Suppose that 𝐶 has hyperelliptic equation 𝑍2 = 𝑋6 + 𝑌 6, and that  = 𝜔
⊗3
𝐶

. Then 𝑖∗ is strongly semistable
if and only if 𝑝 ≡ ±1[8].

The restrictive assumptions on the curve𝐶 and the line bundle in the hypotheses of this proposition will be made explicitely
later, when they become useful.

3.1 Syzygy bundles
Let us first recall what a syzygy bundle is.

Definition 3.2. Let 𝑋 be a variety, let (𝑖)1≤𝑖≤𝑛 be line bundles on 𝑋 and let 𝜎𝑖 ∈ 𝐻0(𝑋,𝑖) be sections with no common zero.
The syzygy bundle associated to these sections is the vector bundle of rank 𝑛 − 1 on 𝑋 defined by the exact sequence:

0 → Syz𝑋(𝜎𝑖) →
⨁
𝑖

−1
𝑖

⊕𝑖𝜎𝑖
←←←←←←←←←←←←←←←←←←→ 𝑋 → 0. (3.1)

If  is a line bundle on 𝑋, one can compute 𝐻0(𝑋,Syz𝑋(𝜎𝑖)⊗
)

using (3.1): it consists of sections 𝜏𝑖 ∈
𝐻0(𝑋,−1

𝑖
⊗

)
such that

∑
𝑖 𝜏𝑖𝜎𝑖 = 0.

If  is a base-point free line bundle on 𝑋 and the 𝜎𝑖 form a base of 𝐻0(𝑋,), we set Syz𝑋() ∶= Syz𝑋(𝜎𝑖). Let  ∶=
Syz𝐶 ().

Lemma 3.3. There is an isomorphism 𝑖∗ ≃  ⊗(𝑐).

Proof. Consider the pull-back (Id, 𝑖)∗ of the Poincaré bundle on 𝐶 × 𝐶 . Its restriction to {𝑐} × 𝐶 is trivial and its restriction
to 𝐶 × {𝑥} is isomorphic to (−𝑥) for every 𝑥 ∈ 𝐶(𝕜). It follows that (Id, 𝑖)∗ ≃ 𝑝∗1⊗ 𝑝∗2(𝑐)(−Δ), where Δ ⊂ 𝐶 × 𝐶 is
the diagonal. As a consequence, there is a short exact sequence on 𝐶 × 𝐶:

0 → (Id, 𝑖)∗ → 𝑝∗1⊗ 𝑝∗2(𝑐) →
(
𝑝∗1⊗ 𝑝∗2(𝑐)

)|Δ → 0.

Pushing it forward by 𝑝2 and using the vanishing of the appropriate 𝐻1, one gets:

0 → 𝑖∗ → 𝐻0(𝐶,)⊗ (𝑐) → (𝑐) → 0,

where the arrow 𝐻0(𝐶,)⊗ (𝑐) → (𝑐) is the evaluation. One recognizes the definition of a syzygy bundle, up to a
twist. □

From now on, we restrict to the case where  is the tricanonical line bundle 𝜔
⊗3
𝐶

. Since 𝜔𝐶 ≃ 𝑓 ∗(1), where 𝑓 ∶ 𝐶 → ℙ1

is the hyperelliptic double cover, this will allow us to compare 𝐹 ∗ with bundles on ℙ1, that are easier to describe.
Let 𝑋, 𝑌 be homogeneous coordinates on ℙ1 and 𝑃 (𝑋, 𝑌 ) be a degree 6 homogeneous polynomial defining the ramifica-

tion locus of 𝑓 : the curve 𝐶 is defined by 𝑍2 = 𝑃 (𝑋, 𝑌 ). The canonical ring
⨁

𝑖≥0𝐻
0(𝐶,𝜔

⊗𝑖

𝐶

)
of 𝐶 is then isomorphic to

𝕜[𝑋, 𝑌 ,𝑍]∕
⟨
𝑍2 − 𝑃 (𝑋, 𝑌 )

⟩
, where the generators 𝑋, 𝑌 are of degree 1 and 𝑍 is of degree 3. In particular, it is isomorphic to

𝕜[𝑋, 𝑌 ]⊕ 𝕜[𝑋, 𝑌 ] ⋅𝑍 as a 𝕜[𝑋, 𝑌 ]-module.
Let us introduce the two following syzygy bundles on ℙ1:

{
+ ∶= Syzℙ1

(
𝑋3𝑝, 𝑋2𝑝𝑌 𝑝,𝑋𝑝𝑌 2𝑝, 𝑌 3𝑝, 𝑃 (𝑋, 𝑌 )

𝑝+1
2
)
,

− ∶= Syzℙ1

(
𝑋3𝑝, 𝑋2𝑝𝑌 𝑝,𝑋𝑝𝑌 2𝑝, 𝑌 3𝑝, 𝑃 (𝑋, 𝑌 )

𝑝−1
2
)
.
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Lemma 3.4. There is an exact sequence:

0 → 𝐹 ∗
(
𝜔
⊗−3
𝐶

)
→ 𝑓 ∗+ ⊕ 𝑓 ∗−

(
𝜔
⊗−3
𝐶

)
→ 𝐹 ∗ → 0. (3.2)

Moreover, if 𝑚 ≥ 0, the complex obtained by tensoring (3.2) by 𝜔
⊗𝑚

𝐶
and taking global sections is exact.

Proof. From the definition of a syzygy bundle, one sees that:

𝐹 ∗ ≃ Syz𝐶
(
𝑋3𝑝, 𝑋2𝑝𝑌 𝑝,𝑋𝑝𝑌 2𝑝, 𝑌 3𝑝, 𝑍𝑝

)
.

It is easy to describe the morphisms in (3.2) at the level of local sections. The morphism 𝑓 ∗+ → 𝐹 ∗ is

(𝐴,𝐵, 𝐶,𝐷,𝐸) → (𝐴,𝐵, 𝐶,𝐷,𝑍𝐸), and the morphism 𝑓 ∗−

(
𝜔
⊗−3
𝐶

)
→ 𝐹 ∗ is (𝐴,𝐵, 𝐶,𝐷,𝐸) → (𝑍𝐴,𝑍𝐵,𝑍𝐶,𝑍𝐷,𝐸).

Similarly, 𝐹 ∗
(
𝜔
⊗−3
𝐶

)
→ 𝑓 ∗+ is (𝐴,𝐵, 𝐶,𝐷,𝐸) → (𝑍𝐴,𝑍𝐵,𝑍𝐶,𝑍𝐷,𝐸) and 𝐹 ∗

(
𝜔
⊗−3
𝐶

)
→ 𝑓 ∗−

(
𝜔
⊗−3
𝐶

)
is

(𝐴,𝐵, 𝐶,𝐷,𝐸) → −(𝐴,𝐵, 𝐶,𝐷,𝑍𝐸).
To prove the exactness of (3.2), it suffices to prove the second statement. This is easy using the description of the canonical

ring as 𝕜[𝑋, 𝑌 ]⊕ 𝕜[𝑋, 𝑌 ] ⋅𝑍. □

3.2 The strong Lefschetz property and syzygy computations
To compute the syzygy bundles + and −, we need to restrict the situation again, by choosing carefully the polynomial 𝑃 . We
will take 𝑃 (𝑋, 𝑌 ) = 𝑋6 + 𝑌 6, so that 𝐶 is the curve of equation 𝑍2 = 𝑋6 + 𝑌 6. In particular, from now on, we suppose that
𝑝 ≠ 2, 3 so that 𝐶 is indeed smooth.

Our main tool will be the strong Lefschetz property for homogeneous ideals.

Definition 3.5. Let 𝑅 ∶= 𝕜[𝑥1,… , 𝑥𝑛]. A homogeneous Artinian ideal 𝐼 ⊂ 𝑅 satisfies the strong Lefschetz property if there is

a linear form 𝑙 ∈ 𝑅1 such that for every 𝑟, 𝑑 ≥ 0, the multiplication map (𝑅∕𝐼)𝑟
⋅𝑙𝑑
←→ (𝑅∕𝐼)𝑟+𝑑 is of maximal rank.

Lemma 3.6. Let 𝐼 ⊂ 𝕜[𝑥, 𝑦] be a homogeneous Artinian ideal. Suppose that (𝑅∕𝐼)𝑟 = 0 for 𝑟 ≥ 𝑝. Then 𝐼 satisfies the strong
Lefschetz property.

Proof. In characteristic 0, this is [12, Proposition 4.4]. In this proof, the characteristic 0 hypothesis is only used for the explicit
description of Borel-fixed ideals, applied to the generic initial ideal of 𝐼 . The description of Borel-fixed ideals in positive
characteristic 𝑝 [8, Theorem 15.23] is more complicated in general, but coincides with the simple one in characteristic 0 when
the condition that (𝑅∕𝐼)𝑟 = 0 for 𝑟 ≥ 𝑝 is satisfied. Consequently, under this hypothesis, the proof goes through. □

It is now possible to prove:

Proposition 3.7.

(i) If 𝑝 ≡ 1[8], + ≃ 
(
−15𝑝−9

4

)
⊕ 

(
−15𝑝−1

4

)⊕3
and − ≃ 

(
−15𝑝+3

4

)⊕4
.

(ii) If 𝑝 ≡ −1[8], + ≃ 
(
−15𝑝−3

4

)⊕4
and − ≃ 

(
−15𝑝+1

4

)⊕3
⊕ 

(
−15𝑝+9

4

)
.

(iii) If 𝑝 ≡ 3[8], + ≃ 
(
−15𝑝−7

4

)⊕2
⊕ 

(
−15𝑝+1

4

)⊕2
and − ≃ 

(
−15𝑝−3

4

)
⊕ 

(
−15𝑝+5

4

)⊕3
.

(iv) If 𝑝 ≡ −3[8], + ≃ 
(
−15𝑝−5

4

)⊕3
⊕ 

(
−15𝑝+3

4

)
and − ≃ 

(
−15𝑝−1

4

)⊕2
⊕ 

(
−15𝑝+7

4

)⊕2
.

Proof. We know the degrees of + and − from their definition. Moreover, by Grothendieck's theorem, a vector bundle on ℙ1

splits as a direct sum of line bundles. As a consequence, to prove the proposition, it is enough to compute the global sections

of some twists of + and −. For instance, to prove that + ≃ 
(
−15𝑝−9

4

)
⊕ 

(
−15𝑝−1

4

)⊕3
if 𝑝 ≡ 1[8], it is sufficient to show

that ℎ0
(
ℙ1,+

(
15𝑝−3

4

))
= 0 and that ℎ0

(
ℙ1,+

(
15𝑝+1

4

))
= 3.

Even if the result depends only on 𝑝modulo 8, we distinguish between different values of 𝑝modulo 24. As all the global section

computations needed are similar, we only carry out one: assuming that 𝑝 ≡ 1[24], we prove that ℎ0
(
ℙ1,+

(
15𝑝+1

4

))
= 3.
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Applying the global sections functor to an appropriate twist of the exact sequence defining +, we see that

𝐻0
(
ℙ1,+

(
15𝑝+1

4

))
is the vector space of solutions of the equation:

𝐴𝑋3𝑝 + 𝐵𝑋2𝑝𝑌 𝑝 + 𝐶𝑋𝑝𝑌 2𝑝 +𝐷𝑌 3𝑝 + 𝐸
(
𝑋6 + 𝑌 6) 𝑝+1

2 = 0, (3.3)

where the unknowns 𝐴,𝐵, 𝐶,𝐷,𝐸 are homogeneous polynomials in 𝑋 and 𝑌 , the first four being of degree 3𝑝+1
4 and 𝐸 being

of degree 3𝑝−11
4 . Equation (3.3) is a linear system in the coefficients of 𝐴,𝐵, 𝐶,𝐷,𝐸.

The matrix of this linear system in the monomial bases has six rectangular blocks, as one sees by separating the monomials
according to the value modulo 6 of the exponent of 𝑋. Consequently, the solution space of (3.3) is the direct sum of the solution
spaces of six smaller systems, that we may solve independently.

Let us look at the first one, obtained by keping in (3.3) only monomials in which the exponent of 𝑋 is a multiple of 6. Then,
setting 𝑥 ∶= 𝑋6 and 𝑦 ∶= 𝑌 6, it is possible to write 𝐴 = 𝑋3𝑌 4𝑎(𝑥, 𝑦), 𝐵 = 𝑋4𝑌 3𝑏(𝑥, 𝑦), 𝐶 = 𝑋5𝑌 2𝑐(𝑥, 𝑦), 𝐷 = 𝑌 𝑑(𝑥, 𝑦) and
𝐸 = 𝑌 4𝑒(𝑥, 𝑦). Dividing by 𝑌 4, we get the new equation:

𝑎𝑥
𝑝+1
2 + 𝑏𝑥

𝑝+2
3 𝑦

𝑝−1
6 + 𝑐𝑥

𝑝+5
6 𝑦

𝑝−1
3 + 𝑑𝑦

𝑝−1
2 + 𝑒(𝑥 + 𝑦)

𝑝+1
2 = 0, (3.4)

where the unknowns 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are homogeneous polynomials in 𝑥 and 𝑦 of respective degrees 𝑝−9
8 , 𝑝−9

8 , 𝑝−9
8 , 𝑝−1

8 and 𝑝−9
8 : it

is a linear system in 5𝑝+3
8 unknowns and as many equations.

Introduce the ideal 𝐼 ∶=
⟨
𝑥

𝑝+1
2 , 𝑥

𝑝+2
3 𝑦

𝑝−1
6 , 𝑥

𝑝+5
6 𝑦

𝑝−1
3 , 𝑦

𝑝−1
2
⟩

of 𝑅 ∶= 𝕜[𝑥, 𝑦]. The linear system (3.4) has maximal rank exactly

when ⋅(𝑥 + 𝑦)
𝑝+1
2 ∶ (𝑅∕𝐼) 𝑝−9

8
→ (𝑅∕𝐼) 5𝑝−5

8
has maximal rank. If 𝛼, 𝛽 ∈ 𝕜∗, this rank is equal to the rank of multiplication by

(𝛼𝑥 + 𝛽𝑦)
𝑝+1
2 , as one sees by performing the change of variables 𝑥′ = 𝛼𝑥, 𝑦′ = 𝛽𝑦, hence of the multiplication by a power of a

general linear form. By Lemma 3.6, 𝐼 satisfies the strong Lefschetz property and such multiplication maps have maximal rank.
We have proven that (3.4) has maximal rank. Since it has as many unknowns as equations, it has no nontrivial solution.

The same argument using the strong Lefschetz property shows that the five other sub-linear systems have maximal rank. Three
of them (corresponding to exponents of 𝑋 congruent to 1, 2 and 3 modulo 6) have exactly one more unknown than equations.
Another has as many unknowns as equations (the one corresponding to exponents of 𝑋 congruent to 4 modulo 6), and the last
one has more equations than unknowns. Consequently, only three have non-trivial solutions, and moreover a one-dimensional

solution space. It follows, as wanted, that ℎ0
(
ℙ1,+

(
15𝑝+1

4

))
= 3. □

Remark 3.8. The matrices of the linear systems in the proof of Proposition 3.7 are complicated matrices of binomial coefficients,
very similar to those appearing in Han's thesis [10]. It seems difficult to check directly that they are of maximal rank.

Remark 3.9. Proposition 3.7 and Lemma 3.4 show at once that 𝐹 ∗ is unstable when 𝑝 ≡ ±3[8]. We will obtain more precise
information in Paragraph 3.4.

3.3 Frobenius periodicity
We are ready to prove the strong semistability of  when 𝑝 ≡ ±1[8]. Denote by 𝑅 the ramification locus of 𝑓 : it consists of the
points 𝑃𝑖 = [𝜁𝑖 ∶ 1], where the 𝜁𝑖 are the sixth roots of −1. We view 𝑅 either as a subset of ℙ1 or as a subset of 𝐶 . Note that
these ramification points are transitively permuted by the natural action of the group 𝜇6 of sixth roots of unity on ℙ1.

Proposition 3.10. There are exact sequences:

0 → 𝐹 ∗ →

(
𝜔
⊗

−15𝑝+3
4

𝐶

)⊕5
→ 𝜔

⊗
−15𝑝+15

4
𝐶

→ 0, if 𝑝 ≡ 1[8], (3.5)

0 → 𝜔
⊗

−15𝑝−15
4

𝐶
→

(
𝜔
⊗

−15𝑝−3
4

𝐶

)⊕5
→ 𝐹 ∗ → 0, if 𝑝 ≡ −1[8]. (3.6)

Proof. We first construct (3.5). By Proposition 3.7, the injective morphism in the exact sequence (3.2) writes:

𝐹 ∗ →

(
𝜔
⊗

−15𝑝+11
4

𝐶

)⊕3
⊕

(
𝜔
⊗

−15𝑝+3
4

𝐶

)
⊕

(
𝜔
⊗

−15𝑝+3
4

𝐶

)⊕4
. We will prove that the induced morphism 𝐹 ∗ →

(
𝜔
⊗

−15𝑝+3
4

𝐶

)⊕5



BENOIST 2363

is injective in restriction to every point 𝑃 ∈ 𝐶 . This concludes because its quotient is then a line bundle, isomorphic to 𝜔
⊗

−15𝑝+15
4

𝐶

for degree reasons.

From its description, one sees that the morphism 𝐹 ∗ → 𝑓 ∗− ≃
(
𝜔
⊗

−15𝑝+3
4

𝐶

)⊕4
is an isomorphism on the fibers outside

𝑅, and that if 𝑃 ∈ 𝑅, the kernel of 𝐹 ∗|𝑃 → 𝑓 ∗−|𝑃 consists of syzygies (𝐴,𝐵, 𝐶,𝐷,𝐸) such that 𝐴,𝐵, 𝐶,𝐷 vanish at 𝑃 . It

remains to see that this kernel is not killed by the composition 𝐹 ∗|𝑃 → 𝑓 ∗+

(
𝜔
⊗3
𝐶

)|𝑃 → 𝜔
⊗

−15𝑝+3
4

𝐶
|𝑃 , i.e. that its image in

𝑓 ∗+

(
𝜔
⊗3
𝐶

)|𝑃 does not belong to
(
𝜔
⊗

−15𝑝+11
4

𝐶

)⊕3|𝑃 .

If it failed for 𝑃 = 𝑃1, there would exist a non-zero section (𝐴,𝐵, 𝐶,𝐷,𝐸) ∈ 𝐻0
(
𝐶, 𝑓 ∗+

(
𝜔
⊗

15𝑝+1
4

𝐶

))
=

𝐻0
(
ℙ1,+

(
15𝑝+1

4

))
such that 𝐴,𝐵, 𝐶,𝐷 vanish at 𝑃1. Writing 𝐴 = (𝑋 − 𝜁1𝑌 )�̃�1, 𝐵 =

(
𝑋 − 𝜁1𝑌

)
�̃�1, 𝐶 = (𝑋 − 𝜁1𝑌 )�̃�1,

𝐷 = (𝑋 − 𝜁1𝑌 )�̃�1, �̃�1 =
∏6

𝑖=2(𝑋 − 𝜁𝑖𝑌 )𝐸, one gets a section 𝜎1 =
(
�̃�1, �̃�1, �̃�1, �̃�1, �̃�1

)
∈ 𝐻0

(
ℙ1,−

(
15𝑝−3

4

))
such

that �̃�1 vanishes at 𝑃2,… , 𝑃6. For symmetry reasons, using the 𝜇6-action, there exists, for every 1 ≤ 𝑖 ≤ 6 a non-zero

section 𝜎𝑖 =
(
�̃�𝑖, �̃�𝑖, �̃�𝑖, �̃�𝑖, �̃�𝑖

)
∈ 𝐻0

(
ℙ1,−

(
15𝑝−3

4

))
such that �̃�𝑖 vanishes at 𝑃𝑗 for 𝑗 ≠ 𝑖. Since 𝐻0

(
ℙ1,−

(
15𝑝−3

4

))
is 4-dimensional by Proposition 3.7, these six sections cannot be linearly independent: for instance, 𝜎1 ∈ ⟨𝜎2,… , 𝜎6⟩. It

follows that �̃�1 vanishes at all 𝑃𝑖. Then
(
�̃�1, �̃�1, �̃�1, �̃�1, �̃�1∕

(
𝑋6 + 𝑌 6)) ∈ 𝐻0

(
ℙ1,+

(
15𝑝−3

4

))
is non-zero, contradicting

Proposition 3.7.
Let us explain how to obtain (3.6) by a similar argument. By Lemma 3.4 and Proposition 3.7, there is a morphism(
𝜔
⊗

−15𝑝−3
4

𝐶

)⊕5
→ 𝐹 ∗ , and it suffices to prove its surjectivity. Using only the four factors coming from +, one gets surjectivity

at points 𝑃 ∉ 𝑅, and the fact that, if 𝑃 ∈ 𝑅, all (𝐴,𝐵, 𝐶,𝐷,𝐸) ∈ 𝐹 ∗|𝑃 such that 𝐸 = 0 are in the image. Hence, it suffices

to prove that the unique section (𝐴,𝐵, 𝐶,𝐷,𝐸) ∈ 𝐻0
(
𝐶, 𝑓 ∗−

(
𝜔
⊗

15𝑝−9
4

𝐶

))
= 𝐻0

(
ℙ1,−

(
15𝑝−9

4

))
satisfies 𝐸(𝑃 ) ≠ 0. If it

didn't, 𝐸𝑅 would vanish by symmetry, and
(
𝐴,𝐵, 𝐶,𝐷,𝐸∕

(
𝑋6 + 𝑌 6)) ∈ 𝐻0

(
ℙ1,+

(
15𝑝−9

4

))
would be a non-zero section

contradicting Proposition 3.7. □

Proposition 3.11. There are isomorphisms:

(i) 𝐹 ∗ ≃ 

(
𝜔
⊗

15−15𝑝
4

𝐶

)
, if 𝑝 ≡ 1[8],

(ii) 𝐹 ∗ ≃ ∨
(
𝜔
⊗

−15−15𝑝
4

𝐶

)
, if 𝑝 ≡ −1[8].

Proof. Denote by 𝜎𝑖 ∈ 𝐻0
(
𝐶,𝜔

⊗3
𝐶

)
the sections appearing in the last arrow of (3.5). Tensoring (3.5) by 𝜔

⊗
15𝑝−3

4
𝐶

and taking

cohomology, one gets:

0 → 𝐻0
(
𝐶, 𝐹 ∗

(
𝜔
⊗

15𝑝−3
4

𝐶

))
→ 𝕜⊕5 𝜎𝑖

←→ 𝐻0
(
𝐶,𝜔

⊗3
𝐶

)
.

But 𝐻0
(
𝐶, 𝐹 ∗

(
𝜔
⊗

15𝑝−3
4

𝐶

))
= 0 by the second part of Lemma 3.4 applied with 𝑚 = 15𝑝−3

4 and Proposition 3.7. Thus, the 𝜎𝑖

are linearly independant and (3.5) is, up to a twist, the exact sequence defining the syzygy bundle  , proving (i).

We prove (ii) in a similar way. Denote by 𝜏𝑖 ∈ 𝐻0
(
𝐶,𝜔

⊗3
𝐶

)
the sections appearing in the first arrow of (3.6). Tensoring it

by 𝜔
⊗

15𝑝+7
4

𝐶
and taking cohomology, one gets:

0 → 𝐻0(𝐶,𝜔𝐶 )⊕5 → 𝐻0
(
𝐶, 𝐹 ∗

(
𝜔
⊗

15𝑝+7
4

𝐶

))
→ 𝐻1

(
𝐶,𝜔

⊗−2
𝐶

) 𝜏𝑖
←→ 𝐻1(𝐶,𝜔𝐶 )⊕5.
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The vector space 𝐻0(𝐶,𝜔𝐶 )⊕5 is 10-dimensional. By the second part of Lemma 3.4 and Proposition 3.7, one sees that

𝐻0
(
𝐶, 𝐹 ∗

(
𝜔
⊗

15𝑝+7
4

𝐶

))
has dimension ≤ 10. It follows that 𝐻1

(
𝐶,𝜔

⊗−2
𝐶

)
→ 𝐻1(𝐶,𝜔𝐶

)⊕5
is injective. This map being

Serre-dual to 𝕜⊕5 𝜏𝑖
←→ 𝐻0

(
𝐶,𝜔

⊗3
𝐶

)
, the 𝜏𝑖 generate 𝐻0

(
𝐶,𝜔

⊗3
𝐶

)
. Hence, the dual of (3.6) is, up to a twist, the exact sequence

defining the syzygy bundle  , proving (ii). □

Corollary 3.12. If 𝑝 ≡ ±1[8],  is strongly semistable.

Proof. Proposition 3.11 shows that when 𝑝 ≡ ±1[8], is Frobenius periodic up to a twist:𝐹 2∗ ≃ 

(
𝜔
⊗

15𝑝2−15
4

𝐶

)
. It is classical

that such bundles are strongly semistable. We recall the argument. Suppose that  is not semistable, and let  ⊂  be the first

graded piece of its Harder–Narasimhan filtration. Then 𝐹 2∗

(
𝜔
⊗

−15𝑝2+15
4

𝐶

)
⊂  has greater slope than  , a contradiction.

Hence  is semistable. By the periodicity property, so are all its Frobenius pull-backs. □

3.4 Unstability
Let us now describe what happens when 𝑝 ≡ ±3[8].

Proposition 3.13. If 𝑝 ≡ ±3[8], then 𝐹 ∗ is not semistable and its Harder–Narasimhan filtration is strong. This filtration is of
the form:

(i) 0 →  → 𝐹 ∗ → 𝜔
⊗

−15𝑝−3
4

𝐶
→ 0 if 𝑝 ≡ 3[8],

(ii) 0 → 𝜔
⊗

−15𝑝+3
4

𝐶
→ 𝐹 ∗ →  → 0 if 𝑝 ≡ −3[8].

Proof. We will only prove (i), as the second statement is similar. From Lemma 3.4 and Proposition 3.7, we get a morphism

𝐹 ∗ → 𝑓 ∗− → 𝜔
⊗

−15𝑝−3
4

𝐶
. Let us prove that it is surjective. Since 𝐹 ∗ → 𝑓 ∗− is surjective at all points 𝑃 ∉ 𝑅, and since

if 𝑃 ∈ 𝑅, the image of 𝐹 ∗|𝑃 → 𝑓 ∗−|𝑃 consists of syzygies (𝐴,𝐵, 𝐶,𝐷,𝐸) such that 𝐸(𝑃 ) = 0, we need to show that not

all sections (𝐴,𝐵, 𝐶,𝐷,𝐸) ∈ 𝐻0
(
𝐶, 𝑓 ∗−

(
𝜔
⊗

15𝑝−5
4

𝐶

))
= 𝐻0

(
ℙ1,−

(
15𝑝−5

4

))
satisfy 𝐸(𝑃 ) = 0. Suppose it is not the case:

then, by symmetry using the 𝜇6-action, for all sections (𝐴,𝐵, 𝐶,𝐷,𝐸) ∈ 𝐻0
(
ℙ1,−

(
15𝑝−5

4

))
, 𝐸 would vanish on 𝑅. Dividing

𝐸 by 𝑋6 + 𝑌 6, we would get a non-sero section in 𝐻0
(
ℙ1,+

(
15𝑝−5

4

))
, contradicting Proposition 3.7. Hence our morphism

was surjective, and we denote its kernel by  .

From Lemma 3.4 and Proposition 3.7 again, we get a morphism
(
𝜔
⊗

−15𝑝+1
4

𝐶

)⊕2
→ 𝑓 ∗+ → 𝐹 ∗ . Let us prove that it is injec-

tive on every fiber. Since 𝑓 ∗+ → 𝐹 ∗ is injective on the fibers at 𝑃 ∉ 𝑅, and since, if 𝑃 ∈ 𝑅, the kernel of 𝑓 ∗+|𝑃 → 𝐹 ∗|𝑃
consists of syzygies (𝐴,𝐵, 𝐶,𝐷,𝐸) such that 𝐴,𝐵, 𝐶,𝐷 all vanish at 𝑃 , it suffices to rule out the existence of a section

(𝐴,𝐵, 𝐶,𝐷,𝐸) ∈ 𝐻0
(
𝐶, 𝑓 ∗+

(
𝜔
⊗

15𝑝−1
4

𝐶

))
= 𝐻0

(
ℙ1,+

(
15𝑝−1

4

))
such that 𝐴,𝐵, 𝐶,𝐷 all vanish at 𝑃 . We proceed by

contradiction. Then, for symmetry reasons, there exist for 1 ≤ 𝑖 ≤ 6 a section (𝐴𝑖, 𝐵𝑖, 𝐶𝑖, 𝐷𝑖, 𝐸𝑖) ∈ 𝐻0
(
ℙ1,+

(
15𝑝−1

4

))
such

that 𝐴𝑖, 𝐵𝑖, 𝐶𝑖, 𝐷𝑖 all vanish at 𝑃𝑖. Dividing 𝐴𝑖, 𝐵𝑖, 𝐶𝑖, 𝐷𝑖 by 𝑋 − 𝜁𝑖𝑌 and multiplying 𝐸 by
∏

𝑗≠𝑖

(
𝑋 − 𝜁𝑗𝑌

)
, we get

non-zero sections 𝜎𝑖 = (�̃�𝑖, �̃�𝑖, �̃�𝑖, �̃�𝑖, �̃�𝑖) ∈ 𝐻0
(
ℙ1,−

(
15𝑝−5

4

))
such that �̃�𝑖 vanishes at 𝑃𝑗 for 𝑗 ≠ 𝑖. By Proposition 3.7,

𝐻0
(
ℙ1,−

(
15𝑝−5

4

))
is 3-dimensional, hence the 𝜎𝑖 cannot be linearly independent, say 𝜎1 ∈ ⟨𝜎2,… , 𝜎6⟩. Then �̃�1 vanishes

at all the 𝑃𝑖 and
(
�̃�1, �̃�1, �̃�1, �̃�1, �̃�1∕

(
𝑋6 + 𝑌 6)) ∈ 𝐻0

(
ℙ1,+

(
15𝑝−5

4

))
is a non-zero section contradicting Proposition 3.7.

Since there are obviously no non-zero morphisms 𝜔
⊗

−15𝑝+1
4

𝐶
→ 𝜔

⊗
−15𝑝−3

4
𝐶

, the subbundle
(
𝜔
⊗

−15𝑝+1
4

𝐶

)⊕2
factors through  ,

and a degree computation shows that this realizes  as an extension:

0 →

(
𝜔
⊗

−15𝑝+1
4

𝐶

)⊕2
→  → 𝜔

⊗
−15𝑝+1

4
𝐶

→ 0. (3.7)
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Now  is strongly semistable as an extension of strongly semistable bundles of the same slope, and writing 𝐹 ∗ as an extension

of 𝜔
⊗

−15𝑝−3
4

𝐶
by  indeed realizes the Harder–Narasimhan filtration of 𝐹 ∗ . □

3.5 Hilbert–Kunz multiplicities
We now apply our results to the computation of Hilbert–Kunz multiplicities. Let us first recall the definition.

Definition 3.14. Let 𝐴 be a noetherian 𝑛-dimensional ring of characteristic 𝑝 and let 𝔪 be a maximal ideal of 𝐴. Let 𝔪[𝑒] be
the ideal of 𝐴 generated by 𝑝𝑒-th powers of elements of 𝔪. The Hilbert–Kunz multiplicity of (𝐴,𝔪) is defined to be:

𝑒HK(𝐴,𝔪) ∶= lim
𝑒→∞

length
(
𝐴∕𝔪[𝑒])
𝑝𝑛𝑒

.

This invariant was first considered by Kunz [19], and the limit was shown to exist and to be finite by Monsky [26]. It is difficult
to compute in general.

We will be interested in the following geometric case:

Definition 3.15. Let 𝐶 be a smooth curve endowed with a line bundle  whose sections embed 𝐶 as a projectively normal
curve. Consider the section ring 𝐴 ∶=

⨁
𝑙≥0𝐻

0(𝐶,⊗𝑙
)

with its maximal ideal 𝔪 ∶=
⨁

𝑙>0𝐻
0(𝐶,⊗𝑙

)
. Define:

𝑒HK(𝐶,) ∶= 𝑒HK(𝐴,𝔪).

In this particular case, Brenner [3, Theorem 1] and Trivedi [30, Theorem 4.12] have related the Hilbert–Kunz multiplicity to
properties of a syzygy bundle:

Theorem 3.16. (Brenner, Trivedi). Let 𝐶 be a smooth curve endowed with a degree 𝑑 line bundle  whose sections embed 𝐶 in
ℙ𝑘−1 as a projectively normal curve. Using Theorem 2.2, choose a finite morphism of degree 𝑒 from a smooth curve 𝑓 ∶ 𝐶 ′ → 𝐶

such that the Harder–Narasimhan filtration of 𝑓 ∗ Syz𝐶 () is strong. Let 𝑟𝑖 and 𝑒𝛿𝑖 be the ranks and degrees of the graded pieces
of this filtration (so that 𝑟𝑖 and 𝛿𝑖 are independent of 𝑓 ). Then:

𝑒HK(𝐶,) = 1
2𝑑

∑
𝑖

𝛿2
𝑖

𝑟𝑖
− 𝑘𝑑

2
.

Applying this theorem using Corollary 3.12 and Proposition 3.13, we get:

Theorem 3.17. Let 𝐶 be the curve of genus 2 with equation 𝑍2 = 𝑋6 + 𝑌 6. Then:

(i) 𝑒HK

(
𝐶,𝜔

⊗3
𝐶

)
= 15

4 if 𝑝 ≡ ±1[8],

(ii) 𝑒HK

(
𝐶,𝜔

⊗3
𝐶

)
= 15

4 + 1
4𝑝2 if 𝑝 ≡ ±3[8].
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